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Stinespring’s construction as an adjunction
Arthur J. Parzygnat

Institut des Hautes Études Scientifiques, 35 Routes de Chartres, 91440, Bures-sur-Yvette, France

Given a representation of a unital C∗-algebra A on a Hilbert space H, together
with a bounded linear map V : K //H from some other Hilbert space, one obtains a
completely positive map on A via restriction using the adjoint action associated to V .
We show this restriction forms a natural transformation from a functor of C∗-algebra
representations to a functor of completely positive maps. We exhibit Stinespring’s
construction as a left adjoint of this restriction. Our Stinespring adjunction provides
a universal property associated to minimal Stinespring dilations and morphisms of
Stinespring dilations. We use these results to prove the purification postulate for all
finite-dimensional C∗-algebras.

1 Introduction and outline
Given a unital C∗-algebra A and a state (a positive and unital linear functional) on A, the Gelfand–
Naimark–Segal (GNS) construction produces a cyclic representation of A in a natural way com-
patible with the operation that produces a state from a representation together with a unit vector.
This naturality has been expressed as an adjunction

C∗-Algop CATa

States

((

Rep•

66rest

KS

GNS•

��

(1.1)

in a certain 2-category of functors from the (opposite of the) category of C∗-algebras to the 2-
category of locally small categories1 [21].

Stinespring’s construction can be viewed as a generalization of the GNS construction by re-
placing states with operator-valued completely positive (OCP) maps. In the present work, we
extend our GNS adjunction in Theorem 5.8 to include such OCP maps, showing that Stinespring’s
construction can also be viewed as an adjunction

C∗-Algop CATa

OCP

((

AnRep

66rest

KS

Stine

��

(1.2)

in the same 2-category of functors.
There are several subtle differences between the two adjunctions (1.1) and (1.2). The most

notable one is that the category of OCP maps for a given C∗-algebra is no longer discrete as it
is for the GNS construction. This is a consequence of relaxing the unitality assumption on the

Arthur J. Parzygnat: parzygnat@ihes.fr

1Technically, the collection of objects of the 2-category of locally small categories does not form a class. See
Sections 3.49, 3.50, and 3.51 in [2] and Sections 8 and 16 in [28] for the set-theoretic foundations of categories of
categories and functor categories. In the present work, our constructions will be explicitly defined on objects and
morphisms, and these set-theoretic issues will not affect our results.
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positive maps and allowing the maps to be operator-valued instead of complex-valued. Further-
more, for similar reasons, the category of anchored representations has far more morphisms than
the category of pointed representations introduced in [21]. Our result provides a categorical sense
of the minimality of Stinespring’s construction including many of its functorial properties for all
C∗-algebras. As a consequence, we apply our results to prove a version of the purification postu-
late, which has been used by Chiribella, D’Ariano, and Perinotti as a crucial postulate in isolating
quantum theory among other operational probabilistic theories [7].

Our results are closely related to, but distinct from, the universal property of minimal Stine-
spring dilations described by Westerbaan and Westerbaan in [31] (see also Section 2.3 in [32]). In
[31], the authors describe a universal property for (minimal) Paschke dilations for normal com-
pletely positive maps between von Neumann algebras. In the present work, we provide an alterna-
tive universal property for Stinespring dilations without restricting ourselves to normal completely
positive maps, since we allow the domains of our maps to be arbitrary C∗-algebras. Therefore, we
characterize all minimal Stinespring dilations by our universal property. However, our codomain
for a completely positive map is assumed to be bounded operators on some Hilbert space, while
Westerbaan and Westerbaan assume an abstract von Neumann algebra. Therefore, our results
both provide a similar universal property for minimal Stinespring dilations of normal completely
positive maps, but neither result subsumes the other. It would be interesting to see if there is a
common generalization of both our results that includes Paschke dilations of arbitrary completely
positive maps between arbitrary C∗-algebras.

The outline of our paper is as follows. In Section 2, relevant background for completely pos-
itive maps is provided. An appropriate category of OCP maps for a C∗-algebra is defined and
briefly contrasted with the category of states introduced in [21]. In Section 3, the category of
anchored representations for a C∗-algebra is introduced. Anchored representations are general-
izations of pointed representations described in [21]. Restriction from anchored representations
to OCP maps is defined in Section 4 and is shown to form a natural transformation. Section 5
contains our main result, Theorem 5.8, which states that the restriction natural transformation has
a left adjoint whose ingredients are determined by Stinespring’s construction. Section 6 provides
some immediate consequences of our adjunction, including its universal property. We provide a
comparison to minimal Stinespring dilations in Corollary 6.9. The rest of Section 6 introduces
partial isometries and their role in our Stinespring adjunction. For example, Theorem 6.29 shows
that all morphisms between Stinespring dilations extend a minimal intertwining partial isome-
try. The first part of Section 7 compares our main theorem to the GNS adjunction from [21].
We then give a reformulation of the standard purification postulate suitable for our purposes in
Postulate 7.17. What follows is a detailed analysis of how this postulate is a consequence of our
results. This leads to Theorem 7.30 and Corollary 7.38, which establish the essential uniqueness of
purifications for finite-dimensional C∗-algebras. An index of notation is included in Appendix A
for the reader’s convenience. Appendix B briefly reviews oplax-natural transformations, modifica-
tions, and 2-categorical adjunctions. Proposition B.31 provides an equivalence in data regarding
adjunctions in 2-categories of functors and their evaluations on objects.

In this article, all C∗-algebras and ∗-homomorphisms will be taken to be unital unless otherwise
specified. A ∗-homomorphism of C∗-algebras will be denoted diagrammatically as a straight arrow
// , while a linear map (often a completely positive map) of C∗-algebras will be denoted as a

curvy arrow // . This is largely motivated by the equivalence between the (opposite of the)
category of compact Hausdorff spaces with stochastic maps and the category of commutative
C∗-algebras with positive maps [20], [12]. This equivalence restricts to the usual commutative
Gelfand–Naimark theorem that describes the equivalence between the (opposite of the) category of
compact Hausdorff spaces with continuous functions and the category of commutative C∗-algebras
with ∗-homomorphisms [13]. To the best of the author’s knowledge, the usage of the // notation
originated in the work of Baez and Fritz on relative entropy [3]. In what follows, “iff” stands for “if
and only if” and is used solely in definitions. The symbols �, �, and N signal the end of a proof,
example, and remark, respectively. Ci denotes the i-morphisms of the category (or 2-category)
C (when i = 0, these refer to the objects of the category), C∗-Alg denotes the category of C∗-
algebras and ∗-homomorphisms, CAT denotes the 2-category of categories, functors, and natural
transformations, and Fun(C∗-Algop, CAT ) denotes the 2-category of functors C∗-Algop //CAT ,
oplax-natural transformations of such functors, and modifications of oplax-natural transformations.
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Although Appendix B reviews what is sufficient for our purposes, the reader is referred to our
previous article on the GNS construction for further details [21]. Any claims made without proof
follow easily from the definitions—this is particularly the case in Sections 2, 3, and 4.

2 Operator-valued completely positive maps on C∗-algebras
The notion of a completely positive (CP) map will be used throughout and will therefore be
briefly reviewed. Most of the concepts used here are introduced in the first few chapters of
Paulsen [23]. General facts used without mention regarding Hilbert spaces can be found in Chap-
ter 4 of Rudin [24] and Chapter 12 of Rudin [25].

Notation 2.1. The set of natural numbers 1, 2, 3, . . . is denoted by N. If K is a Hilbert space,
B(K) denotes the C∗-algebra of bounded operators on K. If a ∈ B(K), then a∗ denotes the adjoint
of a. If A is a C∗-algebra, 1A denotes the unit in A. The norm on C∗-algebras is always written
using ‖ · ‖ without any subscripts, while norms and inner products on Hilbert spaces frequently
have subscripts. For example, 〈 · , · 〉K denotes the inner product on K with linearity in the right
variable and conjugate linearity in the left variable. For n ∈ N,Mn(A) denotes the C∗-algebra of
n×n matrices with entries in A. Addition and multiplication inMn(A) are defined as for ordinary
matrices. If aij is the ij-th entry of A ∈ Mn(A), then the ij-th entry of A∗ is a∗ji. The norm on
Mn(A) is used only once in this article (cf. (5.19)) and the reader is referred to the first several
pages in Chapter 1 of Paulsen [23] for details. In particular, Mn(C) denotes the C∗-algebra of
n × n complex matrices. In this case, the unit ofMn(C) will be denoted by 1n. Any C∗-algebra
of the formMn(C) will be referred to as a matrix algebra.

Definition 2.2. Let A and B be C∗-algebras, and let ϕ : A // B be a linear map. The map
ϕ is said to be unital iff ϕ(1A) = 1B. An element of a C∗-algebra A is positive iff it equals
a∗a for some a ∈ A. A linear map between C∗-algebras is positive iff it is linear and it sends
positive elements to positive elements. A positive map into C is referred to as a positive linear
functional. A positive unital linear functional is called a state. If n ∈ N, the n-ampliation of
ϕ : A // B is the linear map ϕn :Mn(A) //Mn(B) defined by the assignment

Mn(A) 3

a11 · · · a1n
...

...
an1 · · · ann

 ϕn7−−→

ϕ(a11) · · · ϕ(a1n)
...

...
ϕ(an1) · · · ϕ(ann)

 . (2.3)

The map ϕ : A // B is said to be n-positive iff its n-ampliation is positive. The map ϕ : A // B
is said to be completely positive iff it is n-positive for all n ∈ N. The shorthand PU, CP, and
CPU may be used to denote a positive unital, completely positive, or completely positive unital
map, respectively.

When B = B(K), bounded operators on a Hilbert space K, the latter matrix in (2.3) acts on
an n-tuple of vectors in K, i.e. elements of K ⊕ · · · ⊕ K (n times), to provide another n-tuple of
vectors in K (one chooses an ordering for the direct sum here).

Example 2.4. Some examples of CP maps follow.

(a) All ∗-homomorphisms between C∗-algebras are CPU.
(b) Let T : K // L be a bounded linear map between Hilbert spaces. Then, the map

B(K) AdT // B(L)
A 7−−−−→ TAT ∗

(2.5)

is CP. This map is sometimes referred to as the adjoint action map. It is CPU whenever T ∗
is an isometry. This notation is chosen so that if S : L //M is another bounded linear map
between Hilbert spaces, then AdS ◦AdT = AdST .

(c) Non-negative linear combinations of maps as in (2.5) are also CP.
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Several more examples will appear later in this work. �

Lemma 2.6. Each of the three classes of maps between C∗-algebras from Definition 2.2 (positive,
unital, and CP) is closed under composition. All positive maps ϕ : A // B between C∗-algebras
are self-adjoint in the sense that ϕ(a∗) = ϕ(a)∗ for all a ∈ A.

Proof. See Exercise 2.1 in Paulsen [23] for the last statement. �

Definition 2.7. Let A be a C∗-algebra. An operator-valued CP map (OCP map) on A is a
pair (K, ϕ) consisting of a Hilbert space K and a CP map ϕ : A // B(K). When ϕ is unital, it
is called an operator state on A [10]. Let (L, ψ) be another OCP map on A. A morphism of
OCP maps T : (K, ϕ) // (L, ψ) is a bounded linear map T : K // L such that

K K

L L

ϕ(a) //

ψ(a)
//

T

��

T

��

(2.8)

commutes for all a ∈ A. If (K, ϕ) and (L, ψ) are operator states, a morphism of operator states
is a morphism of OCP maps with T an isometry.

Remark 2.9. The choice of morphisms of OCP maps is subtle. One might have tried any number
of reasonable variants. For instance, one might request that the diagram

A

B(K) B(L)

ϕ

��

ψ

��

AdT
//

(2.10)

commutes. Another possibility is that the diagram

A

B(K) B(L)

ϕ

��

ψ

��

AdT∗
oo

(2.11)

commutes. When T is an isometry, commutativity of (2.10) implies commutativity of (2.8) and
commutativity of (2.8) implies commutativity of (2.11). When T ∗ is an isometry, these implications
are reversed. In particular, when T is unitary, all three are equivalent. To see the first implication
when T is an isometry, diagram (2.10) says Tϕ(a)T ∗ = ψ(a) for all a ∈ A. Applying T on the right
gives Tϕ(a) = ψ(a)T because T ∗T = idK. The second implication follows by applying T ∗ on the
left of this result. In summary (2.10) =⇒ (2.8) =⇒ (2.11) for operator states. Explicit counter-
examples showing the reverse implications fail in general are provided in Examples 2.17 and 2.22.
We will see that commutativity of (2.10) is too strong a requirement and commutativity of (2.11)
is too weak a requirement for the purposes sought out in this work (these points will be explained
in footnotes). No such simple comparison can be made for OCP maps.2 These subtle points and
the universal properties that will be discussed in this work would have been missed if we demanded
T to be unitary. N

Example 2.12. As a special case, set K = C. An OCP map ϕ : A // B(C) ∼= C is (naturally
isomorphic to) a positive linear functional. If ψ : A // C is another such OCP map, then a

2This is easy to see for trivial reasons. For example, if (K, ϕ) T−→ (L, ψ) is a morphism of OCP maps and
λ ∈ [0, 1) ∪ (1,∞), then (K, λϕ) λT−−→ (L, λψ) is a morphism of OCP maps. However, neither (2.10) nor (2.11)
commute in general. Along similar lines, (2.10) and (2.11) do not imply each other (see also Example 2.14).
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morphism T : (C, ϕ) // (C, ψ) of OCP maps consists of a linear map T : C // C. Such a linear
map must be of the form T (λ) = zλ for all λ ∈ C for some unique z ∈ C. If z 6= 0, since ϕ and ψ
are linear, the diagram

C C

C C

ϕ(a) //

ψ(a)
//

T

��

T

��
(2.13)

commutes for all a ∈ A if and only if ϕ = ψ. Notice that when T is an isometry, it is of the form
T (λ) = eiθλ for some θ ∈ [0, 2π). In this case, (2.11) and (2.10) (and hence (2.8) as well) are
equivalent because T is also unitary. �

Example 2.14. Fix m, p ∈ N and define the tracial map

Mm(C) τ // Mp(C)

A 7−−−−→ 1
m

tr(A)1p,
(2.15)

where tr denotes the standard (un-normalized) trace. A quick computation shows τ is unital. To
see that it is CP, first note that since the trace is positive, the trace is CP because every positive
map into C is automatically CP (cf. Theorem 3 in Stinespring [29]). Second, note that τ equals
the composite of CPU maps

Mm(C)
1
m tr // C !−−→Mp(C), (2.16)

where the second map is the unique unital linear map sending 1 to 1p. Therefore, τ is CPU by
Example 2.4 and Lemma 2.6. Given q ∈ N, let σ :Mm(C) //Mq(C) denote the tracial map for
these dimensions and let T : Cp //Cq be any linear transformation. Then (Cp, τ) T−→ (Cq, σ) is a
morphism of OCP maps. �

Example 2.17. The present example will show that (2.8) 6=⇒ (2.10) for morphisms of operator
states. Let A :=M2(C) and set

A
ϕ // C A

ψ // M2(C) C T−−−−→ C2

A 7−−−−→ 1
2tr(A) A 7−−−−→ 1

2tr(A)12 λ 7−−−−→ λ√
2

[
1
1

]
.

(2.18)

Then ϕ and ψ are operator states and T : (C, ϕ) // (C2, ψ) defines a morphism of operator states
by Example 2.14. Note that T ∗ : C2 // C is given by

T ∗
([
x
y

])
= x+ y√

2
. (2.19)

Therefore, (
AdT

(
ϕ(A)

))([x
y

])
= 1

4tr(A)(x+ y)
[
1
1

]
(2.20)

while (
ψ(A)

)([x
y

])
= 1

2tr(A)
[
x
y

]
, (2.21)

which shows (2.10) does not commute. �

Example 2.22. The present example will show that (2.11) 6=⇒ (2.8). Let A :=M2(C) and set

A
ϕ // C A

ψ // M2(C) C T−−−−→ C2

A 7−−−−→ 1
2tr(A) A 7−−−−→ 1

2A+ 1
2

[
0 1
1 0

]
A

[
0 1
1 0

]
λ 7−−−−→

[
λ
0

]
.

(2.23)
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Then ϕ and ψ are operator states (cf. Examples 2.14 and 2.4). Note that T ∗ : C2 //C is given by

T ∗
([
x
y

])
= x (2.24)

and
ψ

([
a b
c d

])
= 1

2

[
a+ d b+ c
b+ c a+ d

]
. (2.25)

Therefore, although (2.11) holds,(
Tϕ

([
a b
c d

]))
(λ) = λ

2

[
a+ d

0

]
and

(
ψ

([
a b
c d

])
T

)
(λ) = λ

2

[
a+ d
b+ c

]
(2.26)

show that condition (2.8) fails. �

The following proposition provides the general structure of morphisms of operator states.

Proposition 2.27. Let ϕ : A // B(K) and ψ : A // B(L) be operator states on a C∗-algebra
A with K and L Hilbert spaces. A morphism (K, ϕ) T−→ (L, ψ) of operator states exists if and only
if there exist closed subspaces L1,L2 ⊆ L, operator states ψj : A // B(Lj) for j ∈ {1, 2}, and a
unitary map U : K // L1 such that L = L1 ⊕ L2, Uϕ(a)U∗ = ψ1(a), and ψ(a) = ψ1(a) ⊕ ψ2(a)
for all a ∈ A.

Proof. you found me!
(⇒) For the forward direction, set L1 := T (K). Since T is an isometry, L1 is a closed subspace of
L. Set L2 := L⊥1 , the orthogonal complement of L1 inside L, U := π1T, and ψj(a) := πjψ(a)ij for
all a ∈ A, where πj : L //Lj denotes the projection onto the j-th factor and ij : Lj //L denotes
the inclusion of the j-th factor. Since T is an isometry, U is unitary. Since T is a morphism of
operator states, ψ(a)L1 ⊆ L1 for all a ∈ A. Furthermore, since ψ is positive, ψ(a)∗ = ψ(a∗) so
that T ∗ψ(a∗) = ϕ(a∗)T ∗ for all a ∈ A upon taking the adjoint of (2.8). Since ∗ is an involution on
A, this is equivalent to T ∗ψ(a) = ϕ(a)T ∗ for all a ∈ A. Thus, ψ(a)L2 ⊆ L2. These two facts imply
ψ(a) = ψ1(a)⊕ ψ2(a) for all a ∈ A. Finally,

Uϕ(a)U∗ = π1Tϕ(a)T ∗i1 by definition of U
= π1TT

∗ψ(a)TT ∗i1 by (2.8) and Remark 2.9
= π1ψ(a)i1 since T is an isometry onto L1

= ψ1(a) by definition of ψj

(2.28)

for all a ∈ A.
(⇐) To see the reverse direction, set T := i1U . Then T is a morphism of operator states since the
diagram

K K

L1 L1

L L

ϕ(a) //

ψ1(a) //

U

��
U

��

i1

��

i1

��

ψ(a)
//

T

��

T

��

(2.29)

commutes for all a ∈ A. �

OCP maps and operator states together with their morphisms form categories.

Lemma 2.30. Let (K, ϕ) T−→ (L, ψ) S−→ (M, χ) be a pair of composable morphisms of OCP maps
(or operator states) on a C∗-algebra A. The composite of said morphisms is defined to be the
composite ST of linear transformations and is a morphism of OCP maps (resp. operator states).
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The identity (K, ϕ)
id(K,ϕ)−−−−→ (K, ϕ) is the identity linear transformation idK. The collection of all

OCP maps (or operator states) on A with their morphisms forms a category, which is denoted by
OCP(A) (resp. OpSt(A)). Furthermore, OpSt(A) is a subcategory of OCP(A).

Remark 2.31. The result T ∗ψ(a) = ϕ(a)T ∗ obtained in the proof of Proposition 2.27 shows
OCP(A) is a ∗-category. This will be explained in more detail in Proposition 6.20. N

Lemma 2.32. Let f : A′ //A be a ∗-homomorphism of C∗-algebras. The assignment

OCP(A) OCPf−−−−→ OCP(A′)
(K, ϕ) 7−−−−→ (K, ϕ ◦ f)(

(K, ϕ) T−→ (L, ψ)
)
7−−−−→

(
(K, ϕ ◦ f) T−→ (L, ψ ◦ f)

) (2.33)

defines a functor. Furthermore, it restricts to a functor OpSt(A)
OpStf−−−−→ OpSt(A′).

Lemma 2.34. The assignment

C∗-Algop OCP−−−→ CAT
A 7−−−→ OCP(A)(

A′ f−→ A
)
7−−−→

(
OCP(A) OCPf−−−−→ OCP(A′)

) (2.35)

defines a functor. The same is true for C∗-Algop OpSt−−−−→ CAT .

3 Anchored representations of C∗-algebras
Definition 3.1. Let A be a C∗-algebra. An anchored representation of A is a quadruple
(K,H, π, V ) consisting of two Hilbert spaces H and K, a ∗-homomorphism π : A // B(H), and
a bounded linear map V : K // H. When V is an isometry, (K,H, π, V ) is called a preserving
anchored representation. Let (L, I, ρ,W ) be another anchored representation of A. A mor-
phism of anchored representations (T, L) : (K,H, π, V ) // (L, I, ρ,W ) consists of bounded
linear maps T : K //L and L : H //I satisfying the following two conditions. First, the diagram

H H

I I

π(a) //

ρ(a)
//

L

��

L

��

(3.2)

commutes for all a ∈ A. Second, the diagrams

K H

L I

V //

W
//

T

��

L

��

and

KH

LI

V ∗ //

W∗
//

T

��

L

��

(3.3)

both commute. When V,W, T, and L are isometries, then (T, L) is said to be a morphism of
preserving anchored representations.

Remark 3.4. For preserving anchored representations, commutativity of the right diagram in
(3.3) holds whenever T is unitary and the left diagram in (3.3) commutes. To see this, the left
diagram says WT = LV. Taking the adjoint of this condition gives T ∗W ∗ = V ∗L∗. Applying T on
the left and L on the right gives W ∗L = TV ∗, which is the diagram on the right in (3.3). N
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When the bounded linear maps in these definitions are isometries, the following lemma shows
the isometry T : K // L is redundant and can be constructed from L : H // I.

Lemma 3.5. Let K,H,L, and I be Hilbert spaces and let V : K //H, W : L //I, and L : H //I
be isometries. Then L satisfies

L
(
V (K)

)
⊆W (L) and L

(
V (K)⊥

)
⊆W (L)⊥ (3.6)

if and only if there exists a (necessarily unique) isometry T : K // L such that the diagrams in
(3.3) commute.

In (3.6), W (L)⊥ stands for the orthogonal complement of W (L) ⊆ I and likewise for V (K)⊥ ⊆
H.

Proof of Lemma 3.5. First note that since V andW are isometries, their images are closed. Hence,

H = V (K)⊕ V (K)⊥ and I = W (L)⊕W (L)⊥. (3.7)

(⇒) Assume L satisfies (3.6). Then the diagram

K

V (K)⊕ V (K)⊥

V (K)

W (L)⊕W (L)⊥

W (L)

L
V

ii

πV (K)Vuu

Loo

πW (L)LiV (K)

oo

W∗

uu

(πW (L)W )∗

ii iV (K)

OO

πW (L)

��

(3.8)

commutes by construction. In this diagram, πW (L) and iV (K) denote projection and inclusion maps,
respectively. Note that πW (L)LiV (K) is an isometry because L

(
V (K)

)
⊆ W (L) by (3.7). Setting

T := W ∗LV , it follows from (3.8) that T is the composite of the two unitary maps πV (K)V and
(πW (L)W )∗ and the isometry πW (L)LiV (K). Therefore, T is an isometry. Finally, the diagrams in
(3.3) commute because they are given by

K V (K)⊕ V (K)⊥

V (K)⊕ V (K)⊥

L W (L)⊕W (L)⊥

W (L)⊕W (L)⊥

V //

W
//

W∗

��

V

��

L

��

L

��

PW (L)

$$

L
(V

(K
))
⊆
W

(L
)

W
∗W

=
idL

and

KV (K)⊕ V (K)⊥

V (K)⊕ V (K)⊥

LW (L)⊕W (L)⊥

W (L)⊕W (L)⊥

V ∗ //

W∗
//

L

��

W∗

��

V

��

L

��

PV (K)

$$

L
(V

(K
)⊥

)
⊆
W

(L
)⊥

V
∗ V

=
idK

, (3.9)

respectively, where PW (L) is the projection onto W (L) inside I, and similarly for PV (K).
(⇐) Assume an isometry T satisfying (3.3) exists. Commutativity of the diagram on the left
requires L

(
V (K)

)
⊆W (L), while commutativity of the diagram on the right requires L

(
V (K)⊥

)
⊆

W (L)⊥. �

Notation 3.10. A morphism of preserving anchored representations will be denoted by the pair
(T, L) : (K,H, π, V ) // (L, I, ρ,W ), even though the isometry T is uniquely determined by L as
illustrated in Lemma 3.5. This is because T need not be uniquely determined by L in the general
case of anchored representations and because we will use T to relate anchored representations to
OCP maps in this work.
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Example 3.11. In the special case K = C, an anchored representation of A consists of a ∗-
representation π : A //B(H) and a linear map V : C //H. Such a map is uniquely characterized
by the vector Ω := V (1) ∈ H, which is a unit vector if and only if V is an isometry. Hence, a
preserving anchored representation of the form (C,H, π, V ) is equivalent to a pointed representation
as introduced in Definition 5.1 in [21]. If (C, I, ρ,W ) is another preserving anchored representation,
then a morphism (C,H, π, V ) (T,L)−−−→ (C, I, ρ,W ) of preserving anchored representations consists of
isometries T : C //C and L : H //I satisfying (3.2) and (3.3). T must be of the form T (λ) = λeiθ

for all λ ∈ C for some θ ∈ [0, 2π). L is an intertwiner of representations by (3.2). Let Ξ := W (1).
The left diagram in (3.3) entails L(Ω) = eiθΞ. Since V ∗ = 〈Ω, · 〉 and W ∗ = 〈Ξ, · 〉, the right
diagram in (3.3) entails eiθ〈Ω, · 〉 = 〈Ξ, L( · )〉 as linear functionals on H. However, this second
condition is implied by the first one in (3.3) by Remark 3.4. Hence, this reproduces the morphisms
of pointed representations in [21] up to a phase. �

Lemma 3.12. Let (K,H, π, V ) (T,L)−−−→ (L, I, ρ,W ) (S,M)−−−−→ (M,J , σ,X) be a pair of composable
morphisms of anchored representations on a C∗-algebra A. The composite of said morphisms is
defined as (S,M) ◦ (T, L) := (ST,ML) and is a morphism of anchored representations. A simi-
lar statement is true for preserving anchored representations and their morphisms. The identity
(K,H, π, V ) (idK,idH)−−−−−−→ (K,H, π, V ) is the identity linear transformation on each Hilbert space. The
collection of all anchored representations on A and their morphisms forms a category, which is de-
noted by AnRep(A). Similarly, the collection of all preserving anchored representations on A and
their morphisms forms a category, which is denoted by PAnRep(A). Furthermore, PAnRep(A)
is a subcategory of AnRep(A).

Lemma 3.13. Let f : A′ //A be a ∗-homomorphism of C∗-algebras. The assignment

AnRep(A)
AnRepf−−−−−−→ AnRep(A′)

(K,H, π, V ) 7−−−−−→ (K,H, π ◦ f, V )(
(K,H, π, V ) (T,L)−−−→(L, I, ρ,W )

)
7−−−−−→

(
(K,H, π ◦ f, V ) (T,L)−−−→(L, I, ρ ◦ f,W )

) (3.14)

defines a functor. Furthermore, it restricts to a functor PAnRep(A)
PAnRepf−−−−−−−→ PAnRep(A′).

Lemma 3.15. The assignment

C∗-Algop AnRep−−−−−→ CAT
A 7−−−−−→ AnRep(A)(

A′ f−→ A
)
7−−−−−→

(
AnRep(A)

AnRepf−−−−−−→ AnRep(A′)
) (3.16)

defines a functor. The same is true for C∗-Algop PAnRep−−−−−−→ CAT .

4 The restriction natural transformation
The follow proposition illustrates how to construct an OCP map from an anchored representation.

Proposition 4.1. Let A be a C∗-algebra. The assignment

AnRep(A) restA−−−−→ OCP(A)
(K,H, π, V ) 7−−−→ (K,AdV ∗ ◦ π)(

(K,H, π, V ) (T,L)−−−→ (L, I, ρ,W )
)
7−−−→

(
(K,AdV ∗ ◦ π) T−→ (L,AdW∗ ◦ ρ)

) (4.2)

defines a functor. Furthermore, it restricts to a functor PAnRep(A) restA−−−−→ OpSt(A).

Here, (AdV ∗ ◦ π)(a) := V ∗π(a)V for all a ∈ A (cf. Example 2.4).
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Proof of Proposition 4.1. Let (K,H, π, V ) be an anchored representation of A. Then AdV ∗ ◦ π is
an OCP map because it is the composite of the CP map AdV ∗ and the ∗-homomorphism π. Since
AdV ∗ is unital if and only if V is an isometry, AdV ∗ ◦ π is an operator state when (K,H, π, V )
is a preserving anchored representation. Let (K,H, π, V ) (T,L)−−−→ (L, I, ρ,W ) be a morphism of
anchored representations. In order for (K,AdV ∗ ◦ π) T−→ (L,AdW∗ ◦ ρ) to be a morphism of OCP
maps, the diagram

K K

L L

AdV ∗ (π(a)) //

AdW∗ (ρ(a))
//

T

��

T

��

(4.3)

must commute for all a ∈ A. Expanding out the definition of the adjoint action map provides the
diagram

K H H K

L I I L

V // π(a) // V ∗ //

W
//

ρ(a)
//

W∗
//

T

��

T

��

. (4.4)

This diagram commutes because the diagram

K H H K

L I I L

V // π(a) // V ∗ //

W
//

ρ(a)
//

W∗
//

T

��

L

��

L

��

T

��

(4.5)

commutes due to Definition 3.1.3 �

Lemma 4.6. Let f : A′ //A be a ∗-homomorphism of C∗-algebras. Then the diagram

AnRep(A) AnRep(A′)

OCP(A) OCP(A′)

AnRepf //

OCPf
//

restA
��

restA′

��
(4.7)

of functors commutes (on the nose). A similar statement holds for the subcategories obtained from
PAnRep and OpSt.

Lemma 4.6 states that rest is a natural transformation

C∗-Algop CAT

OCP

''

AnRep

77rest

KS

, (4.8)

a special kind of oplax-natural transformation (cf. Definition B.1).

3This is where commutativity of (2.8) from Definition 2.7 is used (cf. Remark 2.9). When working with morphisms
of operator states, (2.10) would be too strong, and its commutativity would not follow from Definition 3.1.
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5 Stinespring’s oplax-natural transformation
In the construction of a left adjoint to rest, some preliminary facts will be needed.

Lemma 5.1. Let ϕ : A // B(K) be a completely positive map. Let ~v := (v1, . . . , vn) ∈ K⊕· · ·⊕K
denote a vector in the direct sum of K with itself n times. Then the assignment

sϕ,~v :Mn(A) // C

A 7−−→
n∑

i,j=1
〈vi, ϕ(aij)vj〉K

(5.2)

is a positive linear functional.

Proof. Suppose A ∈Mn(A) is positive. Then, because ϕ is completely positive, ϕn(A) ≥ 0. Hence,

sϕ,~v(A) =
n∑

i,j=1
〈vi, ϕ(aij)vj〉K = 〈~v, ϕn(A)~v〉K⊕···⊕K ≥ 0. (5.3)

Linearity of sϕ,~v follows from linearity of ϕn and linearity of the inner product in the right variable.
�

Lemma 5.4. Let X and Y be topological vector spaces, let X f−→ Y be a continuous linear map,
and let N ⊆ X be a closed vector subspace of X.

(a) If f(x) = 0 for all x ∈ N, then there exists a unique continuous linear map X/N g−→ Y such
that

X

X/N

Y
f //

����
g

;;

(5.5)

commutes. Here, X/N is the quotient space of X modulo N and X � X/N is the quotient
map.

(b) If M ⊆ Y is a closed subspace of Y and f(N) ⊆ M , then there exists a unique continuous
linear map X/N h−→ Y/M such that

X

X/N

Y

Y/M

f //

���� ����

h
//

(5.6)

commutes.

Proof. For the first fact, see Theorem 1.41 and Exercise 9 in Chapter 1 of Rudin [25]. The second
fact is a consequence of the first. �

Lemma 5.7. Let M : H // H a bounded positive operator on a Hilbert space H. Then M ≤
‖M‖idH (in the sense that ‖M‖idH −M is a positive operator).

Proof. This follows from the inequality 〈x,Mx〉H ≤ ‖x‖H‖Mx‖H ≤ ‖M‖‖x‖2H for all x ∈ H by
positivity of M , Cauchy–Schwarz, and the definition of the norm on B(H). �

The following is the main result of this work.
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Theorem 5.8. There exists a left adjoint Stine : OCP⇒ AnRep to the natural transformation
rest : AnRep⇒ OCP

C∗-Algop CATa

OCP

((

AnRep

66rest

KS

Stine

��

(5.9)

in the 2-category Fun(C∗-Algop, CAT ). Furthermore, Stine : OCP⇒ AnRep restricts to a left
adjoint Stine : OpSt⇒ PAnRep to rest : PAnRep⇒ OpSt.

The 2-category Fun(C∗-Algop, CAT ) is defined in Notation B.21 and the definition of a 2-
categorical adjunction is reviewed in Definition B.22. The consequences, universal properties, and
applications of this theorem are discussed in Sections 6 and 7.

Proof of Theorem 5.8. The proof will be split up into several steps.

i. For a fixed C∗-algebra A, define the functor StineA : OCP(A) //AnRep(A) on objects.

ii. For a fixed C∗-algebra A, define the functor StineA : OCP(A) //AnRep(A) on morphisms
and prove functoriality.

iii. For a fixed ∗-homomorphism f : A′ //A, define the natural transformation Stinef : StineA′ ◦
OCPf ⇒ AnRepf ◦ StineA.

iv. Prove that Stine is an oplax-natural transformation (cf. Definition B.1).

v. For a fixed C∗-algebra A, construct the appropriate natural transformation mA : StineA ◦
restA ⇒ idAnRep(A).

vi. Show that4 m : rest
StineV idAnRep is a modification (cf. Definition B.9) between oplax-natural

transformations in the 2-category Fun(C∗-Algop, CAT ).

vii. Show that Stine
rest = idOCP.

viii. Prove the zig-zag identities for adjunctions in 2-categories (cf. Definition B.22), i.e. complete
the proof that (Stine, rest, id,m) is an adjunction in Fun(C∗-Algop, CAT ).

In all of the above steps, justifications for reducing to operator states and preserving anchored
representations will be provided. In what follows, if a proof for any claim is not supplied, it is
because the justification is analogous to the standard GNS construction arguments or it follows
easily from the definitions. The reader is referred to [21] for more details.

i. The construction of an anchored representation from an OCP map will be Stinespring’s con-
struction (cf. the proof of sufficiency of Theorem 1 in Stinespring [29]). Let A be a C∗-algebra
and let (K, ϕ) be an OCP map on A. Recall, this means ϕ : A // B(K) is a CP map. Let
A⊗K denote the vector space tensor product of A with K. In particular, elements of A⊗K
are finite sums of tensor products of vectors in A and vectors in K (in fact, all sums that follow
are finite). The function

(A×K)× (A×K) // C(
(a, v), (b, w)

)
7−−→ 〈v, ϕ(a∗b)w〉K

(5.10)

4The vertical concatenation is the vertical composition of natural transformations. This notation is used in [21]
and [22]. It is also reviewed in Appendix B in the present work. In particular, applying m to a C∗-algebra A gives
a natural transformation mA : StineA ◦ restA ⇒ idAnRep(A).
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is conjugate bilinear in the first A×K factor and bilinear in the second A×K factor. Hence,
by the universal property of the algebraic tensor product (cf. Chapter IV Section 5 in Hunger-
ford [17]), the assignment

(A⊗K)× (A⊗K) 〈〈 · , · 〉〉ϕ−−−−−−→ C∑
i

ai ⊗ vi,
∑
j

bj ⊗ wj

 7−−−−−→∑
i,j

〈vi, ϕ(a∗i bj)wj〉K
(5.11)

is well-defined, conjugate linear in the first variable, and linear in the second variable. Fur-
thermore, 〈〈 · , · 〉〉ϕ satisfies5

〈〈ζ, ξ〉〉ϕ = 〈〈ξ, ζ〉〉ϕ ∀ ζ, ξ ∈ A⊗K. (5.12)

Since the matrix

A :=

a
∗
1a1 · · · a∗1an
...

...
a∗na1 · · · a∗nan

 =


a1 · · · an
0 · · · 0
...

...
0 · · · 0


∗ 
a1 · · · an
0 · · · 0
...

...
0 · · · 0

 (5.13)

inMn(A) is positive for all a1, . . . , an ∈ A,

〈〈ξ, ξ〉〉ϕ =
∑
i,j

〈vi, ϕ(a∗i aj)vj〉K ≥ 0 (5.14)

by Lemma 5.1 applied to ξ =
∑n
i=1 ai ⊗ vi ∈ A⊗K.

By the properties of 〈〈 · , · 〉〉ϕ, it follows that

|〈〈ξ, ζ〉〉ϕ|2 ≤ 〈〈ξ, ξ〉〉ϕ〈〈ζ, ζ〉〉ϕ ∀ ξ, ζ ∈ A⊗K. (5.15)

This is the Cauchy–Schwarz inequality for such sesquilinear forms (cf. Construction 3.1 in [21]).
Thus, 〈〈 · , · 〉〉ϕ is a sesquilinear form whose associated seminorm endows A ⊗ K with the
structure of a topological vector space. In general, 〈〈 · , · 〉〉ϕ is not positive semi-definite.
Hence, set

Nϕ :=
{
ζ ∈ A⊗K : 〈〈ζ, ζ〉〉ϕ = 0

}
(5.16)

to be its null-space. From the Cauchy–Schwarz inequality (5.15), it follows that

〈〈ξ, ζ〉〉ϕ = 0 ∀ ξ ∈ A⊗K, ζ ∈ Nϕ. (5.17)

Using this, one can show that Nϕ is a closed vector subspace of A⊗K (it is closed since it is
defined as the inverse image of {0} under a continuous map).
By the universal property of the tensor product, for each a ∈ A, the map

A⊗K
π′ϕ(a)
−−−−→ A⊗K∑

i

ai ⊗ vi 7−−−→
∑
i

aai ⊗ vi
(5.18)

is a well-defined linear transformation. If we write End(V ) for the algebra of linear transforma-
tions from a vector space V to itself, then π′ϕ : A //End(A⊗K) defines a representation of the
algebraA on the vector spaceA⊗K. Furthermore, for each a ∈ A and ξ =

∑n
i=1 ai⊗vi ∈ A⊗K,

5An overline here indicates complex conjugation. This is not to be confused with the closure such as in (5.22).
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π′ϕ(a) satisfies

〈〈π′ϕ(a)ξ, π′ϕ(a)ξ〉〉ϕ =
n∑

i,j=1

〈
vi, ϕ(a∗i a∗aaj)vj

〉
K by definition of π′ϕ and 〈〈 · , · 〉〉ϕ

= sϕ,~v



a1 · · · an
0 · · · 0
...

...
0 · · · 0


∗ a

∗a 0
. . .

0 a∗a



a1 · · · an
0 · · · 0
...

...
0 · · · 0




≤

∥∥∥∥∥∥∥
a
∗a 0

. . .
0 a∗a


∥∥∥∥∥∥∥ sϕ,~v



a1 · · · an
0 · · · 0
...

...
0 · · · 0


∗ 
a1 · · · an
0 · · · 0
...

...
0 · · · 0




= ‖a∗a‖sϕ,~v


a
∗
1a1 · · · a∗1an
...

...
a∗na1 · · · a∗nan




= ‖a‖2〈〈ξ, ξ〉〉ϕ.

(5.19)

In this calculation, ~v := (v1, . . . , vn) ∈ K ⊕ · · · ⊕ K and the norm ‖a‖ of a is the one
from the C∗-algebra A. The third line in (5.19) follows from Lemma 5.1 and the inequal-
ity |ω(y∗xy)| ≤ ‖x‖ω(y∗y) for all x, y in a C∗-algebra and ω a positive linear functional on
that C∗-algebra (see Proposition 2.1.5. part (ii) in Dixmier [8] for a proof of this inequality). In
this case, this inequality is applied to the positive linear functional ω := sϕ,~v :Mn(A) // C
with x positive so that |ω(y∗xy)| = ω(y∗xy). The fourth line in (5.19) holds because the
norm of diag(a∗a, . . . , a∗a) in Mn(A) is equal to ‖a∗a‖. This is because every injective ∗-
homomorphism of C∗-algebras is an isometry (cf. Propositions 1.3.7 and 1.8.1 in Dixmier [8]).
In this case, the ∗-homomorphism is given by the function A //Mn(A) sending a ∈ A to
diag(a, . . . , a). The last line of (5.19) follows from the C∗-identity for C∗-algebras and the
definitions of 〈〈ξ, ξ〉〉ϕ and sϕ,~v. Thus, (5.19) shows that π′ϕ(a) is bounded/continuous. If
we write B(V ) for the algebra of bounded operators on a seminormed vector space V , then
π′ϕ(a) ∈ B(A⊗K) for all a ∈ A.
Furthermore, (5.19) shows that Nϕ is an invariant subspace under the π′ϕ action, meaning
π′ϕ(a)ζ ∈ Nϕ for all ζ ∈ Nϕ and a ∈ A. Therefore, the quotient space (A ⊗ K)/Nϕ has a
well-defined action πϕ : A // B

(
(A ⊗ K)/Nϕ

)
by Lemma 5.4. If an element of (A ⊗ K)/Nϕ

is denoted by [ξ]ϕ, or just [ξ] when working with a fixed OCP map ϕ, this induced action of
a ∈ A on [ξ] is given by

πϕ(a)[ξ] := [π′ϕ(a)ξ]. (5.20)
By (5.17), the sesquilinear form 〈〈 · , · 〉〉ϕ descends to a well-defined inner product

(A⊗K)/Nϕ × (A⊗K)/Nϕ
〈 · , · 〉ϕ−−−−−→ C

([ξ], [ζ]) 7−−−−−→ 〈〈ξ, ζ〉〉ϕ.
(5.21)

The fact that 〈 · , · 〉ϕ is positive definite follows from (5.14) and the definition of Nϕ in (5.16).
Let

Hϕ := (A⊗K)/Nϕ (5.22)
denote the completion of this topological vector space with respect to the inner product
〈 · , · 〉ϕ. Since πϕ(a) is a bounded linear operator on (A ⊗ K)/Nϕ, it extends uniquely to a
bounded linear operator, also denoted by πϕ(a), on Hϕ. Furthermore, since πϕ(a) ∈ B(Hϕ),
it has an adjoint πϕ(a)∗. This adjoint satisfies〈

πϕ(a)∗[ξ], [ζ]
〉
ϕ

=
〈
[ξ], πϕ(a)[ζ]

〉
ϕ

=
∑
i,j

〈
vi, ϕ(a∗i abj)wj

〉
K

=
∑
i,j

〈
vi, ϕ

(
(a∗ai)∗bj

)
wj

〉
K

=
∑
i,j

〈〈a∗ai ⊗ vi, bj ⊗ wj〉〉ϕ =
〈
πϕ(a∗)[ξ], [ζ]

〉
ϕ

(5.23)
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for all ξ =
[∑

i ai⊗ vi
]
, ζ =

[∑
j bj ⊗wj

]
∈ (A⊗K)/Nϕ. By uniqueness of bounded adjoints,

πϕ(a∗) = πϕ(a)∗. Finally, note that πϕ(1A) = idHϕ . Thus, πϕ : A // B(Hϕ) defines a ∗-
homomorphism.
Now, set

K Vϕ−−→ Hϕ
w 7−−→ [1A ⊗ w].

(5.24)

Then,∥∥Vϕ(w)
∥∥2
ϕ

=
∥∥[1A ⊗ w]

∥∥2
ϕ

=
〈
w,ϕ(1∗A1A)w

〉
K =

〈
w,ϕ(1A)w

〉
K ≤

∥∥ϕ(1A)
∥∥‖w‖2K (5.25)

for all w ∈ K. The last inequality in (5.25) follows from Cauchy–Schwarz for 〈 · , · 〉K and
positivity of ϕ. This proves that Vϕ is bounded. Note that if ϕ is unital, the inequality in
(5.25) becomes an equality, which proves Vϕ is an isometry.
This concludes Stinespring’s construction of an anchored representation from an OCP map,
i.e. the functor

OCP(A)0
StineA−−−−−→ AnRep(A)0

(K,ϕ) 7−−−−−→ (K,Hϕ, πϕ, Vϕ)
(5.26)

on objects of OCP(A). It restricts to a well-defined map OpSt(A)0
StineA−−−−−→ PAnRep(A)0.

ii. Let (K, ϕ) T−→ (L, ψ) be a morphism of OCP maps. By Definition 2.7, this means T : K //L is a
bounded linear map and ψ(a)T = Tϕ(a) for all a ∈ A. Let (K,Hϕ, πϕ, Vϕ) and (L,Hψ, πψ, Vψ)
be the corresponding Stinespring anchored representations from the first step. Set

A⊗K L′T :=idA⊗T−−−−−−−−→ A⊗L. (5.27)

Then, for ξ :=
∑
i ai ⊗ vi ∈ A⊗K,

〈〈L′T (ξ), L′T (ξ)〉〉ψ =
∑
i,j

〈T (vi), ψ(a∗i aj)T (vj)〉L by (5.27) and (5.11)

=
∑
i,j

〈T (vi), Tϕ(a∗i aj)vj〉L by (2.8)

=
∑
i,j

〈vi, T ∗Tϕ(a∗i aj)vj〉K

≤ ‖T ∗T‖〈〈ξ, ξ〉〉ϕ by Lemma 5.7.

(5.28)

Therefore, L′T (Nϕ) ⊆ Nψ. Hence, Lemma 5.4 implies L′T descends to a bounded linear map
LT : (A⊗K)/Nϕ // (A⊗ L)/Nψ, which itself extends uniquely to a bounded linear map
LT : Hϕ //Hψ. Note that when T is an isometry, LT is also an isometry. Commutativity of

Hϕ Hϕ

Hψ Hψ

πϕ(a) //

πψ(a)
//

LT

��
LT

��
∀ a ∈ A and

K Hϕ

L Hψ

Vϕ //

Vψ

//

T

��

LT

��
(5.29)

follow directly from the definitions. However, commutativity of

KHϕ

LHψ

V ∗ϕ //

V ∗ψ

//

T

��

LT

��
, (5.30)

Accepted in Compositionality on 2019-07-24. Click on the title to verify. 15



Volume 1 Issue 2 ISSN 2631-4444

the last of the conditions in Definition 2.7, requires an argument. First, to find the formula
for V ∗ϕ : Hϕ //K, let [

∑
i ai ⊗ vi]ϕ ∈ (A⊗K)/Nϕ and w ∈ K. Then〈

V ∗ϕ

[∑
i

ai ⊗ vi

]
ϕ

, w

〉
K

=
〈[∑

i

ai ⊗ vi

]
ϕ

, Vϕw

〉
ϕ

=
〈[∑

i

ai ⊗ vi

]
ϕ

, [1A ⊗ w]ϕ

〉
ϕ

=
∑
i

〈vi, ϕ(a∗i )w〉K =
〈∑

i

ϕ(ai)vi, w
〉
K

(5.31)

entails the formula

V ∗ϕ

[∑
i

ai ⊗ vi

]
ϕ

=
∑
i

ϕ(ai)vi. (5.32)

Commutativity of the diagram (5.30) then follows from6

V ∗ψ

(
LT

([∑
i ai ⊗ vi

]
ϕ

))

V ∗ψ

([∑
i ai ⊗ T (vi)

]
ψ

)

∑
i ψ(ai)T (vi)

∑
i T
(
ϕ(ai)vi

)
T
(∑

i ϕ(ai)vi
)

T
(
V ∗ϕ

([∑
i ai ⊗ vi

]
ϕ

))
(5.27)

(5.32)

(2.8)

(5.32)

. (5.33)

This concludes the definition of the assignment

OCP(A)1
StineA−−−−−→ AnRep(A)1(

(K, ϕ) T−→ (L, ψ)
)
7→
(

(K,Hϕ, πϕ, Vϕ) (T,LT )−−−−→ (L,Hψ, πψ, Vψ)
) (5.34)

on morphisms of OCP maps on A. Note that StineA(idK) equals
(
idK, idHϕ

)
for any OCP

map (K, ϕ). Furthermore, for a composable pair (K, ϕ) T−→ (L, ψ) S−→ (M, χ) of morphisms of
OCP maps, the diagram

Hϕ

Hψ

Hχ

LT

\\
LS

��

LST

oo

(5.35)

commutes. Hence, (5.26) and (5.34) define a functor StineA : OCP(A) //AnRep(A), which
restricts to a functor OpSt(A) //PAnRep(A), also denoted by StineA.

iii. Let f : A′ // A be a ∗-homomorphism of C∗-algebras. Two diagrams associated with the
constructions preceding this are given by

OCP(A) AnRep(A)

OCP(A′) AnRep(A′)

restAoo

restA′
oo

OCPf

��

AnRepf

��

and

OCP(A) AnRep(A)

OCP(A′) AnRep(A′)

StineA //

StineA′
//

OCPf

��

AnRepf

��

, (5.36)

6This is where commutativity of (2.8) in Definition 2.7 is needed (cf. Remark 2.9). When restricting to operator
states, (2.10) would be too weak, and the diagram (5.30) might not commute.
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and similarly for OpSt and AnRep. The diagram of functors on the left commutes (on
the nose) by Lemma 4.6. However, the diagram on the right does not (this is analogous to
what happens in the GNS construction—cf. Construction 3.3 and diagram (3.21) in [21]).7
Nevertheless, there is a natural transformation

OCP(A) AnRep(A)

OCP(A′) AnRep(A′)

StineA //

StineA′
//

OCPf

��

AnRepf

��

Stinef

6>

(5.37)

defined as follows. Given an OCP map (K, ϕ) on A, applying OCPf followed by StineA′
provides the Stinespring anchored representation (K,Hϕ◦f , πϕ◦f , Vϕ◦f ) on A′, while applying
StineA followed by AnRepf gives (K,Hϕ, πϕ ◦ f, Vϕ). The morphism Stinef (K, ϕ) from the
first to the latter is given by (idK, Lf ), where Lf : Hϕ◦f //Hϕ is defined as the unique map
associated to

A′ ⊗K
L′f :=f⊗idK−−−−−−−→ A⊗K (5.38)

via Lemma 5.4. This lemma applies because if ξ =
∑
i a
′
i ⊗ vi ∈ A′ ⊗K, then

〈〈L′f (ξ), L′f (ξ)〉〉ϕ =
∑
i,j

〈
vi, ϕ

(
f(a′i)∗f(a′j)

)
vj

〉
K

by definition of 〈〈 · , · 〉〉ϕ

=
∑
i,j

〈
vi, ϕ

(
f(a′i

∗
a′j)
)
vj

〉
K

since f is a ∗-homomorphism

= 〈〈ξ, ξ〉〉ϕ◦f by definition of 〈〈 · , · 〉〉ϕ◦f .

(5.39)

In fact, this calculation shows Lf : Hϕ◦f //Hϕ is an isometry. The requirements of a morphism
of anchored representations all hold as well. Furthermore, Stinef is a natural transformation
because for any morphism (K, ϕ) T−→ (L, ψ) of operator states on A, the diagram

(K,Hϕ◦f , πϕ◦f , Vϕ◦f ) (K,Hϕ, πϕ ◦ f, Vϕ)

(L,Hψ◦f , πψ◦f , Vψ◦f ) (L,Hψ, πψ ◦ f, Vψ)

(idK,Lf ) //

(T,LT )

��
(T,LT )

��

(idL,Lf )
//

(5.40)

commutes. Finally, Stinef : StineA′◦OCPf ⇒ AnRepf ◦StineA restricts to a natural trans-
formation Stinef : StineA′ ◦OpStf ⇒ PAnRepf ◦ StineA since Stinef (K, ϕ) = (idK, Lf )
consists of two isometries by (5.39).

iv. Oplax-naturality of Stine holds because StineidA is the identity natural transformation for
every C∗-algebra A and the two natural transformations (after composition in the diagram on

7As a simple example, let ϕ : A // B(K) be an operator state with Nϕ = {0} and set A′ = C. Then there is
only a single (unital) ∗-homomorphism f : C // A and ϕ gets pulled back to the map ϕ ◦ f that sends 1 ∈ C to
idK. In this case, Nϕ◦f = {0}, which entails Hϕ◦f ∼= C⊗K ∼= K, while Hϕ ∼= A⊗K.
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the right)

OCP(A) AnRep(A)

OCP(A′′) AnRep(A′′)

StineA //

StineA′′
//

OCPf◦f′

��

AnRepf◦f′

��

Stinef◦f′

6>

&

OCP(A) AnRep(A)

OCP(A′) AnRep(A′)

OCP(A′′) AnRep(A′′)

StineA //

StineA′
//

OCPf

��

AnRepf

��

Stinef

6>

StineA′′
//

OCPf′

��

AnRepf′

��

Stinef′

6>
(5.41)

are equal for every pair of composable ∗-homomorphisms A′′ f
′

−→ A′ f−→ A.

v. Fix a C∗-algebra A and let (K,H, π, V ) be an anchored representation of A. Applying the
functor restA followed by StineA to this representation gives

(K,H, π, V ) restA7−−−−→ (K,AdV ∗ ◦ π) StineA7−−−−−→ (K,HAdV ∗◦π, πAdV ∗◦π, VAdV ∗◦π). (5.42)

Set m′π,V : A⊗K //H to be the composite

A⊗K π⊗V−−−→ B(H)⊗H //H∑
i

ai ⊗ vi
m′π,V7−−−−−−−−−−−−−−−→

∑
i

π(ai)V (vi),
(5.43)

where the second map is the canonical action of B(H) on H. If ξ =
∑
i ai ⊗ vi ∈ A⊗K, then〈

m′π,V (ξ),m′π,V (ξ)
〉
H =

∑
i,j

〈
vi, V

∗π(a∗i aj)V vj
〉
K = 〈〈ξ, ξ〉〉AdV ∗◦π. (5.44)

Thus, m′π,V defines an isometry mπ,V : HAdV ∗◦π
// H by Lemma 5.4. Note that mπ,V

is an isometry even though (K,H, π, V ) need not be a preserving anchored representation.
Commutativity of the diagrams

HAdV ∗◦π HAdV ∗◦π

H H

πAdV ∗◦π(a)
//

π(a)
//

mπ,V

��

mπ,V

��

∀ a ∈ A, (5.45)

K HAdV ∗◦π

K H

VAdV ∗◦π //

V
//

idK

��

mπ,V

��

, and

KHAdV ∗◦π

KH

V ∗AdV ∗◦π //

V ∗
//

idK

��

mπ,V

��

(5.46)

in the definition of a morphism (K,HAdV ∗◦π, πAdV ∗◦π, VAdV ∗◦π) (idK,mπ,V )−−−−−−−→ (K,H, π, V ) of
anchored representations follow directly from the definitions (for the last diagram, apply (5.32)
to ϕ := AdV ∗ ◦ π). Set mA to be the assignment

AnRep(A)0
mA−−→ AnRep(A)1

(K,H, π, V ) 7−−→ (idK,mπ,V )
(5.47)
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from objects of AnRep(A) to morphisms of AnRep(A). Notice that mA restricts to a well-
defined assignment PAnRep(A)0

mA−−→ PAnRep(A)1 by (5.44). To see naturality of

AnRep(A)

OCP(A)

AnRep(A)

restA
;;

StineA

##

idAnRep(A)

//

mA

��

, (5.48)

let (K,H, π, V ) (T,L)−−−→ (L, I, ρ,W ) be a morphism of anchored representations. Then, the
diagram

(K,HAdV ∗◦π, πAdV ∗◦π, VAdV ∗◦π) (K,H, π, V )

(L,HAdW∗◦ρ, πAdW∗◦ρ, VAdW∗◦ρ) (L, I, ρ,W )

(idK,mπ,V ) //

(idL,mρ,W )
//

(T,LT )

��
(T,L)

��
(5.49)

commutes by conditions (3.2) and (3.3) in the definition of a morphism of anchored represen-
tations.

vi. To see that the assignment sending a C∗-algebra A to mA defines a modification8

AnRep

OCP

AnRep

rest

;C
Stine

�#

idAnRep

+3

m


�

(5.50)

of oplax-natural transformations, for every morphism f : A′ //A of C∗-algebras,

AnRep(A)AnRep(A)

AnRep(A′)AnRep(A′)

OCP(A)

OCP(A′)

StineA 55

StineA′
55

AnRepf

��

AnRepf

��

restA..

restA′
--

OCPf

��

idAnRep(A)

))

Stinef

>F

id=restf

mA

KS

=

AnRep(A′)
OpSt(A′)

AnRep(A′)

AnRep(A) AnRep(A)

restA′
--

StineA′
55

AnRepf

��

AnRepf

��

idAnRep(A)

))

idAnRep(A′)
))

idAnRepf

mA′

KS

, (5.51)

i.e. for every object (K,H, π, V ) of AnRep(A) with ϕ := AdV ∗ ◦ π, the diagram

(
K,Hϕ◦f , πϕ◦f , Vϕ◦f

)
(
K,Hϕ, πϕ ◦ f, Vϕ

)

(K,H, π ◦ f, V )

(idK,Lf )=Stinef (K,ϕ)

55

AnRepf
(
mA(K,H,π,V )

)
=(idK,mπ,V )

))

mA′ (K,H,π◦f,V )=(idK,mπ◦f,V )
//

(5.52)

of morphisms of anchored representations of A′ must commute. This follows directly from the
definitions. Hence, m is a modification, which also restricts to a modification when working
with OpSt and PAnRep by (5.44).

8This composite of rest followed by Stine along the top two double arrows is denoted by rest
Stine.
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vii. To see that

OCP

AnRep

OCP

Stine

;C
rest

�#

idOCP

+3

(5.53)

commutes, first fix a C∗-algebra A. Commutativity in (5.53) requires that

OCP(A)

AnRep(A)

OCP(A)

Stine(A)
??

restA

��

idOCP(A)

//

(5.54)

must commute. On objects, this translates to ϕ = AdV ∗ϕ ◦ πϕ for every OCP map (K, ϕ) on
A, which follows from the definitions of Vϕ and πϕ. Since a morphism (K, ϕ) T−→ (L, ψ) is
unchanged under restA ◦ StineA, (5.54) commutes.
Commutativity of (5.53) also requires that for every ∗-homomorphism f : A′ //A,

OCP(A)OCP(A)

OCP(A′)OCP(A′)

AnRep(A)

AnRep(A′)

restA 55

restA′
55

OpStf

��

OpStf

��

StineA--

StineA′
--

AnRepf

��

idOCP(A)

))

idStinef

5=

id

=

OCP(A′)
AnRep(A′)

OCP(A′)

OCP(A) OCP(A)

StineA′
--

restA′
55

OCPf

��

OCPf

��

idOCP(A)

))

idOCP(A′)
))

idOCPf

id

, (5.55)

i.e. to every OCP map (K, ϕ), the diagram

(
K,AdV ∗

ϕ◦f
◦ πϕ◦f

)
(
K,AdV ∗ϕ ◦ πϕ ◦ f

)

(K, ϕ ◦ f)

idK=restA′ (Stinef (K,ϕ))

66

OCPf (idK)=idK
((

idK
//

(5.56)

of morphisms of OCP maps on A′ must commute, which it clearly does. Commutativity of
(5.53) with OpSt and PAnRep follows from this as well.

viii. By the final remark in the appendix of [21], it suffices to prove

AnRep(A)

OCP(A)

AnRep(A)

OCP(A)

restA
��

StineA
��

restA
��

idOCP(A)

''

idAnRep(A)

ww
id +3

mA +3

=

AnRep(A)

OCP(A)

restA

##

restA

{{

idrestA +3 (5.57)
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and

OCP(A)

AnRep(A)

OCP(A)

AnRep(A)

StineA
��

restA
��

StineA
��

idAnRep(A)

ww

idOCP(A)

''

id +3

mA +3

=

OCP(A)

AnRep(A)

StineA

##

StineA

{{

idStineA +3 (5.58)

for each object A of C∗-Algop. The equality in (5.57) follows from the equality

restA
(
mA(K,H, π, V )︸ ︷︷ ︸

(idK,mπ,V )

)
= idK (5.59)

of morphisms of OCP maps from (K,AdV ∗ ◦ π) to itself for every anchored representation
(K,H, π, V ) ofA. To see the equality in (5.58), consider an OCP map (K, ϕ). Applying StineA◦
restA◦StineA to this gives (K,Hϕ, πϕ, Vϕ) because ϕ = AdV ∗ϕ ◦πϕ. In order for (5.58) to hold,
it should be the case that mA(K,Hϕ, πϕ, Vϕ) = (idK, idHϕ) as morphisms from (K,Hϕ, πϕ, Vϕ)
to (K,Hϕ, πϕ, Vϕ) in AnRep(A). These are in fact equal because for any element [

∑
i ai ⊗ vi] ∈

(A⊗K)/Nϕ,

mπϕ,Vϕ

([∑
i

ai ⊗ vi

])
=
∑
i

πϕ(ai)Vϕ(vi) =
∑
i

πϕ(ai)[1A ⊗ vi] =
∑
i

[ai ⊗ vi]. (5.60)

This proves that the quadruple (Stine, rest, id,m) is an adjunction in Fun(C∗-Algop, CAT ),
i.e. Stine is left adjoint to rest. �

6 Stinespring dilations and their universal properties
The left adjoint Stine to rest provides what is sometimes called a minimal Stinespring represen-
tation/dilation of an operator-valued completely positive map (for comparison, see the discussion
after Theorem 4.1 in Paulsen [23]).

Definition 6.1. A Stinespring representation/dilation of an OCP map (K, ϕ) on A is an
anchored representation (K,H, π, V ) of A such that ϕ = AdV ∗ ◦ π. A Stinespring representation
(K,H, π, V ) is said to be minimal iff

π(A)V (K) := span
{
π(a)V (v) : a ∈ A, v ∈ K

}
(6.2)

is dense in H.

Remark 6.3. In terms of the functors and natural transformations introduced, (K,H, π, V ) is a
Stinespring representation of (K, ϕ) on A if and only if restA(K,H, π, V ) = (K, ϕ). Minimality
will be addressed in Corollary 6.9. N

The following corollaries explain the meaning of Theorem 5.8 more concretely.

Corollary 6.4. Let (K, ϕ) T−→ (L, ψ) be a morphism of OCP maps on a C∗-algebra A and
let (L, I, ρ,W ) be any Stinespring representation of ψ. Then there exists a unique morphism
(K,Hϕ, πϕ, Vϕ) T−→ (L, I, ρ,W ) such that restA(T ) = T. Furthermore, if T is a morphism of
operator states, then T is a morphism of preserving anchored representations.
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Proof. Since (StineA, restA, idOpSt(A),mA) is an adjunction, existence and uniqueness follows
from the universal property of adjunctions in part i of Lemma B.28. In the notation of that
lemma, c = (K, ϕ), d = (L, I, ρ,W ), and g = T. This unique morphism is given by

T =
(
mA(L, I, ρ,W )

)
◦ StineA(T ) = (idL,mρ,W ) ◦ (T, LT ) = (T,mρ,WLT ). (6.5)

Recall, mρ,WLT : Hϕ // I is uniquely determined by the assignment

A⊗K/Nϕ 3

[∑
i

ai ⊗ vi

]
ϕ

7→
∑
i

ρ(ai)W
(
T (vi)

)
. (6.6)

When T is a morphism of operator states, both T and mρ,WLT are isometries. Hence, T defines
a morphism of preserving anchored representations. �

The following is a special case of Corollary 6.4. It will be used to provide the relationship to
minimal Stinespring representations in Corollary 6.9.

Corollary 6.7. Let (K, ϕ) be an OCP map on a C∗-algebra A and let (K,H, π, V ) be any Stine-
spring representation of ϕ. Then there exists a unique morphism (K,Hϕ, πϕ, Vϕ) T−→ (K,H, π, V )
such that restA(T ) = idK. In fact, T = (idK,mπ,V ), and therefore consists of two isometries.

Proof. This follows from Corollary 6.4 for T = idK. The fact that T consists of two isometries
follows from the fact that mπ,V is an isometry for any anchored representation (K,H, π, V ) by
(5.44). �

Remark 6.8. If (K, ϕ) is an OCP map onA, one can form a category of Stinespring representations
of (K, ϕ). The objects of this category are Stinespring representations of (K, ϕ) and morphisms
are of the form (K,H, π, V ) (idK,L)−−−−−→ (K, I, ρ,W ). Corollary 6.7 then says that StineA(K, ϕ) is an
initial object in the category of Stinespring representations of (K, ϕ). N

We now state the relationship between our adjunction and minimal Stinespring representations.

Corollary 6.9. Let (K, ϕ) be an OCP map on a C∗-algebra A. Then StineA(K, ϕ) ≡ (K,Hϕ, πϕ, Vϕ)
is a minimal Stinespring representation of ϕ. Conversely, given any minimal Stinespring repre-
sentation (K,H, π, V ) of ϕ, there exists a unique isomorphism (K,Hϕ, πϕ, Vϕ) // (K,H, π, V ) of
anchored representations. In fact, this isomorphism consists of two unitaries.

Proof. you found me!
(⇒) By Remark 6.3, (K,Hϕ, πϕ, Vϕ) is a Stinespring representation due to part vii in the proof of
Theorem 5.8. By the construction in part i,

span
{
πϕ(a)Vϕ(v) : a ∈ A, v ∈ K

}
= span

{
[a⊗ v]ϕ : a ∈ A, v ∈ K

}
, (6.10)

which is dense in Hϕ by definition (cf. (5.22)). Hence, (K,Hϕ, πϕ, Vϕ) is minimal.
(⇐) Conversely, let (K,H, π, V ) be a minimal Stinespring representation of ϕ. Then Corollary 6.7
provides the unique morphism mA(K,H, π, V ) ≡ (idK,mπ,V ) from (K,Hϕ, πϕ, Vϕ) to (K,H, π, V ),
with mπ,V an isometry. Furthermore, mπ,V is unitary because the image of Hϕ under mπ,V is
exactly π(A)V (K) by (5.43) and equals H by the minimality assumption. �

Theorem 5.8 entails the following with regards to morphisms and functoriality.

Corollary 6.11. Let (K, ϕ) be an OCP map on a C∗-algebra A and let f : A′ //A be a morphism
of C∗-algebras. Let (K,Hϕ◦f , πϕ◦f , Vϕ◦f ) = StineA(K, ϕ◦f) be the minimal Stinespring represen-
tation of ϕ◦f and let (K,Hϕ, πϕ ◦f, Vϕ) be the pull-back of the minimal Stinespring representation
StineA(K, ϕ) of ϕ under f. Then Stinef (K, ϕ) : (K,Hϕ◦f , πϕ◦f , Vϕ◦f ) // (K,Hϕ, πϕ ◦ f, Vϕ) is
the unique morphism in AnRep(A′) such that restA′ (Stinef (K, ϕ)) = idK. In fact,

Stinef (K, ϕ) = mA′
(

AnRepf
(
StineA(K, ϕ)

))
. (6.12)
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Furthermore, the assignment f 7→ Stinef is functorial in the sense that

Stinef◦f ′(K, ϕ) =
(
Stinef (K, ϕ)

)
◦
(
Stinef ′(K, ϕ ◦ f)

)
(6.13)

for all composable pairs A′′ f ′−→ A′ f−→ A of morphisms of C∗-algebras and for all OCP maps
ϕ : A // B(K).
Proof. Since (K,Hϕ, πϕ ◦ f, Vϕ) is a Stinespring representation of (K, ϕ ◦ f), Corollary 6.7 says
there is a unique morphism from (K,Hϕ◦f , πϕ◦f , Vϕ◦f ) to (K,Hϕ, πϕ ◦ f, Vϕ) that restricts to idK
under restA′ . By construction (cf. Equation (5.37) and what follows), Stinef (K, ϕ) is one such
morphism. Similarly (cf. Equations (5.43) and (5.47)), mA′

(
AnRepf

(
StineA(K, ϕ)

))
is another

such morphism because the target of this morphism is

AnRepf
(
StineA(K, ϕ)

)
= (K,Hϕ, πϕ ◦ f, Vϕ) (6.14)

and the source of this morphism is

StineA′
(

restA′
(

AnRepf
(
StineA(K, ϕ)

))
︸ ︷︷ ︸

(K,ϕ◦f)

)
= (K,Hϕ◦f , πϕ◦f , Vϕ◦f ). (6.15)

Equation (6.13) is precisely oplax-naturality of Stine from equality of the diagrams in (5.41). �

Remark 6.16. Corollary 6.11 also shows that the definition and oplaxness of Stine on mor-
phisms of C∗-algebras is determined by (6.12), which itself follows from the universal property of
the adjunctions (StineA, restA, idOpSt(A),mA) over all C∗-algebras A. This is discussed in more
abstract form in Proposition B.31 and Remark B.40. N

Remark 6.17. In [31], Westerbaan and Westerbaan provide a universal property for Paschke di-
lations (a generalization of Stinespring dilations) of normal completely positive maps ϕ : A // B,
where A and B are von Neumann algebras. We refer the reader to their work and the references
therein for any terminology not explained here. Briefly, a Paschke dilation of A ϕ // B is a
triple (P, ρ, ψ), which consists of a von Neumann algebra P, a normal ∗-homomorphism ρ : A //P,
and a normal CP map ψ : P // B such that ϕ = ψ ◦ ρ, satisfying the following universal prop-
erty: for any other triple (P ′, ρ′, ψ′) with P ′ a von Neumann algebra, ρ′ : A // P ′ a normal
∗-homomorphism, and ψ′ : P ′ // B a normal CP map such that ϕ = ψ′ ◦ρ′, there exists a unique
normal CP map σ : P ′ // P such that the diagram

P

P ′

A B
ϕ //

ρ

##

ψ

;;

ψ′

MM

ρ′

%%

σ

OO (6.18)

commutes. In Theorem 14 of [31], Westerbaan and Westerbaan prove that a minimal Stinespring
representation (K,H, π, V ) of a normal CP map ϕ : A // B(K) induces a Paschke dilation given
by the triple9 (B(H), π,AdV ∗). In Corollary 15 of [31], they essentially prove a converse to this
statement.

Although Westerbaan and Westerbaan provide a universal property for normal CPU maps
ϕ : A // B without choosing an embedding of B into bounded operators on some Hilbert space
as we have, our results do not require our maps to be normal nor do we require our domain A to
be a von Neumann algebra. As a result, we provide a universal property for minimal Stinespring
dilations for all C∗-algebras. Furthermore, our universal property highlights the relationship be-
tween morphisms of OCP maps and intertwiners of representations. This will have important
implications, which will be discussed in Section 7. N

9Note that our conventions for AdV ∗ differ.
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There is also a close connection between our work and that of categorical quantum mechanics [1],
[27]. Proposition 6.20 below shows that OCP(A) and AnRep(A) are dagger categories. This fact,
together with our Stinespring adjunction, has some interesting consequences such as Theorem 6.29,
which states that there exists a unique minimal morphism of anchored representations between
any two Stinespring representations of the same OCP map.

Definition 6.19. A ∗-category (also called a dagger category) is a category C together with a
functor ∗ : Cop // C satisfying

i. x∗ = x for all objects x in C,
ii. (f∗)∗ = f for all morphisms f in C.

Explicitly, functoriality of ∗ says id∗x = idx for all objects x in C and (g ◦ f)∗ = f∗ ◦ g∗ for all
composable pairs of morphisms f and g in C.

Proposition 6.20. Let A be a C∗-algebra. For each morphism (K, ϕ) T−→ (L, ψ) of OCP maps on
A, set (

(K, ϕ) T−→ (L, ψ)
)∗

:= (K, ϕ) T∗←−− (L, ψ), (6.21)

and for each morphism (K,H, π, V ) (T,L)−−−→ (L, I, ρ,W ) of anchored representations on A, set(
(K,H, π, V ) (T,L)−−−→ (L, I, ρ,W )

)∗
:= (K,H, π, V ) (T∗,L∗)←−−−−− (L, I, ρ,W ). (6.22)

Then (6.21) is a morphism of OCP maps and (6.22) is a morphism of anchored representations.
Furthermore, OCP(A) and AnRep(A) are ∗-categories with respect to these assignments.

Proof. That (6.21) is a morphism of OCP maps has already been proved in the first part of the proof
of Proposition 2.27. An argument similar to it shows that L∗ is an intertwiner of representations for
(6.22). Furthermore, taking the adjoints of the diagrams in (3.3) shows that (6.22) is a morphism of
anchored representations. Finally, OCP(A) and AnRep(A) are ∗-categories due to the definition
and properties of the adjoint of a bounded linear map between Hilbert spaces. �

Note that OpSt(A) and PAnRep(A) are not ∗-categories with the same ∗ operation because
the adjoint of an isometry need not be an isometry. The adjoint of an isometry is, however, a
co-isometry, and hence a partial isometry (cf. Chapter 15 in Halmos [14]).

Definition 6.23. Let H and I be two Hilbert spaces. The initial space of a bounded linear map
L : H // I is the closed subspace ker(L)⊥ ⊆ H. The map L : H // I is called a co-isometry
iff L∗ is an isometry. It is called a partial isometry iff L is an isometry when restricted to
ker(L)⊥ ⊆ H.

The following lemma includes several properties of partial isometries that will be used in this
work.

Lemma 6.24. Let L : I // J be a bounded linear map between Hilbert spaces.

(a) If L is a partial isometry, it is an isometry when restricted to its initial space.

(b) Isometries, co-isometries, projections, and unitary maps are partial isometries.

(c) The composite of a co-isometry followed by its adjoint is a partial isometry.

(d) Let H be another Hilbert space (whose dimension is at least 1). Then idH⊗̂L : H⊗̂I //H⊗̂J
is a partial isometry if and only if L is a partial isometry. Here, ⊗̂ denotes the completed
tensor product (cf. Section I.2.3 in Dixmier [9]).

(e) If L : I // J is a partial isometry, then there exists either an isometry or a co-isometry
U : I // J that agrees with L on its initial space.

(f) If I and J are finite dimensional with the same dimension and L : I //J is a partial isometry,
then there exists a unitary U : I // J that agrees with L on its initial space.
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Proof. Most of these are adequately covered in Halmos [14], Halmos–McLaughlin [15], and Hines–
Braunstein [16], with the exception of the forward implication in (d). Suppose idH⊗̂L : H⊗̂I //H⊗̂J
is a partial isometry. Then

idH⊗̂L = (idH⊗̂L)(idH⊗̂L)∗(idH⊗̂L) = idH⊗̂(LL∗L) (6.25)

by Corollary 3 in Section 127 of [14] and the property of adjoints with respect to the completed
tensor product. Hence, idH⊗̂(L− LL∗L) = 0, which holds if and only if L = LL∗L. Thus, L is a
partial isometry by this same corollary. �

Remark 6.26. The composite of partial isometries need not be a partial isometry (cf. Section 9.3
in Hines–Braunstein [16]). N

Partial isometries have a natural partial ordering as described by Halmos and McLaughlin [15].
This partial ordering is slightly generalized below to include intertwiners of representations.

Definition 6.27. Let H and I be Hilbert spaces and let L : H // I be a partial isometry. If
M : H // I is another partial isometry satisfying M(x) = L(x) for all x ∈ ker(L)⊥, then M
is said to be an extension of L and the notation L 5 M will be used. If π : A // B(H) and
ρ : A // B(I) are representations of a C∗-algebra A such that L is an intertwiner from (H, π) to
(I, ρ), then M is said to be an intertwining extension of L iff M is an intertwiner and L 5M .
In this case, the notation L E M will be used when the representations are understood from the
context. Whenever the notation 5 or E is used, it will be understood that the operators being
compared are partial isometries.

It is straightforward to check the following.

Lemma 6.28. The relations 5 and E from Definition 6.27 define partial orders on the set of
partial isometries from H to I and (H, π) to (I, ρ), respectively.

The relationship between E and morphisms of anchored representations will be described in
Lemma 6.34. But first, we provide a useful result that compares any two Stinespring representa-
tions of the same OCP map.

Theorem 6.29. Given any two Stinespring representations (K,H, π, V ) and (K, I, ρ,W ) of an
OCP map (K, ϕ) on a C∗-algebra A, there exists a unique partial isometry L : H // I such that

i. (K,H, π, V ) (idK,L)−−−−−→ (K, I, ρ,W ) is a morphism of anchored representations,

ii. L restricted to π(A)V (K) ⊆ H is a unitary intertwiner onto ρ(A)W (K) ⊆ I, and

iii. for any other bounded linear map M : H // I satisfying the first condition, M agrees with L
on the intersection of their initial spaces (and hence also satisfies the second condition).

The third condition is a uniqueness condition guaranteeing there exists a unique minimal partial
isometry (minimal in the sense of the partial order on partial isometries) L for which (idK, L) is a
morphism of anchored representations. This is justified in Lemma 6.34.

Proof of Theorem 6.29. By Corollary 6.7, we have a unique pair of morphisms of anchored repre-
sentations consisting of isometries of the form

(K,Hϕ, πϕ, Vϕ)

(K,H, π, V ) (K, I, ρ,W )

(idK,mπ,V )

{{

(idK,mρ,W )

##
. (6.30)

By Proposition 6.20, the composite (K,H, π, V )
(idK,mρ,Wm∗π,V )
−−−−−−−−−−−→ (K, I, ρ,W ) defines a morphism

of anchored representations that restricts to idK. Since mπ,V and mρ,W are isometries, L :=
mρ,Wm

∗
π,V is a partial isometry by Lemma 6.24. Therefore, H and I can be decomposed as

H = mπ,V (Hϕ)⊕mπ,V (Hϕ)⊥ and I = mρ,W (Hϕ)⊕mρ,W (Hϕ)⊥, (6.31)
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where each term in the direct sums is an invariant subspace under the appropriate actions of π or
ρ. To see this for the orthogonal complement, take the dual of (3.2). By construction, L restricts
to a unitary intertwiner from mπ,V (Hϕ) to mρ,W (Hϕ). But by the definition of m induced from
(5.43),

mπ,V (Hϕ) = π(A)V (K) and mρ,W (Hϕ) = ρ(A)W (K), (6.32)

which proves the first two claims.
Now, let M : H // I be a bounded linear map satisfying the first condition and let x =∑
i π(ai)V (vi) ∈ π(A)V (K). Then

M(x) =
∑
i

M
(
π(ai)V (vi)

)
=
∑
i

ρ(ai)M
(
V (vi)

)
=
∑
i

ρ(ai)W (vi) = L(x) (6.33)

since M is linear, since Mπ(a) = ρ(a)M for all a ∈ A, and because MV = W . By continuity, M
agrees with L on π(A)V (K), the initial space of L. �

Lemma 6.34. In terms of the same notation as in Theorem 6.29, set

P(L) :=
{
H M−→ I : L 5M and

(
(K,H, π, V ) (idK,M)−−−−−→(K, I, ρ,W )

)
∈ AnRep(A)1

}
, (6.35)

where the bounded linear maps M are all understood to be partial isometries. Then

P(L) =
{
H M−→ I : L EM

}
. (6.36)

Proof. The containment ⊇ in (6.36) holds by the diagram (3.2) from Definition 3.1. To see the
reverse containment, let M : H // I be a partial isometry such that L EM. Then commutativity
of the diagrams

K

H

I

V
55

W ))

M

��

and K

H

I

V ∗

))

W∗

55M

��

(6.37)

follows from (6.32), the decomposition (6.31), and the fact that (K,H, π, V ) (idK,L)−−−−−→ (K, I, ρ,W )
is a morphism of anchored representations. Finally, the intertwining condition (3.2) is included in
the definition of L EM. Hence, ⊆ holds as well. �

Remark 6.38. Although maximal elements for the partial order 5 on partial isometries are either
isometries or co-isometries (cf. [15]), this is not true in general of maximal elements for the partial
order E on intertwining partial isometries. This point will be addressed in Remark 7.41. N

7 Examples and applications
The purification postulate has been used by Chiribella, D’Ariano, and Perinotti to classify finite-
dimensional quantum theories among all operational probabilistic theories (OPTs) [7], [6]. We do
not need to review OPTs here, but will instead provide a definition of a purification of a process, our
formulation of the purification postulate, and the standard finite-dimensional purification postulate
of [7]. Our version of the purification postulate isolates some key assumptions made by [7] that
are implicit from the tensor network (diagrammatic) perspective. We prove our purification postu-
late using our Stinespring adjunction and show how it reduces to the standard finite-dimensional
one. We will first use our Stinespring adjunction to reproduce a Gelfand–Naimark–Segal (GNS)
adjunction for states [21].

Example 7.1. Let K := C. By Example 2.12, an operator state ω : A // B(C) ∼= C is a state.
Applying StineA to ω provides an anchored representation (C,Hω, πω, Vω). In this case, A⊗C ∼= A
so that Nω ∼= {a ∈ A : ω(a∗a) = 0} under this isomorphism. This agrees with the null-space
from the usual GNS construction. Hence, the completion Hω := A/Nω and the representation
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πω : A // B(Hω) agree with the usual GNS Hilbert space and representation. By Example 3.11,
Vω : C //Hω produces a unit vector Ωω := Vω(1) ∈ Hω and V ∗ω = 〈Ωω, · 〉 : Hω // C. Hence,
AdV ∗ω : B(Hω) // B(C) can be identified with its evaluation at 1 and is equivalently described
by the state 〈Ωω, · Ωω〉 : B(Hω) // C. Applying restA entails ω = 〈Ωω, π( · )Ωω〉, so that ω
has been represented by a pure state. If (C,H, π, V ) is another anchored representation of ω, set
Ω := V (1) ∈ H. By Corollary 6.7, there is a unique morphism of anchored representations of the
form (C,Hω, πω, Vω) (idC,mπ,V )−−−−−−−→ (C,H, π, V ), where mπ,V is given by

Hω
mπ,V−−−→ H

[a]ω 7−−−→ π(a)Ω,
(7.2)

which agrees with the modification from Construction 5.21 in [21]. The universal property of
Stinespring’s adjunction thus reproduces the minimality of the GNS construction in the sense that
it reproduces the smallest cyclic representation of A on which ω can be realized as a pure state. �

Remark 7.3. The GNS adjunction in [21] was defined in terms of a category of pointed rep-
resentations instead of anchored representations. This remark further explains this slight (and
only technical) distinction. It is not needed for the present work but is included for complete-
ness. There are natural transformations Σ : Rep• ⇒ PAnRep and Υ : States ⇒ OpSt defined
as follows. First, for every C∗-algebra A, the category Rep•(A) has objects (H, π,Ω) with H a
Hilbert space, π : A // B(H) a C∗-algebra representation, and Ω ∈ H a unit vector. A mor-
phism (H, π,Ω) L−→ (I, ρ,Ξ) is an isometric intertwiner of representations such that L(Ω) = Ξ. The
category States(A), on the other hand, is the discrete category of states on A, i.e. the objects
are positive unital linear maps ω : A // C and there are no non-identity morphisms. To every
C∗-algebra A, set

Rep•(A) ΣA−−→ PAnRep(A)
(H, π,Ω) 7−−→ (C,H, π, VΩ)(

(H, π,Ω) L−→ (I, ρ,Ξ)
)
7−−→

(
(C,H, π, VΩ) (idC,L)−−−−→ (C, I, ρ, VΞ)

)
.

(7.4)

Here, VΩ : C // H is the map that sends λ ∈ C to λΩ. It is not difficult to show that ΣA is a
functor. Also, set

States(A) ΥA−−→ OpSt(A)
ω 7−−→ (C, ω̃),

(7.5)

where ω̃ : A // B(C) is defined by A 3 a 7→ ω̃(a) = ω(a) · , i.e. multiplication by ω(a) on
the Hilbert space C. Since States(A) has only identity morphisms, this specifies the functor ΥA.
Examples 2.12 and 3.11 show that the functors ΣA and ΥA are faithful but not full. The only
reason these functors are not full is that the categories OpSt(A) and PAnRep(A) contain more
data in their morphisms. However, the only added information for a morphism of states and
pointed representations is a phase factor, which is a symmetry that can safely be ignored in the
discussion of the GNS construction.

Given a ∗-homomorphism f : A′ //A, the equalities

PAnRep(f) ◦ ΣA = ΣA′ ◦Rep•(f) and OpSt(f) ◦ΥA = ΥA′ ◦ States(f) (7.6)
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also hold. Furthermore, in the diagram10

C∗-Algop

CAT

C∗-Algop

CAT

OpSt

%%

AnRep
55rest

CK
Stine

��

States

%%

Rep•

55rest

CK
GNS•

��

Σ

KS

Υ

KS

, (7.7)

although the equality
rest

Υ = Σ
rest (7.8)

holds, there is only an invertible modification

Υ
StineV

GNS•
Σ (7.9)

since the two composites are not exactly equal but are canonically isomorphic. Indeed, for a fixed
C∗-algebra A, the resulting natural isomorphism

PAnRep(A) OpSt(A)

Rep•(A) States(A)

ΥA

OO
StineAoo

GNS•A
oo

ΣA

OO

∼=

19

(7.10)

is defined by its evaluation on a state ω : A // C by the morphism(
C,Hω, πω, VΩω

) (idC,Lω)−−−−−→
(
C,Hω̃, πω̃, Vω̃

)
, (7.11)

where Lω : Hω //Hω̃ is defined as the unique extension of

A/Nω 3 [a] 7→ [a⊗ 1] ∈ (A⊗ C)/Nω̃. (7.12)

Similar calculations to the above show that this map is bounded and extends to a unitary inter-
twiner. Hence, (idC, Lω) defines an isomorphism in the category PAnRep(A). The appropriate
diagram also commutes when one considers a ∗-homomorphism f : A′ //A.

This tells us our Stinespring adjunction reduces to the GNS adjunction by restricting to the
images of Σ and Υ. For example, if ω : A // C is a state, one can construct a pointed representa-
tion of it via GNS and view that pointed representation as a preserving anchored representation.
Similarly, one can view ω as an operator state and apply Stinespring’s construction to obtain
another preserving anchored representation. The invertible modification in (7.9) says that these
two preserving anchored representations are canonically isomorphic. Working out the details of
Stinespring’s adjunction in this present work has highlighted the importance of not restricting
morphisms to be isometries so that our universal property is more robust and improves on our
previous GNS adjunction in several respects. N

Definition 7.13. Let A be a C∗-algebra. A purification of a state ω : A // C consists of a
Hilbert space H, a ∗-homomorphism π : A // B(H), and a unit vector Ω ∈ H such that

〈Ω, π(a)Ω〉H = ω(a) ∀ a ∈ A. (7.14)

Hence, a purification of ω will be written as a triple (H, π,Ω). In other words, a purification of a
state is Stinespring representation of that state.

10The dashed arrows are used to depict the three-dimensional nature of the diagram in (7.7). They do not have
an alternative mathematical meaning.
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Definition 7.15. Let A be a C∗-algebra and K a Hilbert space. A purification of an OCP map
ϕ : A // B(K) consists of a Hilbert space H, a ∗-homomorphism π : A // B(H), and a bounded
linear map V : K //H such that

V ∗π(a)V = ϕ(a) ∀ a ∈ A. (7.16)

In other words, a purification of an OCP map is a Stinespring representation of that OCP map.

The following version of the purification postulate might seem unfamiliar, but we show that
it is equivalent to the usual purification postulate (from Section VII.A. and VII.B. in [7]) when
the algebras are finite-dimensional matrix algebras. This equivalence is worked out in detail in
Lemma 7.18 and Theorem 7.30.

Postulate 7.17 (The Purification Postulate for processes). Let A be a C∗-algebra and K a Hilbert
space. Every OCP map ϕ : A // B(K) has a purification (K,H, π, V ). Furthermore, given any
other purification (K, I, ρ,W ) for which (H, π) is unitarily equivalent to (I, ρ), there exists a unitary
intertwiner H U−→ I such that UV = W.

Stinespring’s theorem guarantees the existence of purifications. The existence of the unitary
intertwiner in these postulates is referred to as the essential uniqueness of purifications. The
purification postulate for processes implies the one for states by setting K = C. We will prove
the purification postulate for processes on finite-dimensional matrix algebras in Theorem 7.30 and
finite-dimensional C∗-algebras in Corollary 7.38 after a few lemmas. Our version of the purification
postulate is formulated without using traces or tensor products since these may be absent or am-
biguous for general C∗-algebras. This is partially achieved by using completely positive unital maps
instead of the more common completely positive trace-preserving maps. In the finite-dimensional
setting, these are equivalent and correspond to the Heisenberg and Schrödinger pictures, respec-
tively. Completely positive unital maps are used to map observables to observables while their duals
(adjoints with respect to the Hilbert–Schmidt inner product), completely positive trace-preserving
maps, are used to map density matrices to density matrices. However, the category of C∗-algebras
does not have duals and therefore does not have symmetric purifications as defined in [26]. Since
states supersede density matrices in the infinite-dimensional setting and the notion of a trace is
not always available, it is sometimes more convenient to work within the Heisenberg picture.

Lemma 7.18. Fix positive integers k and n. Set K := Ck, let ϕ : Mn(C) // B(Ck) ∼= Mk(C)
be an OCP map, and let (K,H, π, V ) be a finite-dimensional Stinespring representation of (K, ϕ).
Then there exists a p ∈ N and a unitary map R : H // Cn ⊗ Cp such that

Rπ(A)R∗ = A⊗ 1p and ϕ(A) = (RV )∗(A⊗ 1p)(RV ) ∀ A ∈Mn(C). (7.19)

In other words, there exists an isomorphism (K,H, π, V ) (idK,R)−−−−−→ (K,Cn ⊗ Cp, i, RV ) of anchored
representations, where R is unitary and where i is defined by

i :Mn(C) //Mn(C)⊗Mp(C) ∼= B(Cn ⊗ Cp)
A 7−−→ A⊗ 1p.

(7.20)

Proof. This follows from a general fact about unital ∗-homomorphisms between finite-dimensional
matrix algebras (cf. Section 1.1.2 in Fillmore [11]) and our definitions. �

Lemma 7.18 provides a characterization of the form of Stinespring dilations of OCP maps
between matrix algebras. This allows a visual calculus to be implemented via circuit diagrams [7],
[26]. We set

ti
m

e
−−
−−
−−
−−
−−
−→ com

p
osition

−−−−−−−−−−−→

ϕ

A

B

:=

A

B

ϕ

��

, A :=

C

A

!

��

, (7.21)
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ϕ

A

B

ϕ′

A′

B′

:= ϕ⊗ ϕ′

A⊗A′

B ⊗ B′

, and

ϕ

ψ

A

B

C

:= ψ ◦ ϕ

A

C

. (7.22)

The map C ! // A is the unique unital linear map from C to A. Note that the algebras here
are finite dimensional so the tensor product is the standard one. By choosing this convention,
the direction of time is up. The direction of time is consistent with [26], while the direction
of composition is opposite, because the dual maps on density matrices are used in [26]. Using
the shorthand Mn := Mn(C) (and similarly for other dimensions), the relationship between our
dilation (from Lemma 7.18) and the one of [7, Definition 45] is then given by

ϕ

Mn

Mk

=

π

AdV ∗

Mn

B(H)

Mk

=

π

AdR

AdR∗

AdV ∗

Mn

B(H)

Mn Mp

B(H)

Mk

=

Ad(RV )∗

Mn

Mp

Mk

(7.23)

due to Lemma 7.18. To prove the purification postulate for processes, we need to recall a few
standard facts about the commutant (cf. Chapters 1 and 2 in Dixmier [9] and Chapter 4 in Fill-
more [11]).

Definition 7.24. Let S ⊆ A be a subset of a C∗-algebra A. The commutant of S inside A is
the unital algebra

S′ := {a ∈ A : as = sa ∀ s ∈ S}. (7.25)

Since the commutant depends on the embedding algebra, S′ will often be written as S′ ⊆ A.11

Remark 7.26. If a subset S ⊆ A is ∗-closed (meaning a ∈ S implies a∗ ∈ S), then S′ is a unital
∗-algebra. In fact, S′ ⊆ A is a C∗-subalgebra of A since S′ =

⋂
s∈S{s}′ is the intersection of the

kernels of the commutators [s, · ] : A //A, which are all closed (cf. Chapter 2 in Topping [30]). N

Example 7.27. If H is a finite-dimensional Hilbert space, then B(H)′ ⊆ B(H) is CidH, all scalar
multiples of the identity in H. If K is another finite-dimensional Hilbert space, then the commutant(
B(H) ⊗ idK

)′ ⊆ B(H) ⊗ B(K) is idH ⊗ B(K), all bounded operators of the form idH ⊗B with

11Writing S′ ⊆ A will also avoid confusion with the notation used for different C∗-algebras A,A′,A′′ earlier.
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B ∈ B(K). If π :Mn(C) //B(H) and R : H //Cn⊗Cp are as in Lemma 7.18, then π(A)′ ⊆ B(H)
is R∗

(
1n⊗Mp(C)

)
R, operators of the form R∗(1n⊗B)R with B ∈Mp(C). Given a positive integer

t and non-negative integers n1, . . . , nt, c1, . . . , ct, with
∑
j nj ,

∑
j cj > 0, set m =

∑t
j=1 njcj and

let
t

�
j=1

(
Mnj (C)⊗Mcj (C)

)
(7.28)

be the C∗-subalgebra of Mm(C) consisting of all linear combinations of block diagonal matrices
of the form

t

�
j=1

(Aj ⊗Bj) :=

A1 ⊗B1 0
. . .

0 At ⊗Bt

 (7.29)

(if any of the integers n1, . . . , nt, c1, . . . , ct, are zero, terms corresponding to them are excluded from
the above matrix). Then, the commutant of�t

j=1
(
Mnj (C)⊗1cj

)
insideMm(C) is�t

j=1
(
1nj ⊗

Mcj (C)
)
. The notation � is used for ‘internal’ direct sum to distinguish it from the ‘external’

direct sum
⊕

. �

Theorem 7.30. The purification postulate for OCP maps (Postulate 7.17) holds whenever all
algebras are finite-dimensional matrix algebras and all Hilbert spaces are finite dimensional.
Proof. Purifications exist by Stinespring’s theorem (the associated anchored representation is fi-
nite dimensional by minimality). For the essential uniqueness, fix positive integers k and n.
Set K := Ck, let ϕ : Mn(C) // B(Ck) ∼= Mk(C) be an OCP map, and let (K,H, π, V ) and
(K, I, ρ,W ) be two finite-dimensional Stinespring representations of (K, ϕ) with unitarily equiv-
alent representations π : Mn(C) // B(H) and ρ : Mn(C) // B(I). By Theorem 6.29, there
exists a partial isometry L : H // I such that (K,H, π, V ) (idK,L)−−−−−→ (K, I, ρ,W ) is a morphism of
anchored representations. In what follows, we will prove there exists a unitary U such that L E U.
By Lemma 7.18, there exist integers p and q together with unitary maps R : H // Cn ⊗ Cp and
S : I // Cn ⊗ Cq such that

Rπ(A)R∗ = A⊗ 1p, Sρ(A)S∗ = A⊗ 1q, and
(RV )∗(A⊗ 1p)(RV ) = ϕ(A) = (SW )∗(A⊗ 1q)(SW )

(7.31)

for all A ∈ Mn(C). Since π and ρ are unitarily equivalent, p = q. These facts imply (K,Cn ⊗
Cp, i, SW ) (idK,RL∗S∗)−−−−−−−−→ (K,Cn ⊗ Cp, i, RV ) is a morphism of anchored representations, where
RL∗S∗ : Cn⊗Cp //Cn⊗Cp is a partial isometry and i is the map from (7.20). By Example 7.27 and
Lemma 6.24, there exists a unique partial isometry P : Cp //Cp such that RL∗S∗ = 1n⊗P . By the
last fact in Lemma 6.24, there exists a unitaryM : Cp //Cp such that P 5M (cf. Definition 6.27).
Hence 1n⊗P 5 1n⊗M . By Example 7.27, 1n⊗M is in i

(
Mn(C)

)′ ⊆Mn(C)⊗Mp(C). Therefore,

1n ⊗ P E 1n ⊗M with respect to the representation i. Hence, (K,Cn ⊗ Cp, i, SW ) (idK,1n⊗M)−−−−−−−−→
(K,Cn ⊗ Cp, i, RV ) is a morphism of anchored representations by Lemma 6.34. Setting U :=
S∗(1n ⊗M∗)R, we obtain the required unitary for essential uniqueness of purifications since it
provides an isomorphism (K,H, π, V ) (idK,U)−−−−−→ (K, I, ρ,W ) of anchored representations. �

The situation in the previous proof is summarized by the commutative diagram

Mn(C)Mk(C)

B(H)

B(I)

Mn(C)⊗Mp(C)

Mn(C)⊗Mp(C)

AdV ∗
uu

AdW∗
ii

πii

ρuu

AdU∗

OO

AdR

OO

AdS∗

OO

i

ff

i

xx

Ad(RV )∗

��

Ad(SW )∗

RR
. (7.32)
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Because R,U, and S are unitary, commutativity of this diagram is equivalent to the conditions
required of morphisms of anchored representations. In terms of circuit diagrams, we have

Ad(RV )∗

Mn

Mp

Mk

= ϕ

Mn

Mk

=

Ad(SW )∗

Mn

Mp

Mk

(7.33)

for our two purifications of ϕ. The middle part of the diagram (7.32) relates the representations
and the Stinespring dilations from our point of view. Namely, we obtain a unitary U : H // I
such that

ρ

AdU∗

Mn

B(I)

B(H)

= π

Mn

B(H)

and AdW∗

B(I)

Mk

=

AdU∗

AdV ∗

B(I)

B(H)

Mk

. (7.34)

Combining the three parts gives

AdS∗

AdU∗

AdR

Mn Mp

B(H)

B(I)

Mn Mp

= AdMMn

Mp

Mp

=⇒ Ad(SW )∗

Mn Mp

Mk

=

Ad(RV )∗

AdMMn

Mp

Mp

Mk

, (7.35)

which agrees precisely with Postulate 1 in Section VII.A. in [7] (after setting k = 1).

Remark 7.36. The unitary U in the essential uniqueness of Postulate 7.17 is not necessarily
unique if it exists. Indeed, there could be many unitary extensions 1n⊗M of the partial isometry
1n ⊗ P from the proof of Theorem 7.30. N

Remark 7.37. If one drops the assumptions that the finite-dimensional representations (H, π)
and (I, ρ) are unitarily equivalent in Postulate 7.17 and Theorem 7.30, then one obtains a slight
generalization of the purification postulate. In this more general case, there exists an intertwining
map U : H // I that satisfies UV = W and U is either an isometry or a co-isometry. The proof
of this is similar to the proof of Theorem 7.30 except that p need not equal q. The only partial
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isometry O that satisfies (A⊗1p)O = O(A⊗1q) for all A ∈Mn(C) must be of the form 1n⊗P for
some partial isometry P : Cq // Cp. Hence, one obtains a unique partial isometry P : Cq // Cp
such that RL∗S∗ = 1n⊗P . All intertwining extensions of this partial isometry must therefore also
be of this form. Therefore, there exists either an isometry or a co-isometryM : Cq //Cp satisfying
1n⊗P E 1n⊗M by Lemma 6.24. Then U := S∗(1n⊗M)∗R is the required partial isometry. Note
that if dimH = dim I is assumed, then the representations are automatically unitarily equivalent
since maximal partial isometries between finite-dimensional Hilbert spaces of equal dimension are
unitary. N

Our formulation of the purification postulate is also valid for arbitrary finite-dimensional C∗-
algebras.

Corollary 7.38. The purification postulate for OCP maps (Postulate 7.17) holds whenever all
algebras are finite-dimensional C∗-algebras and all Hilbert spaces are finite dimensional.

Proof. Existence follows from Stinespring’s theorem as before. What follows is a proof of the
essential uniqueness of purifications. By the discussions preceding this, it suffices to consider the
case

K := Ck and A :=
t⊕

j=1
Mnj (C), (7.39)

where t ∈ N and nj ∈ N for all j ∈ {1, . . . , t}. Given an OCP map ϕ : A // B(K), it also suffices
to consider two Stinespring representations of the form (K,Cm, π, V ) and (K,Cm, π,W ), where
m ∈ N and the representation π : A //Mm(C) is of the form

π

 t⊕
j=1

Aj

 =
t

�
j=1

(Aj ⊗ 1cj ), (7.40)

where the c1, . . . , ct are non-negative integers such that m =
∑t
j=1 njcj . By similar arguments to

those implemented in the proof of Theorem 7.30, there exist partial isometries (for the non-zero cj)
Lj : Ccj //Ccj such that

(
idK, L :=�t

j=1(1nj ⊗ Lj)
)
is a morphism of anchored representations

from (K,Cm, π, V ) to (K,Cm, π,W ). These can be extended to unitaries Uj : Ccj //Ccj by finite
dimensionality. Hence,

(
idK, U :=�t

j=1(1nj ⊗ Uj)
)

is an isomorphism of anchored representa-
tions. �

Remark 7.41. If one drops the assumptions that the finite-dimensional representations (H, π)
and (I, ρ) are unitarily equivalent in Postulate 7.17 and Corollary 7.38, then U =�t

j=1(1nj ⊗Uj)
from the proof of Corollary 7.38 is replaced by an internal block sum of partial isometries that
have been extended to isometries or co-isometries. In particular, even though U is maximal with
respect to E, it need not be an isometry nor a co-isometry. In more detail, let (K,Cm, π, V ) and
(K,Cn, ρ,W ) be the two Stinespring representations, where

π

 t⊕
j=1

Aj

 =
t

�
j=1

(Aj ⊗ 1cj ), ρ

 t⊕
j=1

Aj

 =
t

�
j=1

(Aj ⊗ 1dj ),

m =
t∑

j=1
njcj , and n =

t∑
j=1

njdj .

(7.42)

One can show L (from Theorem 6.29) must be of the form�t
j=1(1nj⊗Pj). In fact, all intertwining

extensions of L must also be of this form. By extending such intertwining partial isometries, one
obtains an isometry or a co-isometry Uj : Ccj // Cdj if cj ≤ dj or cj ≥ dj , respectively. Hence,
if cj − dj changes sign as j varies, then U = �t

j=1(1nj ⊗ Uj) is neither an isometry nor a co-
isometry. N
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Appendix

A Index of notation

Notation Name/description Location Page
N natural numbers (excludes 0) Not 2.1 3

H, I,J ,
K,L,M Hilbert spaces Not 2.1 3

B(H) bounded operators on H Not 2.1 3
A,A′,A′′ (unital) C∗-algebra Not 2.1 3
〈 · , · 〉K inner product on K Not 2.1 3
Mn(A) n× n matrices with coeffs in A Not 2.1 3

ϕ,ψ, χ
positive or completely positive maps

operator states when unital
Def’n 2.2
Def’n 2.7

3
4

ϕn the n-ampliation of ϕ Def’n 2.2 3
PU, CP,
CPU

positive unital, completely positive,
completely positive unital Def’n 2.2 3

AdT the adjoint action map for T Ex 2.4 3

(K, ϕ) operator-valued CP (OCP)
map or operator state ϕ : A // B(K) Def’n 2.7 4

tr un-normalized trace Ex 2.14 5
τ tracial map Ex 2.14 5

OCP
OpSt

OCP maps functor
operator states functor

Lem 2.30,
2.32, 2.34

6,
7, 7

(K,H, π, V ) anchored representation on a C∗-algebra Def’n 3.1 7
AnRep

PAnRep
anchored representation functor

preserving anchored representation functor
Lem 3.12,
3.13, 3.15

9,
9, 9

rest restriction natural transformation Prop 4.1 9
sϕ,~v a certain linear functionalMn(A) // C Lem 5.1 11

Stine Stinespring oplax-natural transformation Thm 5.8 12

⊗ algebraic tensor product of vector spaces Item i in
Thm 5.8 12

〈〈 · , · 〉〉ϕ
sesquilinear form on A⊗K

from ϕ : A // B(K) Eqn (5.11) 13

Nϕ null-space associated to ϕ Eqn (5.16) 13

πϕ
Stinespring representation of a C∗-algebra

from an OCP map (K, ϕ)
Eqn (5.18)
Eqn (5.20)

13,
14

[ξ]ϕ or [ξ] elements of (A⊗K)/Nϕ Eqn (5.20) 14

〈 · , · 〉ϕ
induced inner product on

(A⊗K)/Nϕ and Hϕ from 〈〈 · , · 〉〉ϕ
Eqn (5.21) 14

Hϕ
Stinespring Hilbert space

(A⊗K)/Nϕ associated to ϕ
Eqn (5.22) 14

Vϕ Stinespring isometry Vϕ : K //Hϕ Eqn (5.24) 15
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(K,Hϕ, πϕ, Vϕ) StineA(K, ϕ), Stinespring anchored
rep’n from OCP map (K, ϕ) Eqn (5.26) 15

(T, LT ) StineA(T ), Stinespring morphism
from OCP map morphism T

Eqn (5.34) 16

Lf
Stinef (K, ϕ), Stinespring isometry
for a ∗-homomorphism f : A′ //A Eqn (5.38) 17

mπ,V
Stinespring isometry associated to an
anchored representation (K,H, π, V ) Eqn (5.43) 18

mA Stinespring natural transformation on A Eqn (5.47) 18
m Stinespring modification Eqn (5.50) 19

⊗̂ completed tensor product
for Hilbert spaces Lem 6.24 24

L 5M extension of partial isometry Def’n 6.27 25
L EM intertwining extension of partial isometry Def’n 6.27 25
S′ ⊆ A the commutant of S in A Def’n 7.24 30
� ‘internal’ direct sum Ex 7.27 30

B 2-categorical preliminaries
We briefly recall the definitions of oplax-natural transformations and modifications. In addition,
we include the universal property associated with adjunctions because it is used in explaining the
Stinespring adjunction more concretely. For details on 2-categories and their pasting diagrams,
we refer the reader to Bénabou’s original work [4] as well as Kelly and Street’s review [18]. For a
more introductory take emphasizing string diagrams, see [22]. For other details on oplax-natural
transformations and modifications, we refer the reader to Section 7.5 in Borceux [5].

Definition B.1. Let C and D be two (strict) 2-categories and let F,G : C // D be two (strict)
functors. An oplax-natural transformation ρ from F to G, written as ρ : F ⇒ G, consists of
i. a function ρ : C0 // D1 assigning a 1-morphism in D to each object x in C in the following

manner

x

F (x)

G(x)

ρ(x)
��

� ρ // (B.2)

ii. and a function ρ : C1 //D2 assigning a 2-morphism in D to each 1-morphism y
α←− x in C in

the following manner

xy αoo

F (y)

G(y)

F (x)

G(x)

ρ(x)
��

ρ(y)
��

F (α)oo

G(α)
oo

ρ(α)

 (
� ρ // . (B.3)

These data must satisfy the following conditions:

(a) For every object x in C,
ρ(idx) = idρ(x). (B.4)

(b) For every pair (z α←− y, y β←− x) of composable 1-morphisms in C,

F (z)

G(z)

F (y)

G(y)

F (x)

G(x)

ρ(x)

��

ρ(y)

��

ρ(z)

��

F (β)oo

G(β)
oo

F (α)oo

G(α)
oo

ρ(β)

 (

ρ(α)

 (
=

F (z)

G(z)

F (x)

G(x)

ρ(x)

��

ρ(z)

��

F (αβ)oo

G(αβ)
oo

ρ(αβ)

 (
. (B.5)
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(c) For every 2-morphism

y x

α

��

γ

\\ Σ

��

, (B.6)

the equality

F (y)

G(y)

F (x)

G(x)

F (α)
xx

F (γ)
ff

G(γ)

ff

ρ(y)

��
ρ(x)

��
ρ(γ) )1

F (Σ)
��

=

F (y)

G(y)

F (x)

G(x)

F (α)
xx

G(α)xx

G(γ)

ff

ρ(y)

��
ρ(x)

��

ρ(α)

�!
G(Σ)
��

. (B.7)

holds.

Remark B.8. We use the prefix “oplax” because for a lax-natural transformation (cf. Def-
inition 7.5.2 in Borceux [5]), the source and targets of the 2-morphism in (B.3) are switched.
Note that Equations (B.5) and (B.7) must be appropriately modified for a lax-natural transforma-
tion. For a pseudo-natural transformation, the 2-morphisms in (B.3) are (vertically) invertible
(cf. Definition B.14). The vertical inverse of ρ(α) will be written as ρ(α). By the uniqueness of
inverses, if a pseudo-natural transformation is oplax, then its vertical inverse is lax. This fact is
used in Proposition B.31. If ρ(α) is the identity for all 1-morphisms α, then ρ is called a natural
transformation. N

The definition of a modification does not change if one uses oplax-natural transformations
instead of pseudo-natural transformations.

Definition B.9. Let C and D be two 2-categories, F,G : C //D be two 2-functors, and ρ, σ : F ⇒
G be two oplax-natural transformations. A modification m from σ to ρ, written as m : σ V ρ
and drawn as

CD

F

��

G

[[
ρ

��
σ

��

mjt , (B.10)

consists of a function m : C0 // D2 assigning a 2-morphism in D to each object x in C in the
following manner

x

F (x)

G(x)

ρ(x)

!!

σ(x)

}}

m(x)ks� m // . (B.11)

This assignment must satisfy the condition that for every 1-morphism y
α←− x,

F (y)

G(y)

F (x)

G(x)

F (α)oo

G(α)
oo

σ(y)

  

ρ(y)

~~

ρ(x)

~~

m(y) +3
ρ(α)

��

=

F (y)

G(y)

F (x)

G(x)

F (α)oo

G(α)
oo

σ(y)

  

σ(x)

  

ρ(x)

~~

m(x) +3
σ(α)

$,

. (B.12)
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Remark B.13. If one has a modification between lax-natural transformations, the diagram in
(B.12) is modified appropriately. This will be used in Proposition B.31. N

The composition of oplax-natural transformations and modifications are not changed as a result
of these alterations to the usual definitions.

Definition B.14. The vertical composite of oplax-natural transformations is denoted using
vertical concatenation as in

CD

F

��

H

^^
ρ
σ

��

:= CD

F

��
Goo

H

^^

ρ

��

σ
��

(B.15)

and is defined by the assignments

x

F (x)

G(x)

H(x)

ρ(x)
��

σ(x)
��

�
ρ
σ // (B.16)

for each object x in C and

xy αoo

F (y)

G(y)

H(y)

F (x)

G(x)

H(x)

� ρ //

F (α)oo

ρ(x)
��

ρ(y)
��

G(α)oo

ρ(α)

#+

σ(x)
��

σ(y)
��

H(α)
oo

σ(α)

#+

(B.17)

for each morphism y
α←− x in C.

Definition B.18. The vertical composite of modifications is denoted using vertical concatena-
tion as in

CD

F

��

H

__
ρ
λ
��

σ
τ

��

m
njt := CD

F

��
Goo

H

^^

ρ

��
σ
��

mjt

λ
��

τ
��n

jt
(B.19)

and is defined by the assignment

x

F (x)

G(x)

H(x)

σ(x)

}}

ρ(x)

!!

τ(x)

}}

λ(x)

!!

m(x)ks

n(x)ks

�
m
n // (B.20)

for each object x in C.
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Notation B.21. Let C and D be two (strict) 2-categories. Let Fun(C,D) be the 2-category whose
objects are (strict) functors from C to D, 1-morphisms are oplax-natural transformations, and
2-morphisms are modifications. The compositions are defined as above (modifications have one
additional composition, which we have not defined).

Definition B.22. Let C be a (strict) 2-category. An adjunction in C consists of a pair of objects
x, y in C, a pair of morphisms

x y
f //

g
oo (B.23)

and a pair of 2-morphisms

xx

y

idxoo

f

��
g

ZZ
η

��

&

yy

x

idy
oo

g

ZZ

f

��
ε

��

(B.24)

satisfying

xyxy

idx

��
foogoofoo

idy

^^

η

��

ε

��

= xy

f

__

f

��
idf

��
(B.25)

and

yxyx

idx

��
goofoogoo

idy

^^

η

��

ε

��

= yx

g

__

g

��
idg

��
. (B.26)

Conditions (B.25) and (B.26) are known as the zig-zag identities. An adjunction as above is
typically written as a quadruple (f, g, η, ε) and we say f is left adjoint to g and write f a g.
However, the notation

x

idx	

y

	
idy

f //

g
oo η⊥ε (B.27)

may occasionally be employed to more clearly indicate all of the data in the definition of an
adjunction.

The usual notion of an adjunction is one where the 2-category is that of categories, functors,
and natural transformations. One may express adjunctions in terms of a universal property in this
case.

Lemma B.28. Let C,D be categories, let F,G : C // D be functors, and let η : idC ⇒ G ◦ F
and ε : F ◦ G ⇒ idD be natural transformations so that (F,G, η, ε) is an adjunction. Then, the
following universal properties hold.

i. For every c ∈ C, d ∈ D, and c g−→ G(d) there exists a unique F (c) f−→ d such that

cG(d)

G(F (c))

goo

ηc

��
G(f)

ZZ

(B.29)
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ii. For every c ∈ C, d ∈ D, and F (c) f−→ d there exists a unique c g−→ G(d) such that

F (c)d

F (G(d))

foo

F (g)
��

εd

ZZ

(B.30)

Proof. This is an equivalent definition of an adjunction (cf. Chapter IV Section 1 in Mac Lane [19]).
Given c g−→ G(d), the morphism F (c) f−→ d is given by f := εd ◦ F (g). Conversely, given F (c) f−→ d,
the morphism c

g−→ G(d) is given by g := G(f) ◦ ηc. �

Proposition B.31. Let C and D be two (strict) 2-categories. Let

F

idF	

G
	
idG

σ //

ρ
oo η⊥ε (B.32)

be an adjunction in the 2-category Fun(C,D). Then

F (x)

idF (x)	

G(x)
	

idG(x)

σ(x) //

ρ(x)
oo η(x)⊥ε(x) (B.33)

is an adjunction in D for all objects x in C. Conversely, let F,G : C // D be two functors, let
ρ : G ⇒ F be a pseudo-natural transformation, and let σ : C0 // D1 and η, ε : C0 // D2 be
assignments such that (B.33) is an adjunction for all x in C. Then there exists an extension of σ
to an oplax-natural transformation for which η together with ε define modifications and (B.32) is
an adjunction in Fun(C,D). Furthermore, σ is unique up to a canonical isomorphism.

Remark B.34. That ρ be a pseudo-natural transformation and not just a lax- or oplax-natural
transformation is explicitly used in the proof. N

Proof of Proposition B.31. you found me!
(⇒) The forward direction was proved in the final Remark in [21].
(⇐) For the reverse direction, σγ : σy ◦ F (γ)⇒ G(γ) ◦ σx must be constructed for each morphism
y

γ←− x in C. It is cumbersome to do this using globular diagrams, so we implement string diagrams
to simplify the proof (see [22] for an introduction to string diagrams). By convention, string
diagrams will be read from top to bottom and from right to left. Define σγ by

G(y)

F (y)

F (x)

G(x)

F (γ)ddσy

zz

σxzzG(γ)

dd
σγ

��
≡ σγ

σy F (γ)

G(γ) σx

:= ργ

ηx

εy

F (γ)

ρx

ρy

G(γ)

σy

σx

, (B.35)

where ργ is the vertical inverse of ργ . To verify the oplax-naturality of σ, consider a composable
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pair z δ←− y γ←− x of morphisms in C. Then,

σγ

σδ F (γ)

F (δ)σz

σy

σxG(γ)

G(δ)

(B.35)=== ρδ

ηy

εz

ργ

ηx

εy

F (δ)

ρy

ρz

G(δ)

σz

σy

F (γ)

ρx

ρy

G(γ)

σx

(B.26)===
ργ

ηx

ρδ

εz

F (γ)

ρx

ρy

G(γ)

F (δ)

σx
ρz

G(δ)

σz
(B.5)===
for ρ

ρδγ

ηx

εz

F (δγ)

ρx

ρz

G(δγ)

σz

σx

(B.35)=== σδγ

σz F (δγ)

G(δγ) σx

(B.36)

This proves (B.5) for σ. For x idx←−− x, one obtains

σidx

σx idF (x)

idG(x) σx

(B.35)=== ρidx

ηx

εx

idF (x)

ρx

ρx

idG(x)

σx

σx

(B.4)===
for ρ

ηx

εx

ρx

σx

σx

(B.25)=== σx , (B.37)

which proves (B.4) for σ. Now, consider a 2-morphism Σ : α⇒ γ in C, as in (B.6). Then

σγ

F (Σ)σy

F (α)

F (γ)

G(γ) σx

(B.35)===
ργ

ηx

εy

F (Σ)

F (α)

F (γ)
ρx

ρy

G(γ)

σy

σx

(B.7)===
for ρ

ρα

ηx

εy G(Σ)

F (α)

ρx

ρy
G(α)

G(γ)

σy

σx

(B.35)===
σα

G(Σ)

σy

G(γ)

F (α)

G(α)

σx

(B.38)

proves condition (B.7) for σ and concludes the proof that σ is an oplax-natural transformation. It
remains to show that ε : idF V σ

ρ and η : ρσ V idG are modifications. For this, fix a 1-morphism
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y
γ←− x in C. Then

σγ

ηy

ργ

F (γ)

σy

G(γ)

σx

ρy

ρxF (γ)

=

ργ

ηx

εy

ηy

ργ

F (γ)

ρx

ρy

G(γ)

σy

σx

ρy

F (γ) ρx

(B.26)===

ργ

ηx

ργ

F (γ)

ρx

ρy G(γ) σx

F (γ) ρx

= ηxF (γ)

ρx σx

, (B.39)

where the last equality follows from the fact that ρ is the vertical inverse of ρ. This proves (B.12)
for η, and therefore shows η is a modification. A similar proof shows ε is a modification. Finally, σ
is unique up to canonical isomorphism by the uniqueness of adjoints in 2-categories (cf. Lemma A.4
in [21]). �

Remark B.40. Proposition B.31 seems to be a useful fact for adjunctions in 2-categories of
functors. It offers a slightly shorter proof of Theorem 5.8. One merely has to define the functors
StineA and restA and define the natural transformation mA. Then one has to show Stine

rest =
idOCP and prove the zig-zag identities for (StineA, restA, id,mA), the last of which were essentially
tautologies. Proving oplax-naturality of Stine and thatm is a modification is not necessary thanks
to Proposition B.31. N
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