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Assignments to sheaves of pseudometric spaces
Michael Robinson

Mathematics and Statistics, American University, Washington, DC, USA

An assignment to a sheaf is the choice of a local section from each open set in
the sheaf’s base space, without regard to how these local sections are related to one
another. This article explains that the consistency radius — which quantifies the
agreement between overlapping local sections in the assignment — is a continuous
map. When thresholded, the consistency radius produces the consistency filtration,
which is a filtration of open covers. This article shows that the consistency filtration is
a functor that transforms the structure of the sheaf and assignment into a nested set of
covers in a structure-preserving way. Furthermore, this article shows that consistency
filtration is robust to perturbations, establishing its validity for arbitrarily thresholded,
noisy data.
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1 Introduction
An assignment of a sheaf of sets on a topological space selects a local section from each open set in
the sheaf’s base space without regard to how these local sections are related to one another. This
article explores the structure of a sheaf of pseudometric spaces on a topological space by analyzing
the structure of its assignments. More structure is present in a sheaf of pseudometric spaces than
in a sheaf of sets, since each stalk is a set equipped with a pseudometric, and each restriction is
required to be continuous with respect to the pseudometrics present on its domain and codomain.

A sheaf of pseudometric spaces is best thought of as a tool for measuring the self-consistency
between the local sections in an assignment. When data are present in a global section on two
overlapping open sets, their consistency is manifest by being equal upon restricting to the inter-
section of the open sets. For a sheaf of sets, an assignment is self-consistent when it is a global
section, and that is all that can be said. But for a sheaf of pseudometric spaces, instead of requiring

Michael Robinson: michaelr@american.edu

Accepted in Compositionality on 2020-05-14. Click on the title to verify. 1

ar
X

iv
:1

80
5.

08
92

7v
6 

 [
m

at
h.

A
T

] 
 2

6 
M

ay
 2

02
0

https://compositionality-journal.org/papers/compositionality-2-2/
mailto:michaelr@american.edu


Volume 2 Issue 2 ISSN 2631-4444

equality, we can instead ask for the data to restrict to values within some distance of each other.
The supremum1 of these distances is called the consistency radius of the assignment. Since global
sections evidently have zero consistency radius — the distance between data restricted to the same
open set is always zero in a global section because they are equal — positive consistency radius is
an obstruction to an assignment being a global section.

It may happen that some parts of an assignment are more consistent than others, which is
to say that restricting the consistency radius to subspaces of the sheaf’s base space yields new
information. The resulting local consistency radius can be used to identify open sets on which
the assignment and sheaf are consistent to some specified level. Sweeping a threshold value over
the local consistency radius identifies portions of the base space on which an assignment is more
or less in agreement with the restrictions of the sheaf. Since increasing the threshold loosens the
tolerance for data to restrict to the same value, the result is something akin to a filtration: any
open set on which the assignment is consistent at a lower threshold will remain consistent at a
higher threshold. Making this intuition precise, one obtains the consistency filtration.

Providing precise definitions of consistency radius and consistency filtration occupy some of our
attention in this article, but their value is squarely rooted in the properties we prove about them.
From the standpoint of applications, this article establishes that small perturbations in the data
(the assignment) or the model (the sheaf) do not result in large changes in the consistency radius
or in the consistency filtration. Furthermore, the consistency filtration preserves specific relation-
ships between related sheaves and assignments — it is a covariant functor between appropriately
constructed categories. Although the results in this article require a limited base topological space
— sheaves on finite spaces are the focus, though a few results described in this article generalize to
arbitrary topological spaces — we do not restrict to sheaves over a single topological space. Sheaf
morphisms will be permitted to transform a sheaf on one space to a sheaf on another space.

This dual nature of the consistency filtration — it is both a continuous function between
topological spaces and a covariant functor between categories — arises because we can view the
class of all sheaf-assignment pairs through two lenses: topological and categorial. The stalks
and restrictions of a given sheaf of pseudometric spaces are manifestly topological, but that same
sheaf is also a special kind of functor. This dual nature is not present for a sheaf of sets, since
most of its interesting properties arise from being a functor, nor is this dual nature present for a
continuous map between pseudometric spaces, since most of its interesting properties arise from
being topological.

The topological viewpoint of sheaf-assignment pairs addresses the question of how to threshold
data based on self-consistency, using the sheaf of pseudometric spaces as a tool to measure the
assignment. From this viewpoint, it is best to think of the consistency radius as a continuous
function of the sheaf and of the assignment (jointly!). Since the consistency radius is a nonnegative
real number that quantifies how compatible the sheaf and assignment are (smaller means more
consistent), it has a straightforward interpretation. We can therefore turn the consistency radius
on its head and ask, “for a given real number threshold, which open sets have local consistency
radius smaller than that threshold?” The answer to this is the consistency filtration, which although
it is not a filtration of subspaces in the usual sense, it is an order preserving function from the
real numbers to the power set of the sheaf’s base space topology, in which the ordering is given by
coarsening2. There the topological story would seem to end, if not for the recent definition of a
general interleaving distance [12]. With the interleaving distance in hand, this article shows that
the consistency filtration is a continuous function as well. This establishes that the consistency
filtration is robust to perturbations, with persistent Čech cohomology as a special case.

In contrast, the categorial viewpoint emphasizes transformations of sheaf-assignment pairs,
first by generalizing the notion of a sheaf morphism to address the case where the base space
of the domain and the base space of the codomain differ, and secondly by focusing attention on
only those sheaf morphisms that preserve both the sheaf and assignment. These definitions put
the category of assignments of a sheaf of pseudometric spaces on firm theoretical ground. With
this specialized category in hand, consistency radius is not a functor, even though the morphisms
transform it in a predictable way (Lemma 4). This suggests that there still is a functor at work,

1or other suitable aggregate
2The opposite of the refinement of a cover!

Accepted in Compositionality on 2020-05-14. Click on the title to verify. 2



Volume 2 Issue 2 ISSN 2631-4444

which unsurprisingly turns out to be the consistency filtration when an appropriate category is
constructed for its codomain.

In taking these two viewpoints, this article defines several apparently novel categories for sheaf-
assignment pairs and filtrations of covers, and obtains three results about their dual topologi-
cal/categorial natures:

Theorem 1 : Consistency radius is a continuous function,

Theorem 2 : Consistency filtration is a covariant functor, and

Theorem 3 : Consistency filtration is a continuous function.

2 Interpretation and applications
A sheaf of sets on a topological space is a mathematical structure for representing local data.
While sheaves are general purpose and abstract, they do not require unrealistic assumptions about
domain-specific data. As such, they provide a convenient language for describing how systems
composed of interrelated parts can interact. In applications, this is valuable because sheaves
can naturally represent systems composed of different types of subsystems. Since subsystems are
usually modeled (or engineered) separately and largely in isolation from one another, composing
the state of several subsystems into a global composite state is not trivial. If one requires that the
composite system be represented as a sheaf, this imposes specific conditions on how subsystems
may be assembled. If these conditions are met, then the idea of a global composite state — a global
section of the sheaf — is well-defined and can be obtained algorithmically [31]. From a practical
standpoint, this means that the process of asserting that the composite system be modeled as
a sheaf simplifies and standardizes the bookkeeping tasks involved with modeling the composite
system.

Over the years, these considerations have motivated various researchers to encode a number of
systems as sheaves, such as

• Bayes nets and graphical models [30],

• Biochemical networks [28],

• Communication networks [9; 24],

• Control systems [18; 19],

• Differential equations [29] and their discretizations (also as dual sheaves) [30],

• Discrete and continuous dynamical systems (as cosheaves) [26],

• Flow networks [10; 21],

• Formal models of interacting software objects [11; 16; 17; 20; 34],

• Multi-dimensional weighted or labeled graphs [14; 15; 22],

• Quantum information systems [1; 2],

• Sensor networks [31], and

• Signal processing chains [25].

One may ask whether encoding any of these composite systems as a sheaves confers any partic-
ular benefit, or if sheaves are merely another universal encoding. The payoff is that sheaf theory
provides invariants, which are general analytic tools that can be easily applied to perform certain
data processing tasks, largely without imposing additional assumptions on the subsystem models.
This article discusses two of these invariants, the consistency radius and consistency filtration,
that quantify the compatibility between the system’s representation (which may be hypothetical,
incomplete, or inaccurate) and data collected about the state of subsystems (which may be noisy
or subject to other kinds of systematic errors). Although this article does not directly address any
of the specific systems mentioned above, the results obtained apply broadly to all of them.
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3 Historical context
Recent years have seen a rapid growth in the field of topological data analysis, which is the study
of the topological properties of datasets. The typical analysis involves transforming a point cloud
— a collection of data points in a high-dimensional metric space — into a combinatorial model
of a topological space, such as an abstract simplicial complex, whose properties are then studied.
For instance, the simplicial homology of an abstract simplicial complex can be used to identify
potentially interesting features. These combinatorial models typically depend on the choice of
a threshold that is used to determine if two of the data points are “close enough” to be joined
together. One of the primary insights of topological data analysis is persistence: one should not
select a single threshold, but instead consider the ensemble of all thresholds. This idea led to the
persistent homology of a point cloud [6; 7; 8; 35], an idea that has since become quite popular
because of its broad applicability and straightforward usage.

Even though persistent homology has wide appeal, it is limited to relatively homogeneous data
sets, essentially those that can be represented as point clouds. Data sets with more structure than
that are difficult to study. Sheaves on a topological space provide a good framework for studying
these kind of data sets, since they permit the structure of the data to vary over the base space.
In most applications, it suffices to consider either constructible sheaves or sheaves on a finite space
[4; 32]. Traditionally, sheaves on a given topological space are studied using sheaf cohomology,
a global algebraic summary that respects the category of sheaves. The cohomology of a sheaf
includes a representation of the space of global sections of the sheaf. Computing the cohomology
is greatly simplified for constructible sheaves [33] and can be done efficiently using discrete Morse
theory [5]. Given this happy situation, sheaf cohomology has been useful in applications to network
science [9; 21; 29] and quantum information [1; 2]. Sheaf cohomology contains information beyond
the global sections, namely obstructions to the existence of other global sections, and this too can
be useful in certain cases [23].

Useful as it may be, sheaf cohomology cannot be defined if the stalks of a sheaf are merely
sets, as it requires the stalks to have the structure of abelian groups [13]. Unfortunately, in
many applications, such as those listed in the previous section, this algebraic structure is simply
unavailable. However, for many systems, the stalks have geometric structure instead of algebraic
structure. Specifically, the distance between two points within a stalk can be measured with
a pseudometric. It is therefore convenient and appropriate to consider sheaves of pseudometric
spaces instead of sheaves of abelian groups. In an earlier article [31], the author initiated the study
of sheaves of pseudometric spaces, by showing how to encode a general model of a sensor system
as a sheaf of pseudometric spaces, and how to encode the measurements made by such a system as
an assignment to that sheaf. Under this framework, the consistency radius can be defined, which
bounds the distance between the assignment and the nearest global section of the sheaf. This
bound motivated an optimization algorithm to fuse potentially noisy or uncertain measurements
made by the sensor system into a single globalized measurement, represented as a global section.

This article applies the idea of persistence — using an ensemble of thresholds rather than one
threshold — to the consistency radius. The result is the definition of a new mathematical object
called the consistency filtration. The consistency filtration fits within the landscape of topological
data analysis tools, since persistent Čech cohomology for point clouds is the consistency filtration
for a particular sheaf and assignment (Example 4), but it is considerably more general. Indeed,
the two main results proven in this article about the consistency filtration — that it is both a
covariant functor and a continuous function — rely on a generalization of the interleaving distance
[12] developed for use in persistent homology.

4 Preliminaries
This article involves the study of sheaves, mathematical models of local consistency relationships
between data. Our primary focus is a sheaf of pseudometric spaces on a topological space, which is
a rather elaborate object. It is easiest to develop the definition of this object slowly, by unpacking
each term in turn, as is done in this section.
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Definition 1. Suppose (X, T ) is a topological space. A presheaf P of sets on (X, T ) consists of
the following specification:

1. For each open set U ∈ T , a set P(U), called the stalk at U ,

2. For each pair of open sets U ⊆ V , there is a function P(U ⊆ V ) : P(V ) → P(U), called a
restriction function (or just a restriction), such that

3. P(U ⊆ U) is the identity function and

4. For each triple U ⊆ V ⊆W of open sets, P(U ⊆W ) = P(U ⊆ V ) ◦ P(V ⊆W ).

Intuitively, a presheaf is a data structure for holding a variety of data items, localized to each
open set. The stalk P(U) at an open set U specifies the possible values of a datum localized at U .
It is also the case that a presheaf P can be succinctly defined as “a contravariant functor from the
category of open sets of (X, T ), with inclusion functions being morphisms, to the category Set of
sets and functions.”

Recall that a finite topological space is a topological space (X, T ) in which T is a finite set.
Finite topological spaces are automatically Alexandrov spaces, which means that intersections of
arbitrarily many open sets remains open. For Alexandrov spaces, the star of some subset A ⊆ X,
given by

star A := ∩{U ∈ T : A ⊆ U}

is the smallest open set that contains A.

Remark 1. Our usage of the word stalk differs from the traditional usage, in which P(U) is called
set of local sections. The traditional definition of a stalk is a direct limit of sets of the form P(U)
such that each open set U contains a given point x ∈ X. The distinction between these two usages
becomes primarily linguistic for finite topological spaces: the traditional definition deems P(U) a
stalk at x ∈ X whenever an open set U is star {x}, making U minimal in the sense of inclusion.
If the topology is not finite, there may not necessarily be such a minimal open U at each point,
but the direct limit still exists. Our usage here merely removes the minimality requirement since
it happens to be unimportant in this article.

The restrictions identify how to relate a datum on a large open set to one on a smaller open
set. When the smaller open set already has a value, this may or may not agree with the value
propagated by a restriction function from a larger open set. When these data agree is a special
situation; the data are then called a section as the next definition explains.

Definition 2. A global section of a presheaf P of sets on a topological space (X, T ) is an element
s of the direct product3 ∏

U∈T P(U) such that for all U ⊆ V ∈ T then P(U ⊆ V ) (s(V )) = s(U).
A local section is defined similarly, but refers to a subcollection U of T instead of T .

The set of global sections of a presheaf P may be quite different from the set P(X). It is for
this reason that an additional gluing axiom can be included to remove this distinction.

Definition 3. Let S be a presheaf of sets on a topological space (X, T ). We call S a sheaf of sets
on (X, T ) if for every open set U ∈ T and every collection of open sets U ⊆ T with U = ∪U , then
S(U) is isomorphic to the space of local sections over the set of elements U .

This article is concerned with more than mere agreement or disagreement; more can be said if
the distance between two data can be measured. The appropriate way to measure distance between
two data is with a pseudometric.

Definition 4. A pseudometric dX on a set X is a function d : X × X → R that satisfies the
following axioms:

1. dX(x, y) ≥ 0,

2. dX(x, x) = 0,

3Which is in general not the direct sum, since T may be infinite!
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3. dX(x, y) = dX(y, x), and

4. dX(x, z) ≤ dX(x, y) + dX(y, z)

for all x, y, z ∈ X. The pair (X, dX) is called a pseudometric space.

It is a standard fact that every pseudometric dX on X induces a topology T on X generated
by the open balls

Br(x) := {y ∈ X : dX(x, y) < r}
for each x ∈ X and each r > 0. We will usually abuse terminology slightly by regarding a
pseudometric space as a topological space. We can deem a function f : X → Y to be a continuous
map if dX is a pseudometric on X and dY is a pseudometric on Y , and if f is a continuous function
for the topologies induced by dX and dY . We will write f : (X, dX) → (Y, dY ) to emphasize the
situation where f is a continuous map.

Definition 5. The category Pseud is the category of pseudometric spaces, in which objects are
pseudometric spaces and the morphisms are continuous maps.

In this article, it is often important to measure “how continuous” a continuous map is. If there
is a K > 0 such that

dY (f(x), f(y)) ≤ KdX(x, y)
for all x, y ∈ X, this K is called a Lipschitz constant for f : (X, dX) → (Y, dY ). It is easy to
demonstrate that the existence of a finite Lipschitz constant for a function f : X → Y between
two pseudometric spaces (X, dX) and (Y, dY ) implies that f is continuous. Such a function is said
to be Lipschitz continuous.

With these tools in hand, namely sheaves of sets on a topological space and pseudometric
spaces, we combine them into one concept that carries through the rest of the article.

Definition 6. A sheaf S of psuedometric spaces on a topological space (X, T ) consists of a sheaf
of sets S on (X, T ) and the choice of a pseudometric dU on S(U) for each open set U ∈ T , such
that each restriction function is a continuous map. We will call each restriction a restriction map
in this situation to emphasize that we are working with a sheaf of pseudometric spaces rather than
a sheaf of sets.

Succinctly, a sheaf S of psuedometric spaces on a topological space is a kind of contravariant
functor from the category of open sets in (X, T ) to Pseud. With this interpretation in mind, we
may simply think of each stalk S(U) as being a pseudometric space (S(U), dU ), even though this
may be considered a slight abuse of notation.

It is immediate from the definitions that each space of (local or global) sections of a sheaf
of pseudometric spaces is itself a topological space. In most of what follows, we will work with
sheaves on a finite topological space (X, T ), one in which the topology T is a finite set. Each space
of sections for a sheaf of pseudometric spaces on a finite topological space is then a pseudometric
space as well, by the usual constructions of a pseudometric on a product space. This idea leads to
the next definition.

Definition 7. [31]. For a sheaf S of sets on a topological space (X, T ), an assignment is an
element a ∈

∏
U∈T S(U). If S is a sheaf of pseudometric spaces, then the set of assignments has

the assignment pseudometric given by

D(a, b) := sup
U∈T

dU (a(U), b(U)) .

For an assignment a to a sheaf S, each value

dU ((S(U ⊆ V )) a(V ), a(U))

where U ⊆ V ∈ T , is called a critical threshold. The consistency radius given by

cS(a) := sup
U⊆V ∈T

dU ((S(U ⊆ V )) a(V ), a(U)) ,

is the supremum of all critical thresholds.
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The central relationship between global sections of S and assignments is captured by the fol-
lowing bound.

Proposition 1. [31, Prop. 23] For an assignment a to a sheaf S of pseudometric spaces on (X, T )
in which each restriction map of S is Lipschitz with constant K, then

D(a, s) ≥ cS(a)
1 +K

for every global section s of S.

Remark 2. Assignments thresholded to a certain level of consistency are global sections of a
(different) sheaf on a subdivision of the base space [27]. While this perspective has theoretical
merit, it is useful to study the extent to which assignments are consistent to a given threshold.
This perspective is introduced by Praggastis in [22], where it is shown that assignments supported
on the vertices of an abstract simplicial complex yield a cover of that simplicial complex when they
are thresholded to a certain level of consistency. We take a parallel approach in this article, but
instead consider assignments supported on the entire space. The most prominent difference is in
the definition of maximal consistent cover (Definition 17 and Lemma 5), which is analogous to the
cover constructed in [22], but our cover is only over a subspace and is generally finer.

Remark 3. The consistency radius is a radius, rather than a diameter, because the assignment
itself acts like a central point to which values propagated along the restrictions are compared.

We could instead define a quantity

dS(a) := sup
U⊆V1∈T ,

sup
U⊆V2∈T

dU ((S(U ⊆ V1)) a(V1),S(U ⊆ V2)a(V2)) ,

which is a diameter in that
cS(a) ≤ dS(a) ≤ 2cS(a).

The left inequality arises simply by taking U = V2 since S(U ⊆ U) = id S(U) by definition.
The right inequality is a short calculation

dS(a) = sup
U⊆V1∈T ,

sup
U⊆V2∈T

dU ((S(U ⊆ V1)) a(V1),S(U ⊆ V2)a(V2))

≤ sup
U⊆V1∈T

dU ((S(U ⊆ V1)) a(V1), a(U)) + sup
U⊆V2∈T

dU (a(U),S(U ⊆ V2)a(V2))

≤ 2cS(a).

5 Sheaves paired with assignments
This article discusses quite a few different categories, many of which are not extensively discussed
in the literature. For convenience, all of the categories under discussion are listed below, with their
descriptions (and mnemonic hints in boldface):

1. Pseud: the category of pseudometric spaces, Definition 5,

2. Shv: the category of all sheaves, Definition 8,

3. ShvFP: the category of all sheaves on finite topological spaces of pseudometric spaces,
Definition 8,

4. ShvA: the category of all sheaves paired with assignments, Definition 9,

5. ShvPA(X, T ): the category of all sheaves of pseudometric spaces on a fixed topological
space (X, T ), each paired an assignment, Definition 9,

6. ShvFPA: the category of all sheaves on arbitrary finite topological spaces of pseudometric
spaces, each paired an assignment, Definition 9,
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7. ShvFPAL: the subcategory of ShvFPA whose morphisms are sheaf morphisms along base
space homeomorphisms whose component maps are Lipschitz, Theorem 2,

8. PartCovers: the category of partial covers, that consist of topological spaces with collec-
tions of open sets, Definition 10,

9. CoarseFilt: the category of coarsening filtrations of topological spaces, Definition 11, and

10. PMod: the category of persistence modules, Definition 12.

Definition 8. The category Shv is the category of all sheaves, which each object is a sheaf on
some topological space. A morphism m in this category from a sheaf P on (X, TX) to a sheaf Q
on (Y, TY ) consists of (1) a continuous map f : (X, TX) → (Y, TY ) and (2) a set of component
functions mU , one for each U ∈ TY , such that

P(f−1(U)) mU // Q(U)

P(f−1(V ))
mV
//

P(f−1(U)⊆f−1(V ))

OO

Q(V )

Q(U⊆V )

OO

commutes for each pair of open sets U ⊆ V in TY .
Composition of morphisms in Shv is defined by composing both the continuous maps and the

component functions. Explicitly, if n : Q → R is a morphism from the sheaf Q defined above to a
sheaf R on (Z, TZ) along the continuous map g : (Y, TY )→ (Z, TZ) with component functions nU
for each U ∈ TZ , then the composition n ◦m is given by the following commutative diagram

P((g ◦ f)−1(U)))
mg−1(U) //

(n◦m)U

))
Q(g−1(U)) nU // R(U)

P((g ◦ f)−1(V )))
mg−1(V )

//

(n◦m)V

55

P((g◦f)−1(U))⊆(g◦f)−1(V )))

OO

Q(g−1(V ))

Q(g−1(U)⊆g−1(V ))

OO

nV
// R(V )

R(U⊆V )

OO

The subcategory ShvFP is the category of sheaves of pseudometric spaces on finite topological
spaces. Because of Definition 6, a sheaf of pseudometric spaces always has continuous restriction
maps. We will additionally assume that the component functions of every morphism of ShvFP are
also continuous, and will emphasize this by calling them component maps. Under this convention,
ShvFP is not a full subcategory of Shv.

Remark 4. The category Shv is a generalization of the more traditional Shv(X, T ), which is the
category of sheaves on a fixed topological space (X, T ) in which each object is a sheaf on (X, T )
and all morphisms are along the identity map X → X.

Definition 9. Each object of the category ShvA of sheaf assignments consists of a sheaf S on
(X, T ) and assignment a ∈

∏
U∈T S(U) to that sheaf. In this category, morphisms consist of sheaf

morphisms that are compatible with the assignment, in the following way. Suppose that a is an
assignment to a sheaf S on a space X and b is an assignment to a sheaf R on a space Y . A sheaf
morphism m : S → R along a continuous map f : X → Y is morphism (S, a)→ (R, b) in ShvA if
for each open U ⊆ Y , the component function

mU : S(f−1(U))→ R(U)

satisfies
mU (a(f−1(U))) = b(U).

We will also make use of the following subcategories:
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• The subcategory ShvFPA of all sheaves on finite topological spaces of pseudometric spaces,
each paired an assignment, and

• The subcategory ShvPA(X, T ) of all sheaves of pseudometric spaces on a fixed topological
space (X, T ), each paired an assignment.

Proposition 2. There is a forgetful functor ShvFPA → ShvFP, given by merely forgetting the
assignment.

Proof. Observe that without the assignments, the morphisms of ShvFPA are merely sheaf mor-
phisms.

Proposition 3. There is a functor ShvFP → Pseud, given by replacing a sheaf by its space of
assignments using the assignment pseudometric given in Definition 7.

This proposition is not true for sheaves over infinite spaces. Perhaps surprisingly, requiring
compactness of the base spaces is not sufficient to resolve the difficulty because assignments can
lack all internal consistency.

Proof. Sheaf morphisms were defined to support this! Specifically, suppose that m : S → R
is a morphism of sheaves of pseudometric spaces along the continuous map f : (X, TX) →
(Y, TY ) between topological spaces, so that it is a morphism in ShvFP. Define a function
Fm :

∏
U∈TX S(U) →

∏
V ∈TY R(V ) between spaces of assignments for the two sheaves by its

action on an arbitrary assignment a to S

(Fm(a)) (V ) = mV (a(f−1(V ))),

for each V ∈ TY , which should be read as defining an assignment to R.

Fm is continuous. Let ε > 0 and an assignment a ∈
∏
U∈TX S(U) be given. Observe that since

each component map mV of the sheaf morphism is continuous according to the convention
established in Definition 8 for each open V ∈ TY , there is a δV > 0 such that for every
x ∈ S(f−1(V )) with

df−1(V )(x, a(f−1(V ))) < δV ,

it follows that
dV (mV (x), Fm(a)V ) < ε.

Since objects in ShvFP consist of sheaves over finite spaces, the infimum

δ := inf
V ∈TY

δV

is strictly positive. (If TY is infinite, this may be false.) Thus if b is an assignment to S
with D(a, b) < δ, then D(Fm(a), Fm(b)) < ε. As an aside, observe that D(a, b) < δ is
stronger than necessary, since this contrains all stalks of S not just those that are preimages
of TY -open sets.

This defines a functor. Let n : R → P be another morphism in ShvFP, this one along a
continuous map g : (Y, TY ) → (Z, TZ). This implies that for an open set V ∈ TZ , g−1(V )
and (g ◦ f)−1(V ) are also both open. We then compute

(F (n ◦m)(a)) (V ) = (n ◦m)V (a((g ◦ f)−1(V )))
= (n ◦m)V (a(f−1 ◦ g−1(V )))
= (n ◦m)V (a(f−1(g−1(V ))))
= nV (mg−1V (a(f−1(g−1(V )))))
= nV ((Fm(a))(g−1(V ))))
= (Fn(Fm(a))) (V ).
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Figure 1: The subspace (X, d) of R2 in Example 1

Proposition 4. In ShvA, any morphism whose domain (S, s) is a sheaf S and a global section s
of S will have a global section as its codomain.

Proof. This follows immediately from the fact that images of global sections through sheaf mor-
phisms are global sections.

Global sections are sometimes — but not always — isomorphic objects in ShvFPA as the
following example shows.

Example 1. Consider the metric space (X, d) that is a subspace of R2 with the usual metric d,
with

X := {(x, 0) : x ∈ R} ∪ {(0, 1)}

as shown in Figure 1. The action of the group of homeomorphisms on (X, d) is not transitive
because every homeomorphism of (X, d) must leave the point (0, 1) fixed.

Now consider the sheaf S on the single-point space {∗} (with the only possible topology for that
space) with S({∗}) = (X, d). Both the space of global sections of S and the space of assignments
of S are therefore precisely the points of (X, d). Any isomorphism S → R in Shv or ShvPA will
induce a homeomorphism on (X, d). Thus (S, a) and (R, b) are isomorphic if and only if a and b
are elements of the same connected component of (X, d).

Proposition 5. For any topological space (X, T ), each isomorphism class of ShvPA(X, T ) can
be given a topology that is a subspace of the product of the assignment pseudometric and copies of
the topology of uniform convergence (one copy for each restriction).

Recall that the topology of uniform convergence for two pseudeometric spaces (X, dX), (Y, dY )
provides a pseudometric D on C(X,Y ) given by

D(f, g) := sup
x∈X

dY (f(x), g(x)).

Proof. Fix an isomorphism class of ShvPA(X, T ) by specifying a representative sheaf S of pseu-
dometric spaces and a representative assignment a to S. Every sheaf isomorphic to S has stalks
that are isomorphic to those of S but possibly different restriction maps. Therefore, the space
of assignments for every sheaf isomorphic to S is the same. Given these two facts, the sheaves
isomorphic to S are parameterized by appropriate choices of restriction maps from the product∏

U⊆V ∈T

C(S(V ),S(U)),

in which each factor is given the topology of uniform convergence.
Thus the isomorphism class of (S, a) in ShvPA(X, T ) is merely a subset of the product∏

U⊆V ∈T

C(S(V ),S(U))×
∏
U∈T
S(U),

in which the second factor in the product has the topology induced by the assignment pseudometric.
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Corollary 1. For any topological space (X, T ), ShvPA(X, T ) can be made into topological space
by simply taking the disjoint union of all the isomorphism classes.

Observe that each isomorphism class is ShvPA(X, T ) is actually a closed subspace of the
product ∏

U⊆V ∈T

C(S(V ),S(U))×
∏
U∈T
S(U),

because the commutativity and gluing axioms will prohibit many choices of restriction maps. This
means that the topology of ShvPA(X, T ) will likely be quite complicated.

Theorem 1. If (X, T ) is a finite topological space, then consistency radius is a continuous function
ShvPA(X, T )→ R.

This function is continuous in the assignment metric for assignments to a single sheaf [31]. But
it is also continuous in the compact open topology for sheaves for a fixed assignment. Finiteness
of T is not essential, but makes for considerably less delicate argumentation.

Proof. Without loss of generality, we restrict attention to an isomorphism class of ShvPA(X, T ).
From the proof of Proposition 5, the elements of this isomorphism class are a subspace of∏

U⊆V ∈T

C(S(V ),S(U))×
∏
U∈T
S(U).

Before we proceed with the main argument, suppose that a is an assignment to a sheaf S, that
R is a sheaf isomorphic to S, and that b is an assignment to R. Recalling that

|‖x‖ − ‖y‖| ≤ ‖x− y‖

for any norm ‖ · ‖, we have that

|cR(b)− cS(a)| =
∣∣∣∣ sup
U1⊆V1∈T

dU1 ((R(U1 ⊆ V1)) b(V1), b(U1))

− sup
U2⊆V2∈T

dU2 ((S(U2 ⊆ V2)) a(V2), a(U2))
∣∣∣∣

≤ sup
U⊆V ∈T

|dU ((R(U ⊆ V )) b(V ), b(U))− dU ((S(U ⊆ V )) a(V ), a(U))|

≤ sup
U⊆V ∈T

|dU ((R(U ⊆ V )) b(V ), b(U))− dU ((S(U ⊆ V )) a(V ), a(U))

+dU (S(U ⊆ V )b(V ), b(U))− dU (S(U ⊆ V )b(V ), b(U))
+dU (S(U ⊆ V )a(V ), b(U))− dU (S(U ⊆ V )a(V ), b(U))|

≤ sup
U∈T

dU (a(U), b(U))

+ sup
U⊆V ∈T

dU (S(U ⊆ V )b(V ),S(U ⊆ V )a(V ))

+ sup
U⊆V ∈T

dU (R(U ⊆ V )b(V ),S(U ⊆ V )b(V ).

Returning to the task at hand, suppose that a is an assignment to a sheaf S and ε > 0 is given.
We show that there is an open set Q ⊆ ShvPA(X, T ) containing (S, a) whose consistency radii
all lie in the interval

(cS(a)− ε, cS(a) + ε) ⊆ R.

To this end, we construct Q as the intersection of three open subsets Q1, Q2, Q3 of ShvPA(X, T ).
The set Qi consists of the (R, b) for which the i-th term in the last expression above is bounded
by ε/3, as follows:

• The first term merely requires that the distance from a to b in the assignment metric be not
more than ε/3; hence b lies in an open subset of the space of assignments

Q1 := {(R, b) : D(a, b) < ε/3}.
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• Since the restriction maps of S are continuous, bounding the second term by ε/3 requires
that b lie within the intersection of finitely many open sets in the space of assignments

Q2 :=
{

(R, b) : b(V ) ∈ (S(U ⊆ V ))−1 (
Bε/3(S(U ⊆ V )a(V ))

)
for all U ⊆ V ∈ T

}
,

where Bε/3(x) is the open ball of radius ε/3 centered at x. (If the topology T is not finite,
this can fail since there may be infinitely open subsets U of a given open set V . All of these
need to be intersected in the space of assignments for the factor corresponding to the stalk
S(V ).)

• Bounding the last term above by ε/3 requires that R(U ⊆ V ) lies in an open set in the
topology of uniform convergence

Q3 :=
{

(R, b) : R(U ⊆ V ) ∈ Bε/3 (S(U ⊆ V )) for all U ⊆ V ∈ T
}
.

Thus, if (R, b) ∈ Q = Q1 ∩Q2 ∩Q3, then |cS(a)− cR(b)| < ε, which completes the argument.

Remark 5. Assuming the topology T on a space (X, T ) is finite, consistency radius factors into
two continuous maps,

ShvPA(X, T ) F // Rn N // R

in which n is the number of open set inclusions U ⊆ V in the topology T , the second map is the
infinity norm N(v) = ‖v‖∞ and the first is given by

F (S, a) := (dU (S(U ⊆ V )a(V ), a(U)))U⊆V ∈T .

Because of the equivalence of topologies of all finite-dimensional normed spaces, consistency
radius is still continuous if we instead were to define the consistency radius using another norm as
the second map N . Of particular interest is the 2-norm, resulting in a different definition for the
consistency radius

cS(a) :=
√ ∑
U⊆V ∈T

dU ((S(U ⊆ V )) a(V ), a(U))2
. (1)

Proving bounds (such as appear in the proofs of Theorem 1, Lemma 4, and Theorem 3) with this
definition is somewhat more cumbersome, but it preserves the smooth structure if the sheaves take
values in the category of Riemannian manifolds.

6 Coarsening filtrations
In this section, we establish properties collections of nested collections of open sets in a topological
space. The most prominent of these is the consistency filtration defined in Definition 18.

Lemma 1. (Standard) If V and U are open covers of a topological space (X, T ), when V refines
U this induces a homomorphism Ȟ•(X;U)→ Ȟ•(X;V) on Čech cohomology.

It is worth noting that the homomorphism — as usually defined (see for instance [13]) — uses
a refinement function τ : V → U for which V ⊆ τ(V ) for all V ∈ V. The homomorphism on Čech
cohomology apparently depends on such a τ , but in fact the homomorphism is indepedent of the
refinement function.

Definition 10. Each object of the category PartCovers of partially covered topological spaces
is a triple (X, T ,U), where (X, T ) is a topological space and U ⊆ T is a collection4 of open
sets. Each morphism (X, TX ,V) → (X, TY ,U) of PartCovers is given by a continuous map
f : (X, TX) → (Y, TY ) such that each V ∈ V is a subset of f−1(U) for some U ∈ U . We will
sometimes abuse notation and write f : (X, TX ,V) → (X, TY ,U) in this case. Composition of
morphisms in PartCovers is given by composition of the underlying continuous maps.

4U may not be a cover of X, but covers a subspace. This is important for Definition 17.
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Lemma 2. Suppose that V is a collection of open sets in a topological space (X, T ) and U is a
collection of open sets in a topological space (Y,S). A continuous map f : (X, T )→ (Y,S) induces
a homomorphism Ȟ•(Y ∩

⋃
U ;U)→ Ȟ•(X ∩

⋃
V;V) if for all V ∈ V, there is a U ∈ U such that

V ⊆ f−1(U).

Thus, Čech cohomology is a contravariant functor from PartCovers to the category of abelian
groups.

Proof. Since U contains open sets and f is continuous, then

f−1(U) = {f−1(U) : U ∈ U}

is a collection of open sets in X. Thus there is a chain map Čk(Y ∩
⋃
U ;U) → Čk(X ∩⋃

f−1(U); f−1(U)) for every k. Observe that V refines f−1(U) by assumption, so Lemma 1 means
that the desired homomorphism is the composition

Ȟ•(Y ∩
⋃
U ;U)→ Ȟ•(X ∩

⋃
f−1(U); f−1(U))→ Ȟ•(X ∩

⋃
V;V).

Definition 11. The category of coarsening filtrations CoarseFilt describes a collection of refine-
ments of partial covers on fixed topological spaces. Each object is a triple (X, T ,V) where (X, T )
is a topological space and V is a function

V : R→ 2T ,

for which V(t) is a collection of open sets in (X, T ) for all t and V(t) refines V(t′) whenever
t ≤ t′. If (X, T ,V) and (Y,S,U) are objects of CoarseFilt, a morphism (X, T ,V) → (Y,S,U)
in CoarseFilt consists of an order preserving function φ : R → R and a family of continuous
functions ft : (X, T )→ (Y,S) such that for all t, V(s) refines f−1

t (U(t)) for all s ∈ φ−1(t).
Composition of morphisms in CoarseFilt is given by composing the order-preserving functions

and the continuous maps. Explicitly, if φ1, f• : (X, T ,V) → (Y,S,U) and φ2, g• : (Y,S,U) →
(Z,R,W) are two morphisms in CoarseFilt, then their composition is given by φ = φ2 ◦ φ1 (still
order preserving) and ht = gt ◦ fsupφ−1

2 (t).

To see that composition in CoarseFilt is well-defined, observe that if r ∈ φ−1(t) = (φ2 ◦
φ1)−1(t), then φ1(r) ∈ φ−1

2 (t). Therefore, U(φ1(r)) refines g−1
t (W(t)). Since V(r) refines

f−1
φ1(r)(U(φ1(r))), these two refinements together mean that V(r) refines f−1

φ1(r)
(
g−1
t (W(t))

)
, which

itself refines h−1
t (W(t)) because φ1(r) ≤ supφ−1

2 (t).

Proposition 6. There is a fully faithful functor taking CoarseFilt into the category of sheaves
of PartCovers on the Alexandrov space (R,≤).

Proof. Given an object (X, T ,V) of CoarseFilt, define a sheaf S by its stalks

S ([t,∞)) := (X, T ,V(t))

for each t ∈ R (the smallest open set containing t in the Alexandrov topology for (R,≤) is [t,∞))
and restrictions

S ([t′,∞) ⊆ [t,∞)) := id X

for each t ≤ t′. The restrictions are morphisms in PartCovers because V(t) refines V(t′). Evi-
dently this assignment is one-to-one on objects.

Each CoarseFilt morphism (X, T ,V) → (Y,S,U) consisting of an order preserving function
φ : R → R and a family of continuous functions ft : (X, T ) → (Y,S) is transformed into a sheaf
morphism according to the following procedure. Suppose that t ≤ t′. Since order preserving maps
are continuous in the Alexandrov topology, this means that φ−1([t,∞)) is an Alexandrov-open set
of the form

φ−1([t,∞)) = [inf φ−1(t),∞).
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Additionally, if t ≤ t′ this implies that inf φ−1(t) ≤ inf φ−1(t′). Thus any morphism between any
two such sheaves along an order preserving map φ : R→ R consists of a commutative diagram

(X, TX ,V(inf φ−1(t)))

id X

��

mt // (Y, TY ,U(t))

id Y

��
(X, TX ,V(inf φ−1(t′)))

mt′ // (Y, TY ,U(t′))

where mt and mt′ are morphisms in PartCovers. Morphisms in PartCovers consist of continuous
maps ft, ft′ : (X, TX)→ (Y, TY ) such that

• For every V ∈ V(inf φ−1(t)), there is a U ∈ U(t) such that V ⊆ f−1
t (U) and

• For every V ′ ∈ V(inf φ−1(t′)), there is a U ′ ∈ U(t′) such that V ′ ⊆ f−1
t′ (U ′).

This is precisely — not more nor less than — what is defined by a morphism in CoarseFilt, so
the functor we are constructing must be full and faithful.

Composition of morphisms in CoarseFilt is preserved by their transformation to sheaf mor-
phisms as follows: given a pair of CoarseFilt morphisms

(X, TX ,V) φ1,f• // (Y, TY ,U) φ2,g• // (Z, TZ ,W),

we have just constructed the following pair of morphisms in PartCovers

(X, TX ,V(inf(φ−1
1 ◦ φ

−1
2 )(t)))

m
1,inf φ−1

2 (t)
// (Y, TY ,U(inf φ−1

2 (t)))
m2,t // (Z, TZ ,W(t))

for each t. On the other hand, the composition of the CoarseFilt morphisms is given by the order
preserving function φ = φ2◦φ1 and the family of continuous functions ht = gt◦fsupφ−1

2 (t). We need
to show that our construction produces the same composition in PartCovers as the composition
from CoarseFilt.

If r ∈ (φ−1
1 ◦φ

−1
2 )(t), the well-definedness of composition in CoarseFilt requires that V(r) re-

fines h−1
t (W(t)). Since inf(φ−1

1 ◦φ
−1
2 )(t) ≤ r, it follows that V(inf(φ−1

1 ◦φ
−1
2 )(t)) refines h−1

t (W(t))
as well. More plainly, we have shown that for every V ∈ V(inf(φ−1

1 ◦φ
−1
2 )(t)), there is a W ∈W(t)

such that V ⊆ h−1
t (W ), namely that this composition in CoarseFilt yields a composition in

PartCovers for each t.

Note that our definition of the morphisms in CoarseFilt is consistent with the definition in
[12, Def. 2.12] of a φ-shifted persistence module morphism.

Definition 12. (equivalent to [12, Def. 2.12]) The category PMod of shifted persistence modules
has persistence modules as its objects and persistence module morphisms shifted by order preserv-
ing functions as its morphisms. Each object of PMod is a functor from the poset category (R,≤)
to the category of vector spaces. Explicitly, each object is a choice of a vector space E(t) for each
real number t and a choice of linear map fE,t≤t′ : E(t)→ E(t′) for each t ≤ t′ such that

fE,t≤t′′ = fE,t′≤t′′ ◦ fE,t≤t′

and
fE,t≤t = id E(t).

Each morphism E→ F of PMod is an order preserving map φ : R→ R and a choice of a set
of maps gt : E(inf φ−1(t))→ F(t) such that the following diagram commutes

E(inf φ−1(t))
fE,inf φ−1(t)≤inf φ−1(t′) //

gt

��

E(inf φ−1(t′))

g′t
��

F(t)
fF,t≤t′

// F(t′)

for all t ≤ t′.
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Given this algebraic structure, a compatible geometric structure is given by interleaving. For
our purposes, we use a definition that is consistent with the definition of δ-matchings in [3] and
(τ, σ)-interleavings in [12, Def. 2.13].

Definition 13. A pair of morphisms ft : (X, T ,V)→ (Y,S,U), gt : (Y,S,U)→ (X, T ,V) along
φ, ψ (respectively) in CoarseFilt is an ε-interleaving if each of the following hold for all t:

1. |φ(t)− t| < ε,

2. |ψ(t)− t| < ε,

3. V(inf(ψ ◦ φ)−1(t)) refines V(t), and

4. U(inf(φ ◦ ψ)−1(t)) refines U(t).

An ε-interleaving between two morphisms ft : E→ F, gt : E→ F along φ, ψ (respectively) in
PMod may be defined in exactly the same way.

Definition 14. (compare the definition in [3]) For each pair of objects (X, T ,V), (Y,S,U) in
CoarseFilt, the function

D((X, T ,V), (Y,S,U)) := inf{ε : there is an ε-interleaving (X, T ,V)→ (Y,S,U)}

is a pseudometric, called the interleaving distance.
The same definition works for objects in PMod, mutatis mutandis.

Proposition 7. Persistent Čech cohomology is a contravariant functor PH : CoarseFilt →
PMod.

Proof. If t < t′, a morphism (X, T ,V)→ (Y,S,U) in CoarseFilt along an order preserving φ and
a family of continuous functions ft : (X, T ) → (Y,S) induces the following commutative diagram
on Čech cohomologies

Ȟ•(X ∩
⋃

V(inf φ−1(t)); V(inf φ−1(t))) Ȟ•(X ∩
⋃

V(inf φ−1(t′)); V(inf φ−1(t′)))oo

Ȟ•(Y ∩
⋃

U(t); U(t))

OO

Ȟ•(Y ∩
⋃

U(t′); U(t′))oo

OO

in which the horizontal homomorphisms arise from Lemma 1 and the vertical homomorphisms
arise from Lemma 2. Each row can be interpreted as a persistence module and the vertical maps
are morphisms in PMod, which completes the argument.

An immediate consequence of [12, Prop. 4.8] is that if two persistence modules are ε-interleaved
(in the sense of Definition 13), then the bottleneck distance between them is bounded above by ε.
Taken with the proof of Proposition 7, this implies the next statement.

Corollary 2. An ε-interleaving between objects in CoarseFilt, induces an ε-interleaving between
their persistent Čech cohomologies, so the bottleneck distance between their persistence diagrams is
bounded above by ε.

7 Consistency radius on subspaces
The consistency radius of an assignment is a global property. A large consistency radius may mean
that there is widespread inconsistency among the values of an assignment, or the inconsistency
may be localized to a small part of the base space. To discriminate between these two situations,
it is useful to restrict the consistency radius to a subset of the base space.

Definition 15. If a is an assignment to a sheaf S of pseudometric spaces on a topological space
(X, T ), and U ∈ T is open, then the local consistency radius on U is

cS(a, U) := ci∗
U
S(i∗Ua),

where i : U → X is the inclusion.
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Intuitively, cS(a, U) is only sensitive to the part of the assignment that touches U .

Proposition 8. If a is an assignment to a sheaf S of pseudometric spaces on a topological space
(X, T ), and U ∈ T is open, then

cS(a, U) = sup
V1⊆V2⊆U

dV1 ((S(V1 ⊆ V2))a(V2), a(V1)) .

Proof. The left side is by definition

ci∗
U
S(i∗Ua) = sup

V1⊆V2∈T
dV1 ((i∗US(V1 ⊆ V2)) (i∗Ua(V2)), (i∗Ua(V1))) ,

where i : U → X is the inclusion map. Once we notice that i−1(V ) = V for each open V ⊆ U , the
result follows from three facts about pullbacks:

1. i∗US(V ) = S(V ) for any open V ⊆ U ,

2. i∗US(V1 ⊆ V2) = S(V1 ⊆ V2) for any V1 ⊆ V2 ⊆ U , and

3. for any V ⊆ U ,

(i∗U )V : i∗US(i−1(V ))→ S(V )
: i∗US(V )→ S(V )
: S(V )→ S(V )

is the identity map.

The local consistency radius on an open set is indeed local, in the sense that replacing the open
set with a larger one cannot decrease the local consistency radius.

Lemma 3. If a is an assignment to a sheaf S of pseudometric spaces and U ⊆ V are open subsets
of the base space, then

cS(a, U) ≤ cS(a, V ).

Proof. This follows from the fact that the supremum in the expression for cS(a, V ) is over a strictly
larger set than the supremum in the expression for cS(a, U).

Corollary 3. If a is an assignment to a sheaf S of pseudometric spaces and U, V are open subsets
of the base space, then

max{cS(a, U), cS(a, V )} ≤ cS(a, U ∪ V ).

Caution: Corollary 3 does not ensure equality since a(U ∪ V ) has no particular relationship to
a(U) or to a(V ).

Corollary 4. For an assignment a to a sheaf S of pseudometric spaces, the mean (or max, min,
or any monotonic function of) consistency radius of a collection of open sets is monotonic with
refinement. That is, if U ,V are collections of open sets in the base space of S and U is a refinement
of V, then the mean consistency radius for U will be less than the mean consistency radius for V.

Lemma 3 and its Corollaries indicate that the notion of consistency radius can be extended to
an assignment that is only partially specified.

Definition 16. If U ⊆ T is a collection of open sets for a topological space (X, T ) and S is a sheaf
of pseudometric spaces on (X, T ), then an assignment supported on U is an element of

∏
U∈U S(U).

The consistency radius of an assignment a supported on U is written cS(a,U), and is the infimum
of all consistency radii of assignments b that restrict to a, namely

cS(a,U) := inf
{
cS(b) : b ∈

∏
V ∈T
S(V ) such that b(U) = a(U) whenever U ∈ U

}
.

We say that each such assignment b extends a.
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While this definition ensures that

cS(a) = cS(a,X) = cS(a, T ),

the reader is warned that if an assignment a is supported on a collection U = {U} consisting of a
single open set, then cS(a) and cS(a, U) are both meaningless if the base space topology T is not
trivial. Nevertheless, the following Proposition is true.

Proposition 9. If a is an assignment to a sheaf S on a topological space (X, T ) and U ∈ T , then

cS(a, T ∩ U) ≥ cS(a, U).

Proof. Suppose b is another assignment such that b(V ) = a(V ) if V ∈ T ∩ U . Thus

cS(b) = sup
V1⊆V2∈T

dV1(S(V1 ⊆ V2)b(V2), b(V1))

≥ sup
V1⊆V2∈T ∩U

dV1(S(V1 ⊆ V2)b(V2), b(V1))

≥ sup
V1⊆V2∈T ∩U

dV1(S(V1 ⊆ V2)a(V2), a(V1))

≥ sup
V1⊆V2⊆U

dV1(S(V1 ⊆ V2)a(V2), a(V1))

≥ cS(a, U).

Thus cS(a, U) is a lower bound for the consistency radius of any extension b of a. Since cS(a, T ∩U)
is the greatest lower bound of these, the result follows.

A nonzero consistency radius for an assignment that is supported on U rather than the entire
space is thus still the obstruction to extending that assignment to a global section. It is for this
reason that we need only consider assignments supported on the entire topology. If we are given an
assignment not supported on a given open set, a value can be supplied that minimizes the overall
consistency radius. Consistency is not assured over the entire base space by this process, so only a
subspace will typically be covered by sets whose consistency radius is small. The extent to which
consistency is obtained is formalized by the following definition.

Definition 17. Let a be an assignment to a sheaf S of pseudometric spaces on (X, T ). A collection
of open sets U is an ε-consistent collection for a if for every U ∈ U , the consistency radius on U is
less than ε

cS(a, U) < ε.

Generally, ε-consistent collections only cover part of the base space.

Example 2. Consider the topological space (X, T ) for the finite set X := {A,B,C} in which
T := {∅, {A}, {A,B}, {A,C}, {A,B,C}}. We can define a sheaf S on (X, T ) according to

{A}

yy %%

��

R

{A,B}

%%

{A,C}

yy

R

1/2
@@

R

1
^^

{A,B,C} R
2r

^^ r

OO

r

@@

where the diagram on the left shows the open sets in T and the diagram on the right shows the
restrictions of S. (Each restriction of S is a homomorphism R→ R, which is given by multiplication
by the listed factor.) Observe that any sheafification of the sheaf on the partial order for the base
{{A}, {A,B}, {A,C}} will be of this form, with the r 6= 0 being left as a free parameter.

Consider the assignment a supported on the two sets U := {{A,B}, {A,C}} on the middle row
above, given by

a({A,B}) := 0, a({A,C}) := 1.
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If we wish to compute cS(a,U), we need to extend to assignments over all open sets. Namely, if

a({A}) := y, a({A,B,C}) := x,

we must solve the optimization problem

cS(a,U) = min
x,y

max{|y|, |1− y|, |rx− y|, |2rx|, |1− rx|}.

By inspection (or a short application of the simplex algorithm), we find that y = 1/2 and rx = 1/3.
Thus the critical thresholds are independent of r (and hence really only depend on the sheaf on
the partial order rather than the topological space) and are given by

cS(a,U) = min
x,y∈R

max{1/2, 1/2, 1/6, 2/3, 2/3} = 2/3.

The consistency radius on each open set is shown in the left frame of Figure 2.
Although there is an 2/3-consistent collection that contains X, it happens that X is covered by

a 1/2-consistent collection, namely U itself. If ε < 1/2, the only consistent open set is {A}, which
clearly does not cover X.

The next Lemma provides a useful bound on the consistency radius of the image of an assign-
ment through a morphism of ShvPA.

Lemma 4. Suppose m : (S, a)→ (R, b) is a morphism in ShvPA along f : X → Y , for which all
component maps are Lipschitz continuous with constant K. Then for every open U ⊆ Y ,

cR(b, U) ≤ KcS(a, f−1(U)).

Proof. This is merely calculation:

cR(b, U) = sup
V1⊆V2⊆U

dV1 ((R(V1 ⊆ V2))b(V2), b(V1))

= sup
V1⊆V2⊆U

dV1

(
(R(V1 ⊆ V2) ◦mV2)a(f−1(V2)),mV1(a(f−1(V1)))

)
= sup

V1⊆V2⊆U
dV1

(
(mV1 ◦ S(f−1(V1) ⊆ f−1(V2)))a(f−1(V2)),mV1(a(f−1(V1)))

)
≤ K sup

f−1(V1)⊆f−1(V2)⊆f−1(U)
df−1(V1)

(
S(f−1(V1) ⊆ f−1(V2))a(f−1(V2)), a(f−1(V1))

)
≤ KcS(a, f−1(U)).

Lemma 4 is a generalization of Proposition 4, that morphisms in ShvPA preserve global sec-
tions, because a global section of S has consistency radius zero.

8 Consistency filtrations
Given an assignment to a sheaf of pseudometric spaces, there can be many possible ε-consistent
collections. Of these, there is a distinguished ε-consistent collection that consists of open sets that
are as large as possible.

Lemma 5. For every ε > 0 and every assignment a to a sheaf S of pseudometric spaces on a
finite space, there is a unique ε-consistent collection MS,a(ε) such that every other ε-consistent
collection is a refinement of MS,a(ε).

This Lemma is not the same as the Theorem in [22], where an assignment is made only to
vertices on an abstract simplicial complex.
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0 ½
ε

{A}
{A,B}
{A,C}

{A,B,C}

0 ½
ε

{{A}}
{{A,B},{A,C}}

{{A,B,C}}

Consistent open sets Consistency ltration

Figure 2: The consistency filtration for the assignment in Example 2; see Example 3 for interpretation.

Proof. Lemma 3 implies that any refinement of an ε-consistent collection is itself ε-consistent.
Because of the finiteness of the base space, if for some open U

cS(a, U) < ε,

then there is a unique maximal open set U ′ containing U for which

cS(a, U ′) < ε.

This argument applied to each open set completes the argument.

Definition 18. The consistency filtration CF : ShvFPA→ CoarseFilt associates the coarsening
filtration

(CF(S, a)) (ε) :=MS,a(ε)

to each sheaf assignment (S, a) on a finite space, in which ε > 0 selects the threshold for the
ε-consistent collection MS,a(ε).

In what follows, we will show that the consistency filtration is both a functor (Theorem 2) and
a continuous function (Theorem 3), depending on the interpretation of ShvFPA and CoarseFilt.
Specifically, although ShvFPA was defined as a category (Definition 9), it is also a topological
space according to Corollary 1 (by taking the disjoint union over all topological spaces). Similarly,
although CoarseFilt was defined as a category (Definition 11), the interleaving distance is a
pseudometric for its set of objects (Corollary 2), making it into a pseudometric space.

Example 3. The consistency filtration for the assignment in Example 2 (after extending to an
assignment supported on T ) is given in Figure 2. The left frame of Figure 2 shows the ranges of
ε for which each open set is ε-consistent. The frame on the right of Figure 2 shows the consis-
tency filtration, namely the coarsest ε-consistent collections. Observe that this is an element of
CoarseFilt because {{A}} refines {{A,B}, {A,C}} which refines {{A,B,C}}.

This particular example has rather uninteresting persistent Čech cohomology, since Ȟ0 ∼= R
and Ȟ1 = 0 for all thresholds.

Theorem 2. Consider ShvFPAL, the subcategory of ShvFPA consisting of sheaf morphisms
along homeomorphisms whose component maps are Lipschitz. Consistency filtration is a covariant
functor CF : ShvFPAL → CoarseFilt.

Proof. First, we show that CF(S, a) is a coarsening filtration. To this end, we need only observe
that MS,a(t) is a refinement of MS,a(t′) if t < t′ by Lemma 3.

Supposem : (S, a)→ (R, b) is a morphism in ShvFPA along the continuous map f : (X, TX)→
(Y, TY ). Since we assumed all component maps are Lipschitz and the topologies are finite, we may
assume that the maximum Lipschitz constant of any component map is K. Define

φ(t) :=
{
t if K < 1,
Kt otherwise.

which is evidently order-preserving.
We need to argue that MS,a(inf φ−1(t)) refines f−1(MR,b(t)). Let V ∈ MS,a(inf φ−1(t)),

which means that cS(a, V ) < inf φ−1(t) = t/K. (If K < 1, the bound is evidently t. For brevity
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we assume K ≥ 1 in what follows.) But, due to the maximality of MS,a(inf φ−1(t)), any open set
containing V will have consistency radius larger than t/K. Since star f(V ) is open and (Y, TY ) is
a finite topological space,

f−1(star f(V )) = f−1 (∩{U ∈ TY : f(V ) ⊆ U})

is an open set containing V , which means that

cS(a, f−1(star f(V ))) ≥ t/K ≥ cS(a, V ).

Because any TY -open set containing f(V ) will contain star f(V ), this inequality means that f(V )
being contained in some U ∈MR,b(t) implies that V ⊆ f−1(U).

Using the assumption that f is a homeomorphism and that the Lipschitz constants of the
component maps are less than or equal to 1, Lemma 4 implies

cR(b, f(V )) ≤ KcS(a, V ) ≤ t.

By the maximality ofMR,b(t), this means that there is an open U ∈MR,b(t) that contains f(V ).
Finally, we show that CF preserves composition of morphisms. Start with two morphisms

in ShvFPAL, m : (S, a) → (R, b) and n : (R, b) → (Q, c) along f : (X, TX) → (Y, TY ) and
g : (Y, TY ) → (Z, TZ), respectively. Using the above construction of CF(m), an CoarseFilt
morphism for m, suppose that φm is the order preserving function constructed for m so that
MS,a(inf φ−1

m (t)) refines f−1(MR,b(t)). Similarly, suppose that φn is the order preserving function
constructed for CF(n) so that MR,b(inf φ−1

n (t)) refines g−1(MQ,c(t)). Notice that the Lipschitz
constants of the component maps of m and n impact our construction of φm and φn, respectively.
We need to use these data to show that MS,a(inf φ−1

m (φ−1
n (t))) refines (g ◦ f)−1(MQ,c(t)). Since

f is continuous,

f−1(MR,b(inf φ−1
n (t))) refines f−1(g−1(MQ,c(t))) = (g ◦ f)−1(MQ,c(t)).

We know that
MS,a(inf φ−1

m (inf φ−1
n (t))) refines f−1(MR,b(inf φ−1

n (t))).

Since φm and φn are order preserving

inf φ−1
m (inf φ−1

n (t)) = inf φ−1
m (φ−1

n (t)),

which means that
MS,a(inf φ−1

m (φ−1
n (t))) refines (g ◦ f)−1(MQ,c(t))

as desired.

Remark 6. CF is not a faithful functor. Global sections of a sheaf S may not be isomorphic
objects in ShvFPA, as Example 1 shows, but they all have exactly the same consistency filtration.

Recalling that we can interpret ShvPA(X, T ) and CoarseFilt not as categories but as topo-
logical spaces, the consistency filtration can be interpreted as a function.

Theorem 3. If (X, T ) is a finite topological space, then CF is a continuous function
ShvPA(X, T )→ CoarseFilt under the interleaving distance.

Using Corollary 2, this means that the transformation of isomorphism classes of ShvPA(X, T )
to persistence diagrams of Čech cohomology is continuous.

Proof. Since continuity is a local property, we work within each isomorphism class of ShvPA(X, T )
separately.

Let ε > 0 and (S, a) ∈ ShvPA(X, T ) be given. We aim to show that there is an open
neighborhood Q ⊆ ShvPA(X, T ) containing (S, a) such that the consistency filtration of any
(R, b) ∈ Q is ε-interleaved with the consistency filtration of (S, a).

Let U ∈ T be an arbitrary open set. Since cS(a, U) = ci∗
U
S(i∗Ua), this means that the local

consistency radius on U is a continuous function ShvPA(U, T ∩ U) → R, where T ∩ U is the
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subspace topology of U . This means that there is an open QU ⊆ ShvPA(U, T ∩ U) containing
(S, a) such that for every (R, b) ∈ QU , it follows that |cR(b, U) − cS(a, U)| < ε. This inequality
still holds upon extending QU to an open neighborhood Q′U in ShvPA(X, T ), since cR(b, U) is
independent of the sheaf and assignment outside U . The set Q′U consists of those elements of

QU ×

 ∏
V ′⊆V ∈T ,V ∩U=∅

C(S(V ),S(V ′))×
∏

V ∈T ,V ∩U=∅

S(V )


that actually correspond to sheaves in ShvPA(X, T ). We are largely free to select spaces of local
sections and restrictions outside of U subject to commutativity of the diagram of restrictions and
the gluing axiom. Notice that we need only choose these for open sets V that are disjoint from U ,
since the gluing axiom mandates the rest. Since T is finite,

Q :=
⋂
U∈T

Q′U

contains (S, a) and is still open in ShvPA(X, T ). Thus for any (R, b) ∈ Q, the consistency radius
of every open set measured with (R, b) differs from that measured by (S, a) by no more than ε.

We now show that CF(S, a) and CF(R, b) are ε-interleaved for any (R, b) ∈ Q. Specifically, we
construct morphisms f : CF(S, a)→ CF(R, b) along the monotonic function φ and g : CF(R, b)→
CF(S, a) along ψ in CoarseFilt that are each others’ inverses and |φ(t)− t| ≤ ε and |ψ(t)− t| ≤ ε.
This is easily done; let

φ(t) := ψ(t) = t+ ε,

and
ft := gt := id X

for all t ∈ R. Without loss of generality, it remains to show that these are actually morphisms in
CoarseFilt, namely that

(CF(S, a)) (inf φ−1(t)) =MS,a(t− ε)

refines
(CF(R, b)) (t) = f−1

t (MR,b(t)) =MR,b(t)
for all t ∈ R. Suppose that U ∈MS,a(t− ε), so that

cS(a, U) < t− ε.

This means that because (R, b) ∈ Q,

cR(b, U) = cR(b, U) + cS(a, U)− cS(a, U)
≤ cS(a, U) + |cR(b, U)− cS(a, U)|
< cS(a, U) + ε

< t− ε+ ε = t

which implies that U is an element (or a subset of some element) of MR,b(t).

Example 4. Consider a subset of N points X := {x1, . . . , xN} ⊆ RM in M -dimensional Euclidean
space. We can realize X as a partial assignment x to the constant sheaf K of RM on a topological
space built from a single simplex. To this end, let Y := 2X be the power set of X, which is also
an abstract simplicial complex. Given the partial order by inclusion ⊆ on Y , form the Alexandrov
topology T on Y . Specifically, since each set U that is a star over {x1, . . . xk} is open, let

K(star {x1, . . . xk}) := RM

and let every restriction map be the identity map. Let the assignment x be supported on vertices
(only), with

x(star {xi}) := xi.
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Selecting the extension a of x that minimizes consistency radius,

a = argmin
{
cK(y) : y ∈

∏
U∈T

RM with y(star {xi}) = xi for each xi ∈ X

}

yields an assignment whose value on any T -open set V is the circumcenter of that set of points in
X contained in V . This is because the extension a minimizes

‖a(star {x1, . . . , xk})− xi‖

for all i = 1, . . . , k. Given this observation, a set U := star {x1, . . . xk} is ε-consistent if the
intersection

k⋂
i=1

Bε(xi)

of radius ε balls centered at each point is nonempty. A maximal ε-consistent collection MK,a(ε)
has cohomology isomorphic to the simplicial cohomology of the the radius ε Čech complex Cε(X)
of the point cloud, namely

Ȟk(X ∩
⋃
MK,a(ε);MK,a(ε)) ∼= Hk(Cε(X)).

Thus the Čech cohomology of the consistency filtration is isomorphic to the persistent Čech coho-
mology of the point cloud.

9 Sheaves on partial orders
Much of the subtlety of the examples in this article arises from the fact that the value of an
assignment on two open sets has no relationship to the value on their union. While this is not
a problem in principle, it presents a practical issue since sheaves on partial orders are generally
most common in applications. Sheaves on finite partial orders are convenient to specify since they
merely record the stalks and restrictions on stars over points5 and have no requirement aside from
commutativity of the resulting diagram. In particular, the gluing axiom is satisfied implicitly since
the spaces of sections over unions of stars are not explicitly specified. Practically, this means that a
typical assignment for a sheaf on a partial order will be supported on the stars only. As Example 2
shows, the consistency radius for this kind of assignment may be strictly larger than the supremum
of restrictions between stars. To mitigate this difficulty, we define the star consistency radius for
an open set.

Definition 19. For an assignment a supported on the stars of a sheaf S of pseudometric spaces
on an Alexandrov space X, the star consistency radius on an open subset U ⊆ X is given by

c∗S(a, U) := max{ sup
y∈U,

sup
x∈star y

dstar x ((S(star x ⊆ star y)) a(star y), a(star x)) ,

sup
y∈U,

sup
x∈U,

sup
z∈star x∩star y

1
2dstar z ((S(star z ⊆ star y)) a(star y),

(S(star z ⊆ star x)) a(star x))}

Lemma 6. If a is an assignment supported on the stars of a sheaf S of pseudometric spaces on
an Alexandrov space X, then

c∗S(a, U) ≤ cS(a, U).

Proof. Evidently the first quantity taken in the maximum (for the definition of star consistency
radius) is less than the consistency radius since the consistency radius takes the supremum over a
larger set. The result follows from the calculation made in Remark 3 since the second quantity is
a lower bound on the consistency diameter.

5Which is to say that their stalks have the traditional meaning of a stalk of a sheaf — a direct limit.
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Without the second quantity in the maximum for the definition of star consistency of Lemma
6, the Lemma is clearly still true, but the bound is less tight.

Corollary 5. If U is an ε-consistent collection, then it is an ε-star consistent collection as well.

Restricting our attention to sheaves on Alexandrov spaces and assignments supported on the
set of all stars (and making appropriate changes to the arguments) does not impact the validity of
essentially all of the results (Theorem 1, Lemma 3, Corollary 3, Corollary 4, Proposition 9, Lemma
4, Theorem 2, and Theorem 3) obtained earlier in this article, though the proofs are somewhat
more tedious.
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