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Closing the category of finitely presented functors
under images made constructive
Sebastian Posur

RWTH Aachen University, Germany

For an additive category P we provide an explicit construction of a category QpPq
whose objects can be thought of as formally representing impγq

impρqXimpγq for given mor-
phisms γ : A Ñ B and ρ : C Ñ B in P, even though P does not need to admit
quotients or images. We show how it is possible to calculate effectively within QpPq,
provided that a basic problem related to syzygies can be handled algorithmically. We
prove an equivalence of QpPq with the smallest subcategory of the category of con-
travariant functors from P to the category of abelian groups Ab which contains all
finitely presented functors and is closed under the operation of taking images. More-
over, we characterize the abelian case: QpPq is abelian if and only if it is equivalent to
fppPop,Abq, the category of all finitely presented functors, which in turn, by a theorem
of Freyd, is abelian if and only if P has weak kernels.

The category QpPq is a categorical abstraction of the data structure for finitely
presented R-modules employed by the computer algebra system Macaulay2, where
R is a ring. By our generalization to arbitrary additive categories, we show how
this data structure can also be used for modeling finitely presented graded modules,
finitely presented functors, and some not necessarily finitely presented modules over a
non-coherent ring.
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1 Introduction
The purpose of constructive category theory lies in finding categorical representations (data struc-
tures) of mathematical objects such that effective computations become possible [17]. A nice
example of this philosophy is provided by the case of finitely presented modules over a ring R: it
only requires some basic algorithms for R in order to obtain an effective categorical framework
for doing homological algebra [2] that even allows the implementation of concepts like spectral
sequences [1, 15], Serre quotients [3, 9], or the grade filtration [18].

Regarding Ab-categories1 as “rings with several objects” is a powerful idea thoroughly devel-
oped by Mitchell in [13] that yielded remarkable generalizations and clarifications in homological
ring theory. Following the idea of generalizing from a ring R to an Ab-category P, the purpose
of this paper is to explain, from a constructive and categorical point of view, the data structure
for modules over a ring R used by the computer algebra system Macaulay2 [7], and moreover
to generalize this data structure from the case of R to the case of P. The upshot is an effective
treatment of the smallest subcategory of the category of contravariant additive functors P Ñ Ab
which contains all finitely presented functors and is closed under images.

In Macaulay2, the data structure of a module is given by two matrices A P Raˆb and
C P Rcˆb for a, b, c P Zě0. The left R-module corresponding to such a pair of matrices is the
(abstract) subquotient module impAq

impAqXimpCq , or equivalently
impAq`impCq

impCq , of the row module R1ˆb,
where we identify a matrix with its induced morphism between free row modules. Given a second
pair of matrices A1 P Ra

1
ˆb1 and C 1 P Rc

1
ˆb1 , a morphism from impAq

impAqXimpCq to impA1q
impA1qXimpC1q is

modeled by a matrix M P Raˆa
1

such that we may complete the following square with the dashed
arrow to a commutative diagram:

R1ˆa

R1ˆa1 impA1q
impA1qXimpC1q

impAq
impAqXimpCq

M

This fact can be technically expressed as follows: for all σ P R1ˆa, ω P R1ˆc such that σ ¨A “ ω ¨C,
there exists ω1 P R1ˆc1 such that pσ ¨Mq ¨A1 “ ω1 ¨C 1. In other words, a syzygy σ, i.e., an element
in the kernel of R1ˆa � impAq

impAqXimpCq , is mapped via M to another syzygy σ ¨M , i.e., an element

in the kernel of R1ˆa1 � impA1q
impA1qXimpC1q . Moreover, the technical condition for M representing the

zero morphism is the following: there exists ζ P Raˆc
1

such that M ¨ A1 “ ζ ¨ C 1. In other words,
every element in the image of the induced morphism is already a syzygy. Now, the fact that these
conditions can be expressed purely in the language of matrices over R is our starting point for
generalizing this data structure to an arbitrary additive category.

Note that matrices over R form the morphisms of an additive category RowsR, which is the
full subcategory of all R-modules generated by the row modules R1ˆn, n P Zě0. If we think of
the matrices in our description of the module data structure as morphisms in RowsR, then we can
easily replace RowsR by an arbitrary additive category P in order to obtain a new category QpPq,

1These are categories enriched over the category of abelian groups Ab.
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whose objects are pairs of morphisms pA ÝÑ B ÐÝ Cq in P having the same range, a so-called
cospan. A morphism from pA ÝÑ B ÐÝ Cq to pA1 ÝÑ B1 ÐÝ C 1q is given by a morphism
A ÝÑ A1 in P that respects syzygies, a condition which can formally be expressed similarly to the
corresponding condition in the case of matrices over R. We interpret the objects pA γ

ÝÑ B
ρ
ÐÝ Cq

of QpPq as entities that “behave” like the subquotient impγq
impγqXimpρq , even though neither images nor

quotients do have to exist in P.
In this paper, whenever we describe the constructive aspects of the presented theory, we ap-

peal to an intuitive understanding of the concept of an algorithm or a data structure, see [12,
Introduction]. All constructions are written in a way such that an implementation in a software
project like Cap (categories, algorithms, programming) [10] becomes possible.

In Section 2, we formally construct the category QpPq and describe the main algorithmic prob-
lem one needs to be able to solve within P in order to be able to work algorithmically with QpPq:
the so-called syzygy inclusion problem (see Definition 2.4). If P has decidable syzygy inclusion,
we show how to compute cokernels, universal epi-mono factorizations, lifts along monomorphisms,
and colifts along epimorphisms in QpPq.

In Section 3, we prove (Corollary 3.9) that QpPq identifies with the smallest full and replete
subcategory of the category of all additive functors Pop Ñ Ab (mapping to the category of abelian
groups Ab) which contains the representable functors HomPp´, Aq for A P P and is closed under
the operations of taking cokernels and images. In particular, we get a full and faithful functor

fppPop,Abq ãÑ QpPq

which realizes the category of all finitely presented functors fppPop,Abq as a full subcategory of
QpPq. If P “ RowsR, then contravariant additive functors to Ab identify with R-modules, and
fppRowsop

R ,Abq with the category of finitely presented R-modules. In this case, QpRowsRq can be
seen as the smallest full and replete subcategory of all R-modules that contains the row modules
R1ˆn for all n ě 0 and is closed under cokernels and images.

By a theorem of Freyd [6], fppPop,Abq is an abelian category if and only if P has weak kernels.
We prove that the same characterization holds for QpPq (Theorem 4.1), and show explicitly how
weak kernels can be used to construct kernels in QpPq in Section 4. We also introduce the notion
of a biased weak pullback in P, which, from an algorithmic point of view, turns out to be more
effective in the construction of kernels in QpPq. Finally, we prove that fppPop,Abq and QpPq are
equivalent as abstract categories if and only if QpPq is abelian, which, as a byproduct, yields an
interesting result that only concerns the category fppPop,Abq: it is abelian if and only if it has
epi-mono factorizations.

In the last Section 5, we give an example of a non-coherent ring R, i.e., a ring such that the cat-
egory RowsR does not admit weak kernels, but which nevertheless has decidable syzygy inclusion
(Theorem 5.2). It follows from our discussion in Section 4 that the inclusion fppRowsop

R ,Abq ãÑ

QpRowsRq is proper. Thus, we may algorithmically perform all the constructions listed in Section
2 within QpRowsRq, and this for a greater class of R-modules than finitely presented ones.

To conclude, we discuss how our category constructor Qp´q can also yield a computational
model for graded modules, and for finitely presented functor categories on module categories by
an iterated application.

Convention. Given morphisms γAC : A Ñ C, γAD : A Ñ D, γBC : B Ñ C, and γBD : B Ñ
D in an additive category P, we denote the induced morphism between direct sums using the row
convention, i.e.,

ˆ

γAC γAD
γBC γBD

˙

: A‘B Ñ C ‘D.

We use the notation α ¨ β : AÑ C for the composition of morphisms α : AÑ B and β : B Ñ C,
since then, composition of morphisms between direct sums simply becomes matrix multiplication.

Given two subobjects U, V ãÑ W in an abelian category, we use the simplified notation U
V in

order to denote the subquotient U`V
V » U

UXV of W . We also occasionally use the standard abbre-
viations epis, monos, isos for epimorphisms, monomorphisms, and isomorphisms, respectively. A
mono that arises as the kernel of some morphism in a pointed category is called a normal mono.
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A universal epi-mono factorization is an essentially unique factorization of a morphism into
an epi followed by a mono. For brevity we also refer to such a factorization as an epi-mono
factorization.

Throughout the paper, a functor between two additive categories is always meant to be an
additive functor.

The symbol Zě0 denotes the set of non-negative integers.

2 The category QpPq

In this section, P always denotes an additive category. The goal is to formally construct an
additive category QpPq that admits cokernels and epi-mono factorizations together with a full
additive embedding P Ď QpPq. As a running example, the reader can think of P as RowsR, i.e.,
the full subcategory of R-modules R-Mod generated by row modules R1ˆn for n P Zě0, where
R is any unital ring. Morphisms in RowsR will be tacitly identified with matrices over R. The
category QpRowsRq will turn out to be equivalent to the smallest full and replete subcategory of
R-Mod that contains RowsR and is closed under taking cokernels and images in R-Mod.

2.1 The category of syzygies
A cospan in P is simply a pair of morphisms

pA
γ
ÝÑ B,C

ρ
ÝÑ Bq

in P, with shorthand notation pA γ
ÝÑ B

ρ
ÐÝ Cq.

Definition 2.1. Let pA γ
ÝÑ B

ρ
ÐÝ Cq be a cospan in P. Its category of syzygies SyzpA γ

ÝÑ

B
ρ
ÐÝ Cq consists of the following data:

1. Objects, which we also call syzygies, are given by morphisms S σ
ÝÑ A in P such that

there exists another morphism ω : S ÝÑ C, which we call a syzygy witness, rendering the
diagram

S

A B Cγ ρ

ω
σ

commutative. Whenever we depict a syzygy by a commutative diagram like the one above,
we will draw the syzygy witness with a dashed arrow.

2. A morphism from a syzygy S σ
ÝÑ A to a syzygy S1 σ1

ÝÑ A is given by a morphism τ : S Ñ S1

such that τ ¨ σ1 “ σ, i.e., the following diagram commutes:

S S1

A.

τ

σ σ1

Remark 2.2. The category of syzygies SyzpA γ
ÝÑ B

ρ
ÐÝ Cq is a full subcategory of the slice

category of P over the object A.
Example 2.3. In our running example P “ RowsR, giving a cospan means giving a pair of

matrices pR1ˆa γ
ÝÑ R1ˆb ρ

ÐÝ R1ˆcq that have the same number of columns. An object in its
category of syzygies is a matrix R1ˆs σ

ÝÑ R1ˆa which fits into a chain complex
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R1ˆs R1ˆa impγq
impρq 0σ |γ

in R-Mod, hence the name category of syzygies. Here, the morphism |γ is given as follows: first,
we coastrict γ to its image and obtain the morphism |γ : R1ˆa ÝÑ impγq. Second, we compose
|γ with the natural projection impγq� impγq

impρq and obtain the desired morphism |γ. Recall that by
our convention, impγq

impρq is shorthand for impγq
impρqXimpγq .

2.2 The syzygy inclusion problem
In this subsection, we state an algorithmic problem for P that will turn out to be the key to a
computational approach to the yet to be constructed category QpPq.

Definition 2.4. We say that P has decidable syzygy inclusion if it comes equipped with
an algorithm whose input is a pair of cospans in P with the same first object

A

B C

B1 C 1,

γ
ρ

γ1
ρ1

and whose output is a constructive answer to the question whether we have an inclusion

SyzpA γ
ÝÑ B

ρ
ÐÝ Cq

?
Ď SyzpA γ1

ÝÑ B1
ρ1

ÐÝ C 1q

of full subcategories of the slice category of P over the object A. By a constructive answer, we
mean that in the case when the algorithm answers affirmatively, it also provides an additional
algorithm

pS
σ
ÝÑ A,S

ω
ÝÑ Cq ÞÑ ω1

mapping a syzygy σ P SyzpA γ
ÝÑ B

ρ
ÐÝ Cq together with a corresponding syzygy witness ω to a

syzygy witness ω1 that proves σ P SyzpA γ1

ÝÑ B1
ρ1

ÐÝ C 1q.
Definition 2.5. We say that P has decidable lifts if it comes equipped with an algorithm

whose input is a diagram

A

B Cγ

α

in P, and the output is either a morphism λ rendering the diagram

A

B Cγ

α
λ

commutative, or false if no such λ exists.
Remark 2.6. We claim that having decidable syzygy inclusion implies having decidable lifts: sup-
pose given pA α

ÝÑ B
γ
ÐÝ Cq. If a lift λ exists, then any σ : S Ñ A lies in SyzpA α

ÝÑ B
γ
ÐÝ Cq

with syzygy witness given by σ ¨ λ. Thus, we have

SyzpA ÝÑ 0 ÐÝ 0q Ď SyzpA α
ÝÑ B

γ
ÐÝ Cq.

Conversely, if this inclusion holds, then a lift λ can be constructed explicitly as a syzygy witness
of the syzygy idA P SyzpA α

ÝÑ B
γ
ÐÝ Cq.
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Remark 2.7. Having decidable syzygy inclusion can also be rephrased as follows: P has decidable
lifts, and we have an algorithm that decides

SyzpA γ
ÝÑ B

ρ
ÐÝ Cq

?
Ď SyzpA γ1

ÝÑ B1
ρ1

ÐÝ C 1q

with a simple yes/no answer. For if the algorithm answers yes, we may produce our desired syzygy
witnesses using the algorithm for computing lifts.

Example 2.8. In our running example P “ RowsR, given two cospans with the same first
object pR1ˆa γ

ÝÑ R1ˆb ρ
ÐÝ R1ˆcq and pR1ˆa γ1

ÝÑ R1ˆb1 ρ1

ÐÝ R1ˆc1q, being able to solve their
syzygy inclusion problem implies being able to decide the existence of dashed arrows rendering
the following diagram with exact rows commutative:

0 kerp|γq R1ˆa impγq
impρq 0

0 kerp|γ1q R1ˆa impγ1q
impρ1q 0.

|γ

|γ1

id

Indeed, the rows of a syzygy σ P Rsˆa in SyzpR1ˆa γ
ÝÑ R1ˆb ρ

ÐÝ R1ˆcq for s P Zě0 can be
regarded as a collection of s-many elements in kerp|γq, and asking for the existence of the dashed
arrows is the question of whether these rows are also lying in kerp|γ1q, which is equivalent to σ

being a syzygy in SyzpR1ˆa γ1

ÝÑ R1ˆb1 ρ1

ÐÝ R1ˆc1q.
The question whether

kerp|γq Ď kerp|γ1q

can always be answered in the case when R is a (left) computable ring, a notion introduced
by Barakat and Lange-Hegermann in [2]. It is defined as a ring that comes equipped with two
algorithms:

1. (Algorithm for deciding lifts): given matrices A P Rmˆn and B P Rqˆn for m,n, q P Zě0,
decide whether there exists an X P Rqˆm such that

X ¨A “ B,

and in the affirmative case compute such an X.

2. (Algorithm for computing row syzygies): given a matrix A P Rmˆn, compute o P Zě0 and
L P Roˆm such that

L ¨A “ 0,

and L is (weakly) universal with this property, i.e., for any other T P Rpˆm, p P Zě0, such
that T ¨A “ 0, we can find a (not necessarily unique) U P Rpˆo such that U ¨ L “ T .

Prominent examples of (commutative) computable rings are quotients of polynomial rings
krx1, . . . xns for n P Zě0 by ideals generated by finitely many prescribed polynomials, where k
is a computable field k (like Q). This is mainly due to Gröbner basis techniques (see, e.g., [8]).
Also, localizations of computable commutative rings R at a multiplicative set S turn out to be
computable provided that one may algorithmically determine witnesses for the intersection of
finitely generated ideals I Ď R with S being non-empty [16].

Left computable rings are in particular left coherent, i.e., the category of finitely presented left
R-modules is abelian. In particular, kerp|γq and kerp|γ1q both are finitely presented modules in
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this case, and the computability of R ensures that we can algorithmically test the inclusion of the
finitely many generators2 of kerp|γq in kerp|γ1q.

In Section 5, we will give an example of a non-coherent ring R for which RowsR nevertheless
has decidable syzygy inclusion, even though kerp|γq might not be finitely generated.

2.3 An auxiliary category
We define an auxiliary additive category AuxpPq. Later, QpPq will arise as a quotient of AuxpPq.

Definition 2.9. The additive category AuxpPq is defined by the following data:

(1) An object in AuxpPq is given by a cospan in P. We will write such an object as

pA
γA
ÝÑ ΩA

ρA
ÐÝ RAq,

even though ΩA and RA do not formally depend3 on A.
(2) A morphism in AuxpPq from pA

γA
ÝÑ ΩA

ρA
ÐÝ RAq to pB

γB
ÝÑ ΩB

ρB
ÐÝ RBq is given by a

morphism α : AÑ B in P that respects syzygies, i.e.,

σ P SyzpA γA
ÝÑ ΩA

ρA
ÐÝ RAq implies σ ¨ α P SyzpB γB

ÝÑ ΩB
ρB
ÐÝ RBq.

We call this the well-definedness property of the given morphism α in P w.r.t. the source
pA

γA
ÝÑ ΩA

ρA
ÐÝ RAq and range pB γB

ÝÑ ΩB
ρB
ÐÝ RBq.

(3) Composition and identities are inherited from P.

Remark 2.10. If P has decidable syzygy inclusion, then we can decide the well-definedness property
by testing

SyzpA γA
ÝÑ ΩA

ρA
ÐÝ RAq Ď SyzpA α¨γB

ÝÑ ΩB
ρB
ÐÝ RBq.

Remark 2.11. Composition in AuxpPq is well-defined, i.e., the composition of two morphisms
satisfying the well-definedness property again satisfies the well-definedness property. Indeed, given
two well-defined morphisms

pA
γA
ÝÑ ΩA

ρA
ÐÝ RAq

α
ÝÑ pB

γB
ÝÑ ΩB

ρB
ÐÝ RBq

and
pB

γB
ÝÑ ΩB

ρB
ÐÝ RBq

β
ÝÑ pC

γC
ÝÑ ΩC

ρC
ÐÝ RCq,

then any syzygy
σ P SyzpA γA

ÝÑ ΩA
ρA
ÐÝ RAq

defines a syzygy
σ ¨ α P SyzpB γB

ÝÑ ΩB
ρB
ÐÝ RBq,

which in turn defines a syzygy

σ ¨ α ¨ β P SyzpC γC
ÝÑ ΩC

ρC
ÐÝ RCq.

2 Concretely, we may compute finitely many generators of kerp|γq by building up the stacked matrix
ˆ

γ
ρ

˙

P

Rpa`cqˆb and applying to it the algorithm for computing row syzygies. This yields a finite subset of R1ˆpa`cq, and
projecting this set to its first a entries (via the natural projection R1ˆpa`cq Ñ R1ˆa) yields generators of kerp|γq.
More abstractly, R being computable implies the computability of the abelian category of finitely presented R-
modules, and within such a category, we can perform constructions coming from the axioms of an abelian category
effectively. In particular, we may build up the exact sequences as they are presented within this example on the
computer and decide the existence of the dashed arrows (see [14] for a detailed explanation).

3Guided by our running example RowsR, we think of ΩA as an ambient space for the image of γA, and of
ρA : RA Ñ ΩA as relations imposed on this ambient space.
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Remark 2.12. Addition of morphisms in AuxpPq is well-defined. Two well-defined morphisms

pA
γA
ÝÑ ΩA

ρA
ÐÝ RAq

α
ÝÑ pB

γB
ÝÑ ΩB

ρB
ÐÝ RBq

and
pA

γA
ÝÑ ΩA

ρA
ÐÝ RAq

α1
ÝÑ pB

γB
ÝÑ ΩB

ρB
ÐÝ RBq

yield a well-defined morphism

pA
γA
ÝÑ ΩA

ρA
ÐÝ RAq

α`α1
ÝÑ pB

γB
ÝÑ ΩB

ρB
ÐÝ RBq,

since the sum of two syzygies having the same source is again a syzygy (simply by adding their
syzygy witnesses). The same holds for subtraction. Moreover, the zero morphism

pA
γA
ÝÑ ΩA

ρA
ÐÝ RAq

0
ÝÑ pB

γB
ÝÑ ΩB

ρB
ÐÝ RBq

is always well-defined, since any morphism S
0
Ñ B is a syzygy in SyzpB γB

ÝÑ ΩB
ρB
ÐÝ RBq. It

follows that AuxpPq is an Ab-category, i.e., enriched over abelian groups.
Remark 2.13. Let pAi

γAi
ÝÑ ΩAi

ρAi
ÐÝ RAiqiPI be a family of objects in P indexed by a finite set I.

The injections Aj
ιj
Ñ

À

iAi in P induce well-defined morphisms in AuxpPq

pAj
γAj
ÝÑ ΩAj

ρAj
ÐÝ RAj

q
ιj
ÝÑ p

à

i

Ai

À

i γAi
ÝÑ

à

i

ΩAi

À

i ρAi
ÐÝ

à

i

RAi
q,

since any syzygy σ of the source with witness ω defines a syzygy σ ¨ ιj of the range with witness
ω ¨ ιj .

Similarly, the projections
À

iAi
πj
Ñ Aj in P for j P I induce well-defined morphisms

p
à

i

Ai

À

i γAi
ÝÑ

à

i

ΩAi

À

i ρAi
ÐÝ

à

i

RAi
q
πj
ÝÑ pAj

γAj
ÝÑ ΩAj

ρAj
ÐÝ RAj

q

since any syzygy σ of the source with witness ω defines a syzygy σ ¨ πj of the range with witness
ω ¨ πj . Thus, AuxpPq is also an additive category.

Theorem and Definition 2.14. Let IpPq denote the collection of all morphisms

α : pA γA
ÝÑ ΩA

ρA
ÐÝ RAq Ñ pB

γB
ÝÑ ΩB

ρB
ÐÝ RBq

in AuxpPq such that α : A Ñ B is a syzygy in SyzpB γB
ÝÑ ΩB

ρB
ÐÝ RBq, i.e., with the property

that there exists a lift ζ (which we call witness for being zero) rendering the diagram

A

B ΩB RBγB ρB

ζ
α

commutative. Then IpPq forms an ideal of AuxpPq.

Proof. Clearly, all zero morphisms lie in IpPq. Moreover, given addable morphisms α, β P IpPq,
we can add their witnesses for being zero to deduce α` β P IpPq.

Next, let
pA

γA
ÝÑ ΩA

ρA
ÐÝ RAq

α
ÝÑ pB

γB
ÝÑ ΩB

ρB
ÐÝ RBq

and
pB

γB
ÝÑ ΩB

ρB
ÐÝ RBq

β
ÝÑ pC

γC
ÝÑ ΩC

ρC
ÐÝ RCq

be two composable morphisms in AuxpPq. If β P IpPq with ζ a witness for being zero, then
α ¨ β P IpPq with α ¨ ζ a witness for being zero.

If α P IpPq, then α is a syzygy in SyzpB γB
ÝÑ ΩB

ρB
ÐÝ RBq. By the well-definedness property

of β, α ¨ β is a syzygy of SyzpC γC
ÝÑ ΩC

ρC
ÐÝ RCq, which also implies α ¨ β P IpPq. Thus, IpPq is

a collection of abelian subgroups closed under left and right multiplication, or in other words, an
ideal of AuxpPq.

Accepted in Compositionality on 2020-05-27. Click on the title to verify. 8



Volume 2 Issue 4 ISSN 2631-4444

2.4 Definition of the category QpPq

Recall that for any additive category A and any ideal I of A, the additive quotient category A{I
has the same objects as A, and

HomA{IpA,Bq :“ HomApA,Bq{tA
α
Ñ B | α P Iu

for all A,B P A{I.
Definition 2.15. We set

QpPq :“ AuxpPq{IpPq,
i.e., we form the additive quotient category of AuxpPq by the ideal IpPq.

Remark 2.16. Morally, we shall think of an object pA γA
ÝÑ ΩA

ρA
ÐÝ RAq in QpPq as a representation

of the quotient object “ impγAq

impρAq
”. The “Q” in QpPq stands for quotient.

Remark 2.17. If P has decidable syzygy inclusion, then we can decide equality of morphisms in
QpPq. Deciding equality of two morphisms α and β in QpPq means deciding whether α ´ β is
zero, which is a lifting problem, which we can solve using Remark 2.6.

Notation 2.18. Given a morphism α : pA γA
ÝÑ ΩA

ρA
ÐÝ RAq ÝÑ pB

γB
ÝÑ ΩB

ρB
ÐÝ RBq in

AuxpPq, we denote by

α : pA γA
ÝÑ ΩA

ρA
ÐÝ RAq ÝÑ pB

γB
ÝÑ ΩB

ρB
ÐÝ RBq

the corresponding morphism in QpPq.
Construction 2.19. We construct a full and faithful additive functor

emb : P Ñ QpPq

that identifies P as a full subcategory of QpPq. On objects, we set

A ÞÑ pA
id
Ñ AÐ 0q

and on morphisms, we set

pA
α
ÝÑ Bq ÞÑ pembpAq α

ÝÑ embpBqq.

Correctness of the construction. Syzygies in SyzpA id
Ñ AÐ 0q are of the form S

0
Ñ A.

The objects in P yield a convenient way to cover the objects in QpPq.
Lemma 2.20. Identities of objects in P yield well-defined epimorphisms in QpPq:

embpAq idA
ÝÑ pA

γA
ÝÑ ΩA

ρA
ÐÝ RAq.

Proof. Well-definedness is trivial since syzygy witnesses can be given by zero morphisms. More-
over, being an epimorphism follows from Lemma 2.21.

Lemma 2.21. Every morphism in QpPq of the form

idB : pB γB
ÝÑ ΩB

ρB
ÐÝ RBq ÝÑ pB

γ1B
ÝÑ Ω1B

ρ1B
ÐÝ R1Bq

is an epimorphism.

Proof. Given a morphism

τ : pB γ1B
ÝÑ Ω1B

ρ1B
ÐÝ R1Bq ÝÑ pT

γT
ÝÑ ΩT

ρT
ÐÝ RT q

such that idB ¨ τ “ 0, this means that there exists ζ : B Ñ RT such that

ζ ¨ ρT “ idB ¨ τ ¨ γT “ τ ¨ γT ,

which implies that τ is already zero.
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2.5 Cokernels
As a first main feature of QpPq, we show how to construct cokernels.

Construction 2.22 (Cokernels). Given a morphism

α : pA γA
ÝÑ ΩA

ρA
ÐÝ RAq ÝÑ pB

γB
ÝÑ ΩB

ρB
ÐÝ RBq

in QpPq, the following diagram shows us how to construct its cokernel projection along with the
universal property:

pA
γA
ÝÑ ΩA

ρA
ÐÝ RAq pB

γB
ÝÑ ΩB

ρB
ÐÝ RBq

pB
γB
ÝÑ ΩB

¨

˝

ρB
α ¨ γB

˛

‚

ÐÝ RB ‘Aq

pT
γT
ÝÑ ΩT

ρT
ÐÝ RT q.

α

τ

idB

τ

ζ

(1)
How to read this diagram: the solid arrow pointing up right is the cokernel projection, the solid
arrow pointing down right is a test morphism for the universal property of the cokernel, and the
dashed arrow pointing straight down is the morphism induced by the universal property. The
dotted arrow labeled with ζ is a witness for the composition α ¨ τ in QpPq being zero, i.e., it
denotes a morphism ζ : AÑ RT such that ζ ¨ ρT “ α ¨ τ ¨ γT .

Correctness of the construction. Clearly, the morphism idB for the cokernel projection is well-
defined, since syzygy witnesses of objects in SyzpB γB

ÝÑ ΩB
ρB
ÐÝ RBq can simply be extended by

the natural inclusion morphism RB Ñ RB ‘A. Composing α with the cokernel projection yields
zero since we can take the natural inclusion A Ñ RB ‘ A as a witness for being zero. Next, we
have to check well-definedness of the cokernel induced morphism. Given a syzygy

B ΩB RB ‘A,

S

γB
ˆ

ρB
α ¨ γB

˙

σ

`

λ1 λ2
˘

we can construct another one:

B ΩB RB .

S

γB ρB

σ ´ λ2 ¨ α
λ1
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Now, applying the well-definedness property of the test morphism, we obtain the syzygy

B

S

T ΩT RT .γT ρT

σ ´ λ2 ¨ α

λ3

τ

(2)

We deduce that

B

S

T ΩT RTγT ρT

σ

λ2 ¨ ζ ` λ3

τ

is a syzygy by computing

σ ¨ τ ¨ γT “ λ2 ¨ α ¨ τ ¨ γT ` λ3 ¨ ρT using (2)
“ λ2 ¨ ζ ¨ ρT ` λ3 ¨ ρT using the defining equation of ζ
“ pλ2 ¨ ζ ` λ3q ¨ ρT .

Thus, the cokernel induced morphism is well-defined and it clearly renders the triangle in (1)
commutative. For the uniqueness of the induced morphism, it suffices to check that the cokernel
projection is an epimorphism, which is the content of Lemma 2.21.

2.6 Lifts along monomorphisms
We show that every monomorphism in QpPq is the kernel of its cokernel by means of the following
construction.

Construction 2.23 (Lifts along monomorphisms). The following diagram shows us how to
construct a lift along a given monomorphism

α : pA γA
ÝÑ ΩA

ρA
ÐÝ RAq ÝÑ pB

γB
ÝÑ ΩB

ρB
ÐÝ RBq

in QpPq for a given test morphism:

pB
γB
ÝÑ ΩB

ρB
ÐÝ RBq pB

γB
ÝÑ ΩB

¨

˝

ρB
α ¨ γB

˛

‚

ÐÝ RB ‘Aq.

pA
γA
ÝÑ ΩA

ρA
ÐÝ RAq

pT
γT
ÝÑ ΩT

ρT
ÐÝ RT q

idB

τ

α

ζ2

`

ζ1 ζ2
˘
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How to read this diagram: the solid horizontal arrow is the cokernel projection of our monomor-
phism α (see Construction 2.22). The dotted arrow is a witness for the composition of the test
morphism τ with the cokernel projection being zero, i.e., the equation

τ ¨ γB “ ζ1 ¨ ρB ` ζ2 ¨ α ¨ γB (3)

holds. The upwards pointing dashed arrow is the desired lift.

Correctness of the construction. First, we show that ζ2 is well-defined. Given a syzygy

T ΩT RT ,

S

γT ρT

σ
λ

we can use the fact that τ satisfies the well-definedness property in order to get a syzygy

B ΩB RB .

S

γB ρB

σ ¨ τ
λ1

Using (3), we can construct another syzygy

B ΩB RB

S

γB ρB

σ ¨ ζ2 ¨ α
λ1 ´ σ ¨ ζ1

whose syzygy witness can also be interpreted as a witness for the composition of

embpSq σ¨ζ2
ÝÑ pA

γA
ÝÑ ΩA

ρA
ÐÝ RAq

α
ÝÑ pB

γB
ÝÑ ΩB

ρB
ÐÝ RBq

in QpPq being zero. Since α is a monomorphism, this implies σ ¨ ζ2 “ 0, and so we get our desired
syzygy:

A ΩA RA.

S

γA ρA

σ ¨ ζ2

Furthermore, ζ2 ¨ α “ τ since (3) may be rearranged as

pζ2 ¨ α´ τq ¨ γB “ ´ζ1 ¨ ρB .

Corollary 2.24. Every morphism in QpPq that is both mono and epi is an isomorphism.

Proof. By Construction 2.23 every mono in QpPq is a normal mono.

Remark 2.25. If P has decidable syzygy inclusion, then we can decide whether a given morphism
is a monomorphism by the following Lemma 2.26. In particular, we can check the assumption on
the input in Construction 2.23.

Lemma 2.26. A morphism

α : pA γA
ÝÑ ΩA

ρA
ÐÝ RAq ÝÑ pB

γB
ÝÑ ΩB

ρB
ÐÝ RBq

in QpPq is a monomorphism if and only if

SyzpA α¨γB
ÝÑ ΩB

ρB
ÐÝ RBq Ď SyzpA γA

ÝÑ ΩA
ρA
ÐÝ RAq.
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Proof. If α is a monomorphism, and σ P SyzpA α¨γB
ÝÑ ΩB

ρB
ÐÝ RBq, then the composite

embpSq σ
ÝÑ pA

γA
ÝÑ ΩA

ρA
ÐÝ RAq

α
ÝÑ pB

γB
ÝÑ ΩB

ρB
ÐÝ RBq

is zero, and thus σ is zero, which implies σ P SyzpA γA
ÝÑ ΩA

ρA
ÐÝ RAq.

Conversely, we can test being a monomorphism on compositions of the form

embpSq σ
ÝÑ pA

γA
ÝÑ ΩA

ρA
ÐÝ RAq

α
ÝÑ pB

γB
ÝÑ ΩB

ρB
ÐÝ RBq

that yield zero due to Lemma 2.20. But then, σ P SyzpA α¨γB
ÝÑ ΩB

ρB
ÐÝ RBq, which by assumption

implies σ P SyzpA γA
ÝÑ ΩA

ρA
ÐÝ RAq, which is equivalent to σ being zero.

2.7 Universal epi-mono factorizations
As another decisive feature, QpPq admits universal epi-mono factorizations, i.e., essentially unique
epi-mono factorizations, and thus in particular images.

Remark 2.27. Since we proved in Construction 2.23 that every mono in QpPq is a normal mono,
the theory of factorizations as it is presented in [5, Section 2] implies that it suffices to prove that
every morphism in QpPq admits a factorization into a mono and an epi in order to conclude this
factorization is already universal. Nevertheless, in Construction 2.28, we will make the universality
of the epi-mono factorization explicit, since from the perspective of a computer implementation,
it is helpful to have concrete formulas at hand.

Construction 2.28 (Universal epi-mono factorization). Given a morphism

α : pA γA
ÝÑ ΩA

ρA
ÐÝ RAq ÝÑ pB

γB
ÝÑ ΩB

ρB
ÐÝ RBq

in QpPq, the following diagram shows us how to construct its universal epi-mono factorization
along with its universal property:

pA
γA
ÝÑ ΩA

ρA
ÐÝ RAq pB

γB
ÝÑ ΩB

ρB
ÐÝ RBq

pA
α¨γB
ÝÑ ΩB

ρB
ÐÝ RBq

pT
γT
ÝÑ ΩT

ρT
ÐÝ RT q

α

idA α

τ1 τ2τ1

How to read this diagram: the universal epi-mono factorization of α is given by the upper triangle.
Furthermore, if τ1 and τ2 form another epi-mono factorization of α, then the dashed vertical arrow
is the isomorphism induced by its universal property.

Correctness of the construction. The map

SyzpA γA
ÝÑ ΩA

ρA
ÐÝ RAq Ñ SyzpA α¨γB

ÝÑ ΩB
ρB
ÐÝ RBq : pS Ñ Aq ÞÑ pS Ñ Aq

is well-defined since

SyzpA γA
ÝÑ ΩA

ρA
ÐÝ RAq Ñ SyzpB γB

ÝÑ ΩB
ρB
ÐÝ RBq : pS σ

Ñ Aq ÞÑ pS
σ¨α
ÝÑ Bq
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is well-defined. Furthermore, the map

SyzpA α¨γB
ÝÑ ΩB

ρB
ÐÝ RBq Ñ SyzpB γB

ÝÑ ΩB
ρB
ÐÝ RBq : pS σ

Ñ Aq ÞÑ pS
σ¨α
ÝÑ Bq

is always well-defined. Thus, we verified that the candidate for the universal epi-mono factorization
consists of well-defined morphisms. Lemma 2.21 shows that idA is an epimorphism, and Lemma
2.26 proves that we really have an epi-mono factorization.

To check the well-definedness property of the induced morphism, we start with a syzygy

A ΩB RB

S

α ¨ γB ρB

σ
λ

and see that the syzygy witness λ can be interpreted as a witness for the composition

embpSq σ
ÝÑ pA

γA
ÝÑ ΩA

ρA
ÐÝ RAq

α
ÝÑ pB

γB
ÝÑ ΩB

ρB
ÐÝ RBq

being zero. From

0 “ σ ¨ α “ σ ¨ τ1 ¨ τ2

and τ2 being a monomorphism we conclude σ ¨ τ1 “ 0, which gives us the desired syzygy:

T ΩT RT .

S

γT ρT

σ ¨ τ1

Thus, the induced morphism is well-defined. It is easy to check that it renders the whole epi-mono
factorization diagram commutative: the lower left triangle commutes already in AuxpPq, and
from this, the commutativity of the lower right triangle is implied.

Last, since the induced morphism is an epimorphism and a monomorphism, Corollary 2.24
proves that it is an isomorphism. Thus, we have successfully constructed a universal epi-mono
factorization.

2.8 Colifts along epimorphisms
The category QpPq does not necessarily have kernels (see Theorem 4.1). Thus, it does not make
sense to ask for every epimorphism to be the cokernel of its kernel. However, the following
construction serves as an appropriate substitute.

Construction 2.29 (Colifts along epimorphisms). Let

α : pA γA
ÝÑ ΩA

ρA
ÐÝ RAq ÝÑ pB

γB
ÝÑ ΩB

ρB
ÐÝ RBq

be an epi in QpPq. Then, its cokernel projection is the zero morphism. Using the explicit con-
struction of the cokernel projection in Construction 2.22, this means that there exists a morphism

`

ζ1 ζ2
˘

: B ÝÑ RB ‘A

such that
γB “ ζ1 ¨ ρB ` ζ2 ¨ α ¨ γB . (4)
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The following diagram shows us how to construct a colift along the epimorphism α

pA
γA
ÝÑ ΩA

ρA
ÐÝ RAq pB

γB
ÝÑ ΩB

ρB
ÐÝ RBq

pT
γT
ÝÑ ΩT

ρT
ÐÝ RT q

α

τ
ζ2 ¨ τ (5)

for a given test morphism τ , where test morphism means that τ satisfies the following property:
whenever we have a morphism κ in QpPq such that κ ¨ α “ 0, we also have κ ¨ τ “ 0.
Remark 2.30. If P has decidable syzygy inclusion, then we can decide whether a given τ yields a
test morphism: indeed, using Lemma 2.20, this is the case if and only if

SyzpA α¨γB
ÝÑ ΩB

ρB
ÐÝ RBq Ď SyzpA τ ¨γT

ÝÑ ΩT
ρT
ÐÝ RT q.

Correctness of the construction. First, we show that the colift ζ2 ¨ τ satisfies the well-definedness
property. Given a syzygy

B ΩB RB

S

γB ρB

σ
λ

we conclude by multiplying (4) with σ from the left that

B ΩB RB

S

γB ρB

σ ¨ ζ2 ¨ α
λ´ σ ¨ ζ1

is also a syzygy, whose syzygy witness can be interpreted as a witness for the composition

embpSq σ¨ζ2
ÝÑ pA

γA
ÝÑ ΩA

ρA
ÐÝ RAq

α
ÝÑ pB

γB
ÝÑ ΩB

ρB
ÐÝ RBq

in QpPq being zero. Since τ is a test morphism, this implies that the composition

embpSq σ¨ζ2
ÝÑ pA

γA
ÝÑ ΩA

ρA
ÐÝ RAq

τ
ÝÑ pT

γT
ÝÑ ΩT

ρT
ÐÝ RT q

is zero as well, which gives us the desired well-definedness property.
To show that ζ2 ¨ τ is really a colift, we multiply (4) with α from the left to see that the

composition
embpAq α¨ζ2´idA

ÝÑ pA
γA
ÝÑ ΩA

ρA
ÐÝ RAq

α
ÝÑ pB

γB
ÝÑ ΩB

ρB
ÐÝ RBq

is zero. Since τ is a test morphism, the composition

embpAq α¨ζ2´idA
ÝÑ pA

γA
ÝÑ ΩA

ρA
ÐÝ RAq

τ
ÝÑ pT

γT
ÝÑ ΩT

ρT
ÐÝ RT q

is also zero. If ζ3 denotes a witness for this composition being zero, then the equation

pα ¨ ζ2 ¨ τ ´ τq ¨ γT “ ζ3 ¨ ρT

holds, which means that the diagram (5) commutes.
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3 The category QpPq as a subcategory of the category of modules
Let P be an additive category4. We denote the category of contravariant additive functors from
P to the category of abelian groups Ab by Mod-P and call it the category of right P-modules.

Example 3.1. An additive functor

F : Rowsop
R Ñ Ab

is uniquely determined up to natural isomorphism by its restriction to the full subcategory of
Rowsop

R spanned by R1ˆ1, since it respects direct sums. The image F pR1ˆ1q is an abelian group,
and the action of F on morphisms encodes a left action of R on F pR1ˆ1q, giving it the structure
of a left R-module. In this way, we get an equivalence of categories5

R-Mod » Mod-RowsR.

Notation 3.2. We let
P ÝÑ Mod-P : P ÞÑ p´, P q

denote the Yoneda embedding, where p´, P q is shorthand notation for HomPp´, P q.
Remark 3.3 (A short interlude on working with Mod-P). Since Mod-P is a functor category, all
limits and colimits are computed pointwise, i.e., after evaluation at every object A P P, see, e.g.,
[11, Chapter V.3]. Since Mod-P is abelian, the pointwise constructions apply in particular to
kernels, cokernels, and images. Deciding whether a morphism in Mod-P is mono/epi can also be
decided pointwise, since it is equivalent to the kernel/cokernel being zero, which can be decided
pointwise. For every A P P and F P Mod-P, the Yoneda lemma states that a morphism

p´, Aq Ñ F

is uniquely determined by choosing an image x P F pAq of the element idA P pA,Aq, and every
such choice is valid. In particular, the Yoneda lemma implies that the object p´, Aq P Mod-P is
projective in Mod-P.

The goal of this section is to construct a functor

M : QpPq ÝÑ Mod-P.

We proceed in several steps.

Construction 3.4. As a first step, we are going to construct a functor

M : AuxpPq ÝÑ Mod-P

on objects. From an object pA γA
ÝÑ ΩA

ρA
ÐÝ RAq in AuxpPq, we obtain a short exact sequence

0 kerpεAq p´, Aq imp´,γAq

imp´,ρAq
0

εA

in Mod-P, where εA is the composition of p´, Aq Ñ imp´, γAq, the coastriction to image of the
morphism p´, γAq, with the projection imp´, γAq Ñ imp´,γAq

imp´,ρAq
. We set

M
`

pA
γA
ÝÑ ΩA

ρA
ÐÝ RAq

˘

:“ imp´, γAq
imp´, ρAq

.

4To avoid set-theoretic issues, we assume P to be a small category, i.e., its objects form a set.
5 At first glance, it might look confusing that right RowsR-modules correspond to left R-modules. If we regard

R as a category with a single object ˚ whose endomorphisms are given by the elements of R, then it is common to
define the postcomposition as ring multiplication. With this convention, functors RÑ Ab which respect addition
correspond to left modules. But since we defined RowsR as a subcategory of left R-modules, we get a contravariant
functor RÑ RowsR : ˚ ÞÑ R1ˆ1.
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For the action of M on morphisms, we need the following lemma.

Lemma 3.5. A morphism α : A Ñ B in P induces a well-defined morphism between two
objects pA γA

ÝÑ ΩA
ρA
ÐÝ RAq and pB

γB
ÝÑ ΩB

ρB
ÐÝ RBq in AuxpPq if and only if p´, αq restricts as

follows:

0 kerpεAq p´, Aq

0 kerpεBq p´, Bq.

p´, αq

Proof. We compute the evaluation of kerpεAq at P P P:

kerpεAqpP q “
 

pP
σ
Ñ Aq | εApσq “ 0

(

“
 

pP
σ
Ñ Aq | pP, γAqpσq P imppP, ρAqq

(

“
 

pP
σ
Ñ Aq | DpP

ω
Ñ RAq : σ ¨ γA “ ω ¨ ρA

(

“
 

pP
σ
Ñ Aq P SyzpA γA

ÝÑ ΩA
ρA
ÐÝ RAq

(

.

Thus, we get a commutative diagram for every evaluation at P P P
 

pP
σ
Ñ Aq P SyzpA γA

ÝÑ ΩA
ρA
ÐÝ RAq

(

kerpεAqpP q pP,Aq

 

pP
σ
Ñ Bq P SyzpB γB

ÝÑ ΩB
ρB
ÐÝ RBq

(

kerpεBqpP q pP,Bq

“

“

pP, αq

if and only if the well-definedness property holds.

Construction 3.6. By Lemma 3.5 we can define the action of M on a morphism

α : pA γA
ÝÑ ΩA

ρA
ÐÝ RAq ÝÑ pB

γB
ÝÑ ΩB

ρB
ÐÝ RBq

in AuxpPq by the unique morphism completing the following commutative diagram:

0 kerpεAq p´, Aq imp´,γAq

imp´,ρAq
0

0 kerpεBq p´, Bq imp´,γBq

imp´,ρBq
0.

εA

εB

p´, αq Mpαq (6)

Functoriality ofM is implied by the functoriality of taking cokernels of commutative squares. The
same holds for additivity.

Lemma 3.7. Given a morphism α : pA γA
ÝÑ ΩA

ρA
ÐÝ RAq ÝÑ pB

γB
ÝÑ ΩB

ρB
ÐÝ RBq in AuxpPq,

then
Mpαq “ 0 ðñ α P IpPq,

where M is the functor described in the Constructions 3.4 and 3.6 and IpPq is the ideal defined in
Theorem and Definition 2.14.

Proof. From the diagram (6), we see that Mpαq “ 0 if and only if there exists a commutative
diagram
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p´, Aq

kerpεBq p´, Bq.

p´, αq

By the Yoneda lemma, this is equivalent to α P kerpεBqpAq, i.e., α P SyzpB γB
ÝÑ ΩB

ρB
ÐÝ RBq,

which exactly means α P IpPq.

Theorem 3.8. The functor M from Construction 3.4 induces a full and faithful functor

M : QpPq Ñ Mod-P

that preserves cokernels and images.

Proof. We use the notation of Construction 3.4. Since QpPq “ AuxpPq{IpPq, we get a faithful
induced additive functor M by Lemma 3.7. Furthermore, since representable functors are pro-
jectives in Mod-P, every natural transformation imp´,γAq

imp´,ρAq
Ñ

imp´,γBq

imp´,ρBq
can be lifted to a natural

transformation p´, Aq Ñ p´, Bq and from Lemma 3.5, it follows that M is full.
Next, let

α : pA γA
ÝÑ ΩA

ρA
ÐÝ RAq ÝÑ pB

γB
ÝÑ ΩB

ρB
ÐÝ RBq

denote an arbitrary morphism in QpPq. We have a commutative diagram of the form

p´, Aq imp´,γAq

imp´,ρAq

p´, Bq imp´,γBq

imp´,ρBq
.

εA

εB

p´, αq Mpαq

We compute

im
`

Mpαq
˘

“ im
`

εA ¨Mpαq
˘

“ im pp´, αq ¨ εBq

which yields for every P P P:

im
`

Mpαq
˘

pP q “

"

pP
σ¨pα¨γBq
ÝÑ ΩBq ` pimpP, ρBq X impP, γBqq | σ P pP,Aq

*

“

!

pP
ι
ÝÑ ΩBq ` pimpP, ρBq X impP, γBqq | ι P impP, α ¨ γBq

)

.

Thus, we can describe the cokernel projection of Mpαq by the right vertical morphism in the
diagram

p´, Bq imp´,γBq

imp´,ρBq

p´, Bq imp´,γBq

imp´,ρBq`imp´,α¨γBq
,

εB

εB

p´, idBq
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which is exactly the application of M to the cokernel projection described in Construction 2.22.
Thus, M respects cokernels.

To show that M respects images, it suffices to prove that it respects monos and epis, since
this implies that it respects epi-mono factorizations. Since M is additive and respects cokernels,
it follows that M respects epimorphisms. Now, let

α : pA γA
ÝÑ ΩA

ρA
ÐÝ RAq ÝÑ pB

γB
ÝÑ ΩB

ρB
ÐÝ RBq

denote a mono in QpPq. In order to test whether Mpαq is a mono, the Yoneda lemma implies
that it suffices to check test morphisms of the form

τ : p´, P q ÝÑMpA
γA
ÝÑ ΩA

ρA
ÐÝ RAq.

So, given τ as above which also is a test morphism, i.e., such that τ ¨Mpαq “ 0, it can be written
as

Mpτ 1q : MpembpP qq ÝÑMpA
γA
ÝÑ ΩA

ρA
ÐÝ RAq

for a uniquely determined
τ 1 : embpP q Ñ pA

γA
ÝÑ ΩA

ρA
ÐÝ RAq

in QpPq (in fact, M ˝ emb is the Yoneda embedding). Since α is a mono, it follows that τ 1 “ 0,
and thus Mpτ 1q “ τ “ 0.

Recall that a subcategory A of a category B is called replete if for anyX P A and isomorphism
ι : X Ñ Y in B, ι belongs to A. We get a characterization of the essential image impMq Ď
Mod-P, i.e., the smallest full replete subcategory generated by all objects of the form MpA

γA
ÝÑ

ΩA
ρA
ÐÝ RAq. Note that by Theorem 3.8, we have an equivalence QpPq » impMq.
Corollary 3.9. The essential image of M is given by the smallest full and replete additive

subcategory F Ď Mod-P with the following properties:

1. P Ď F via the Yoneda embedding,

2. F is closed under taking cokernels in Mod-P,

3. F is closed under taking images in Mod-P.

Proof. The essential image ofM satisfies these three properties by Theorem 3.8. Conversely, every
F satisfying these properties has to contain the subquotients

imp´, γAq
imp´, ρAq

» im
`

p´, Aq
p´,γAq
ÝÑ p´,ΩAq ÝÑ cokerp´, ρAq

˘

(7)

for a given cospan pA γA
ÝÑ ΩA

ρA
ÐÝ RAq in P, and thus has to contain the essential image ofM .

We give a short interlude on some well-known facts about the category of finitely presented
functors fppPop,Abq. For an abstract treatment of fppPop,Abq, see [6] or [4], for a constructive
treatment, see [14].

An additive functor F : Pop Ñ Ab is called finitely presented if there exists an exact
sequence

p´, Bq p´, Aq F 0
p´, αq

in Mod-P for a morphism α : B Ñ A in P. Now, fppPop,Abq is defined as the full subcategory of
Mod-P generated by all finitely presented functors. The additive category fppPop,Abq is closed
under taking cokernels in Mod-P, and thus can be characterized similarly to impMq: it is the
smallest full and replete additive subcategory of Mod-P which contains all representable functors
and is closed under taking cokernels. In particular, Corollary 3.9 implies fppPop,Abq Ď impMq,
which brings us to a second characterization.
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Corollary 3.10. The essential image of M is given by the smallest full and replete additive
subcategory F Ď Mod-P with the following properties:

1. fppPop,Abq Ď F,

2. F is closed under taking images in Mod-P.

Proof. Equation (7) in the proof of Corollary 3.9 shows that every object in impMq is given as an
image of a morphism between finitely presented functors.

As we have seen in Section 2, the category impMq admits a diagrammatic approach via the
category QpPq which allows for a computer implementation. The same is true for the category
fppPop,Abq: it is equivalent to the so-called Freyd category ApPq whose objects are given by

morphisms pA ρ
Ð Rq in P, and a morphism from pA

ρ
Ð Rq to pA1 ρ

1

Ð R1q is given by a morphism
A

α
Ñ A1 such that there exists a morphism R

ω
Ñ R1 which renders the diagram

RA

R1A1

ρ

ωα

ρ1

commutative. Such a diagram represents the zero morphism if and only if α factors as α “ λ ¨ ρ1

for some morphism A
λ
Ñ R1. For details on possible constructions in ApPq, we refer the reader to

[14, Section 3]. We have an equivalence of categories given by:

ApPq Ñ fppPop,Abq : pA ρ
Ð Rq ÞÑ cokerpp´, ρqq.

Moreover, it is easy to see that the mapping

ApPq Ñ QpPq : pA ρ
Ð Rq ÞÑ pA

idA
ÝÑ A

ρ
ÐÝ Rq

gives rise to a functor such that we end up with a diagram of functors

fppPop,Abq impMq Mod-P

ApPq QpPq

„ „

commutative up to natural isomorphism. In the next section, we will characterize the case in
which the inclusion fppPop,Abq Ď impMq is an equivalence.

4 The abelian case
The goal of this section is to prove the following characterization of the abelian case.

Theorem 4.1. The following are equivalent:

1. P has weak kernels,

2. QpPq has kernels,

3. QpPq is abelian,

4. fppPop,Abq is abelian,

5. QpPq and fppPop,Abq are equal as full and replete subcategories of Mod-P,

Accepted in Compositionality on 2020-05-27. Click on the title to verify. 20



Volume 2 Issue 4 ISSN 2631-4444

6. QpPq and fppPop,Abq are equivalent as (abstract) categories,

7. fppPop,Abq has epi-mono factorizations.

The first two subsections in this section are devoted to the construction of kernels in QpPq,
and the third subsection to the proof of Theorem 4.1.

4.1 A weakening of weak pullbacks
A weak limit of a diagram in a category can be defined exactly as one would define a limit,
but without requiring the morphism induced by its universal property to be uniquely determined.
Applied to the concept of a pullback, the resulting notion is known as a weak pullback. In
this section, we introduce a further weakening: we give up the commutativity of one of the two
resulting triangles in the common pullback diagram describing its universal property.

Definition 4.2. Let P be an additive category. For a given cospan A α
ÝÑ B

γ
ÐÝ C in P, a

biased weak pullback consists of the following data:

1. An object P pα, γq P P.

2. A morphism πpα, γq : P pα, γq Ñ A with the property that there exists another morphism
ω : P pα, γq Ñ C with ω ¨ γ “ πpα, γq ¨ α. We call πpα, γq the biased weak pullback
projection.

3. An operation that constructs for T P P and a morphism τ : T Ñ A with the property
Dσ : T Ñ C : τ ¨ α “ σ ¨ γ a morphism upτq : T Ñ P pα, γq satisfying

τ “ upτq ¨ πpα, γq.

Thus, we have the following diagram in which only the indicated parts commute, and the dashed
morphism is not necessarily uniquely determined:

C B

AP pα, γq

T

ö

ö

γ

αω

πpα, γq

σ

τ

upτq

Remark 4.3. A biased weak pullback of a given cospan A
α
ÝÑ B

γ
ÐÝ C is the same as a weak

terminal object in SyzpA α
ÝÑ B

γ
ÐÝ Cq.

We say that P has biased weak pullbacks if it comes equipped with an operation construct-
ing the triple pP pα, γq, πpα, γq, uq for given input cospan A α

ÝÑ B
γ
ÐÝ C.

Lemma 4.4. The following are equivalent:

1. P has biased weak pullbacks,

2. P has weak pullbacks,

3. P has weak kernels.
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Proof. If P has biased weak pullbacks, then P pA α
ÝÑ B, 0ÝÑBq is a weak kernel of α. Moreover,

we can construct weak pullbacks from direct sums and weak kernels. Last, every weak pullback is
also a biased weak pullback.

Despite the statement of Lemma 4.4, biased weak pullbacks are important for us because of
two reasons:

1. They have fewer constraints than weak pullbacks and are thus easier to compute.

2. They are all we need in the construction of kernels in QpPq.
We demonstrate the first of these arguments with our running example RowsR.

Lemma 4.5. Let a, b, c, p P Zě0. A commutative square in RowsR

R1ˆc R1ˆb

R1ˆaR1ˆp

ö

γ

αω

π

is a biased weak pullback in RowsR with biased weak pullback projection π if and only if

impπq “ α´1pimpγqq

as submodules of R1ˆa in R-Mod.

Proof. Whenever we have a commutative square of the form

R1ˆc R1ˆb,

R1ˆaR1ˆt

ö

γ

ασ

τ

we have an inclusion impτq Ď α´1pimpγqq. Now, if impπq “ α´1pimpγqq, then we get a morphism
upτq by the projectivity of R1ˆt in R-Mod rendering the diagram

R1ˆp impπq R1ˆa

impτq

R1ˆt

ö

upτq

commutative. Thus, we get a biased weak pullback. Conversely, let R1ˆp and π define a biased
weak pullback. For a given v P α´1pimpγqq there is a w P R1ˆc such that we get a commutative
diagram

R1ˆc R1ˆb

R1ˆaR1ˆ1

ö

γ

αw

v
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where we identify the element v (resp. w) with the map starting from R1ˆ1 that sends 1 to v
(resp. w). Using the weak universal property, we get

v “ upvq ¨ π

which means v P impπq.

Using Lemma 4.5 we can demonstrate that a biased weak pullback can significantly differ from
a weak pullback. We provide a simple example:

Example 4.6. By Lemma 4.5, the cospan R1ˆa 0
ÝÑ 0 0

ÐÝ R1ˆc in RowsR admits a biased
weak pullback with projection R1ˆa id

ÝÑ R1ˆa. Assume there exists an ω : R1ˆa Ñ R1ˆc such that
idR1ˆa and ω define the projections of a weak pullback. Then there has to exist a commutative
diagram of the form

R1ˆc 0

R1ˆaR1ˆa

R1ˆc ‘R1ˆa

ω

id

ˆ

id
0

˙

ˆ

0
id

˙

ˆ

u1
u2

˙

which is absurd if c ą 0, since commutativity of the upper triangle implies u1 “ 0, u2 “ id, and
commutativity of the lower triangle implies

id “ u1 ¨ ω “ 0.

Note that R1ˆc‘R1ˆa together with its projections to its factors is actually a (weak) pullback of
the given cospan, so, this example demonstrates that the computation of biased weak pullbacks
instead of weak pullbacks might result in a significant decrease in the number of needed generators
(in this concrete example, we save c-many generators).

For computational reasons, whenever it suffices to work with biased weak pullbacks instead of
weak pullbacks, one should do so.

4.2 Kernels
We show how to construct kernels in QpPq provided P has biased weak pullbacks.

Construction 4.7. Given a morphism

α : pA γA
ÝÑ ΩA

ρA
ÐÝ RAq ÝÑ pB

γB
ÝÑ ΩB

ρB
ÐÝ RBq

in QpPq, the following diagram shows us how to construct its kernel embedding along with the
universal property:
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pA
γA
ÝÑ ΩA

ρA
ÐÝ RAq pB

γB
ÝÑ ΩB

ρB
ÐÝ RBq.

pP pα ¨ γB , ρBq
πpα¨γB ,ρBq¨γA

ÝÑ ΩA
ρA
ÐÝ RAq

pT
γT
ÝÑ ΩT

ρT
ÐÝ RT q

α

τ

πpα ¨ γB , ρBq

upτq

How to read this diagram: the solid arrow pointing down right is the kernel embedding, the solid
arrow pointing up right is a test morphism for the universal property of the kernel, and the dashed
arrow pointing straight up is the morphism induced by the universal property. The biased weak
pullback diagram needed in this construction looks as follows:

RB ΩB

AP pα ¨ γB , ρBq

T

ö

ö

ρB

α ¨ γBω

πpα ¨ γB , ρBq

ζ

τ

upτq

Note that ζ is simply a witness for the composition τ ¨ α being zero.

Correctness of the construction. To shorten notation we denote the candidate for the kernel object
by pK. Any syzygy witness of a σ P Syzp pKq can also be used as a syzygy witness of σ ¨πpα ¨γB , ρBq
in SyzpA γA

ÝÑ ΩA
ρA
ÐÝ RAq. Thus, the well-definedness property of the kernel embedding holds.

Furthermore, we can take ω as a witness for the composition of the kernel embedding with α
being zero. Moreover, the kernel embedding is a mono by Lemma 2.26.

Next, let σ P SyzpT γT
ÝÑ ΩT

ρT
ÐÝ RT q. Then σ ¨ τ P SyzpA γA

ÝÑ ΩA
ρA
ÐÝ RAq, and since

τ “ upτq ¨ πpα ¨ γB , ρBq, it follows that σ ¨ upτq P Syzp pKq. Thus, the well-definedness property of
the kernel induced morphism holds.

Last, the commutativity of the triangle in the kernel diagram already holds in AuxpPq.

Note that at no point in this proof did we need commutativity of the lower triangle in the
biased weak pullback diagram. This justifies our introduction of the concept of a biased weak
pullback.

4.3 Proof of the characterization of the abelian case
Proof of the equivalence of statements p1q ´ p3q in Theorem 4.1.
p1q ùñ p2q: If P has weak kernels, then it has biased weak pullbacks by Lemma 4.4. It

follows from Construction 4.7 that QpPq has kernels.
p2q ùñ p3q: Construction 2.29 proves that every epimorphism is the cokernel projection of its

kernel embedding in the case when QpPq has kernels, which is true by assumption. All the other
axioms of an abelian category hold due to the constructions in Section 2.
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p3q ùñ p1q: Given a morphism α : AÑ B in P, compute the kernel embedding

κ : pK Ñ ΩK Ð RKq ÝÑ embpAq

of embpαq in QpPq. Then κ : K Ñ A is a weak kernel of α.

We say an additive functor F : Pop Ñ Ab is finitely generated if it admits an epimorphism

p´, Aq� F

in Mod-P for some A P P. We will need the facts listed in the following lemma, for which we will
provide proofs for the sake of completeness. See Remark 3.3 for a recall of working with functor
categories.

Lemma 4.8.

1. The inclusion fppPop,Abq Ď Mod-P respects cokernels, epis, and monos.

2. Suppose given a short exact sequence

0 F1 F2 F3 0

in Mod-P. If F3 is finitely presented and if F2 is finitely generated, then F1 is also finitely
generated.

Proof. p1q: Let F , G be finitely presented functors with presentations p´, Aq Ñ p´, A1q and
p´, Bq Ñ p´, B1q, respectively. A morphism ν : F Ñ G lifts to a morphism p´, A1q Ñ p´, B1q,
since representable functors are projectives in Mod-P by Remark 3.3. Computing pointwise, we
see that the cokernel of ν in Mod-P is given by the cokernel of p´, A1 ‘ Bq Ñ p´, B1q, and thus,
it is finitely presented. So, the inclusion respects cokernels and in particular epis. Furthermore,
we have the following equivalences:

ν is a mono in fppPop,Abq ðñ @τ : T Ñ F P fppPop,Abq : pτ ¨ ν “ 0q ñ pτ “ 0q
ðñ @A P P : @x P F pAq :

`

p´, Aq
x
Ñ F

ν
Ñ G “ 0

˘

ñ px “ 0q
ðñ @A P P : @x P F pAq : pνpxq “ 0q ñ px “ 0q
ðñ ν is a mono in Mod-P,

where we identify elements in F pAq with their corresponding natural transformations due to the
Yoneda lemma.
p2q: The proof is the same as for modules over a ring, but now in the context of functors. Let

p´, Aq Ñ p´, A1q be a presentation of F3. Then we get a commutative diagram with exact rows

p´, Aq p´, A1q F3 0

0 F1 F2 F3 0

α β id

by the projectivity of p´, A1q and the universal property of the kernel of F2 Ñ F3. The snake
lemma implies

cokerpβq » cokerpαq.

Since F2 is finitely generated, it admits an epimorphism p´, Bq � F2 and so does cokerpβq »
cokerpαq. Now, from a projective lift
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p´, Bq

p´, Aq F1 cokerpαq 0α

λ

we can finally construct our desired epimorphism p´, A‘Bq� F1.

Proof of the equivalence of statements p1q, p4q ´ p7q in Theorem 4.1.
p1q ùñ p4q: If P has weak kernels, then Freyd has shown that fppPop,Abq is abelian (see

[14] for a constructive proof).
p4q ùñ p5q: Since the inclusion fppPop,Abq Ď Mod-P respects cokernels and epi-mono

factorizations (in particular images) by Lemma 4.8, fppPop,Abq satisfies the characterization of
Corollary 3.9.
p5q ùñ p6q: trivial.
p6q ùñ p7q: QpPq has epi-mono factorizations by Construction 2.28.
p7q ùñ p1q: Given a morphism α : AÑ B in P, compute the epi-mono factorization

p´, Aq� I ãÑ p´, Bq

of p´, αq in fppPop,Abq. Since the embedding fppPop,Abq Ď Mod-P respects epis and monos by
Lemma 4.8, I is the image of p´, αq considered as a morphism in Mod-P and as such is given by

I » p´, Aq{ kerp´, αq P fppPop,Abq.

In the short exact sequence in Mod-P

0 kerp´, αq p´, Aq I 0
εA

the object I is finitely presented and p´, Aq is finitely generated. Thus, kerp´, αq is finitely
generated by Lemma 4.8 and we get an epimorphism

p´,Kq� kerp´, αq.

Now, the composite
p´,Kq� kerp´, αq ãÑ p´, Aq

corresponds via the Yoneda lemma to a morphism

K Ñ A

in P. We claim that this morphism is a weak kernel projection of α. Given a test morphism
τ : T Ñ A in P such that τ ¨ α “ 0, we get a commutative diagram in Mod-P

p´,Kq

kerp´, αq p´, Aq p´, Bq

p´, T q

p´, αq

since p´, T q is projective. Now, by the Yoneda lemma, the dashed morphism arises from a uniquely
determined morphism T Ñ K in P.
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5 Computational applications
5.1 A non-coherent ring with decidable syzygy inclusion
Let k be a field. In this subsection, we study the ring

R :“ krxi, z | i P Ns{xxiz | i P Ny.

from a computational point of view.

Remark 5.1. R is not a coherent ring, since the kernel of the R-module homomorphism

R ÝÑ R : r ÞÑ r ¨ z

is given by
xxi | i P NyR,

which cannot be finitely generated as an R-module.
It follows that RowsR does not have weak kernels6. From Theorem 4.1, we can conclude that

QpRowsRq is not abelian, and we cannot expect to compute kernels in this category. However, the
following theorem implies that we can nevertheless perform all the constructions listed in Section
2 within QpRowsRq.

Theorem 5.2. If k is a computable field, then the category RowsR has decidable syzygy inclu-
sion.

For the proof, we proceed in three steps.

1. We give a simplification of the syzygy inclusion problem for an arbitrary additive category
P (Corollary 5.4).

2. We give an explicit description of the row syzygies for matrices over R (Lemma 5.7).

3. We solve the simplified syzygy inclusion problem for RowsR (Subsubsection 5.1.3).

5.1.1 Simplifying the syzygy inclusion problem

Lemma 5.3. Let P be an additive category. Let

A

B C

B1 C 1

γ
ρ

γ1
ρ1

be a pair of cospans in P with the same first object. Then

Syz
`

A
γ
ÝÑ B

ρ
ÐÝ C

˘

Ď Syz
`

A
γ1

ÝÑ B1
ρ1

ÐÝ C 1
˘

if and only if

Syz
`

A‘ C

¨

˝

γ
ρ

˛

‚

ÝÑ B ÐÝ 0
˘

Ď Syz
`

A‘ C

¨

˝

γ1

0

˛

‚

ÝÑ B1
ρ1

ÐÝ C 1
˘

.

Proof. “ùñ”: Given a syzygy

6 A weak kernel embedding of the morphism R1ˆ1 z
Ñ R1ˆ1 in RowsR would be a column R1ˆm Ñ R1ˆ1 whose

m P Zě0 entries span the kernel of R1ˆ1 z
Ñ R1ˆ1 in R-Mod which is impossible by Remark 5.1.

Accepted in Compositionality on 2020-05-27. Click on the title to verify. 27



Volume 2 Issue 4 ISSN 2631-4444

A‘ C B 0,

S

ˆ

γ
ρ

˙

`

σA σC
˘

we can construct another one:

A B C.

S

γ ρ

σA
´σC

By assumption, this gives us the syzygy witness ω in the diagram

A B1 C 1,

S

γ1 ρ1

σA
ω

which finally yields the desired syzygy

A‘ C B1 C 1.

S

ˆ

γ1

0

˙

ρ1

`

σA σC
˘

ω

“ðù”: Given a syzygy

A B C

S

γ ρ

σ
ω

we can construct another one:

A‘ C B 0.

S

ˆ

γ
ρ

˙

`

σ ´ω
˘

By assumption, we get the syzygy witness ω1 in the diagram

A‘ C B1 C 1

S

ˆ

γ1

0

˙

ρ1

`

σ ´ω
˘

ω1

and obtain the desired syzygy
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A B1 C 1.

S

γ1 ρ1

σ
ω1

Corollary 5.4 (Simplifying the syzygy inclusion problem). Let P be an additive category.
Then P has decidable syzygy inclusion if and only if we can create a solution of the syzygy inclusion
problem for all pairs of cospans of the special form

A

B 0

B1 C 1.

γ

γ1
ρ1

5.1.2 Describing row syzygies of matrices over R

We define several computable subrings of R “ krxi, z | i P Ns{xxiz | i P Ny that help us in
computing row syzygies. We set

Rn :“ krx1, . . . , xn, zs{xx1z, . . . , xnzy

for n P N which identifies both as a subring and as a quotient ring of R. Moreover, we will regard
the polynomial rings krxs :“ krxi | i P Ns and krzs as subrings of R.
Remark 5.5. If k is a computable field, then all the rings Rn, n P N, krxs, and krzs are also
computable. For quotients of polynomial rings in finitely many variables like Rn and krzs, this
follows from Gröbner bases techniques (see, e.g., [8]). For the polynomial ring in infinitely many
variables krxs, note that krxs is a free krx1, . . . , xms module for every m P N. In particular,
the inclusion krx1, . . . , xms ãÑ krxs is flat, which implies that we may compute the row syzygies
of a given matrix over krxs by computing the row syzygies of the same matrix considered over
krx1, . . . , xms for sufficiently large m.
Remark 5.6. We can decompose R at the level of k-vector spaces as

R “ krxs ‘
`

z ¨ krzs
˘

.

For p P R, we write p “ px`pz for the corresponding decomposition of the element, i.e., px P krxs
and pz P z ¨ krzs.

For any ring S and any matrix M P Saˆb, a, b P Zě0, we write

kerSpMq :“ tv P S1ˆa | v ¨M “ 0u

for the row kernel of M .
The next lemma reduces the problem of finding infinitely many generators for the row syzygies

of matrices over R to finding finitely many generators of row syzygies for matrices over the coherent
subrings Rn and krxs.

Lemma 5.7. Given a matrix
`

pij
˘

ij
P Raˆb for a, b P Zě0, then we can describe its row kernel

as follows:
kerR

`

pij
˘

ij
“ kerRn

`

pij
˘

ij
‘

´

xxi | i ą nyR ¨ kerkrxs
`

pijx
˘

ij

¯

where n P Zě0 is chosen such that pij P Rn for all entries of the given matrix.
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Proof. Given any row pqiqi P R1ˆa, we decompose its entries w.r.t.

R “ Rn ‘ xxi | i ą nyR,

i.e.,
qi “ si ` ti

for si P Rn and ti P xxi | i ą nyR. We compute for each j “ 1, . . . , b
a
ÿ

i“1
psi ` tiq ¨ ppijx ` p

ij
z q “ p

a
ÿ

i“1
si ¨ pijq ` p

a
ÿ

i“1
ti ¨ pijx q

Since p
řa
i“1 s

i ¨ pijq P Rn and p
řa
i“1 t

i ¨ pijx q P xxi | i ą nyR, the sum vanishes if and only if both
summands vanish. It follows that pqiqi P kerR

`

pij
˘

ij
if and only if

psiqi P kerRn

`

pij
˘

ij

and
ptiqi P kerR

`

pijx
˘

ij
X pxxi | i ą nyRq

1ˆa.

Finally,

kerR
`

pijx
˘

ij
X pxxi | i ą nyRq

1ˆa “ kerkrxs
`

pijx
˘

ij
X pxxi | i ą nykrxsq

1ˆa

“ xxi | i ą nyR ¨ kerkrxs
`

pijx
˘

ij

due to our choice of n.

5.1.3 Solving the syzygy inclusion problem for R

We solve the simplified syzygy inclusion problem for R, which, by Corollary 5.4, suffices to solve
the syzygy inclusion problem in general, which proves Theorem 5.2. Let

R1ˆa γ
ÝÑ R1ˆb ÐÝ 0

and
R1ˆa γ1

ÝÑ R1ˆb1 γ1

ÐÝ R1ˆc1

be two cospans in RowsR for a, b, b1, c1 P N. Our goal is to decide algorithmically whether

Syz
`

R1ˆa γ
ÝÑ R1ˆb ÐÝ 0

˘

Ď Syz
`

R1ˆa γ1

ÝÑ R1ˆb1 ρ1

ÐÝ R1ˆc1˘.

Choose n P N such that all entries of γ, γ1, ρ1 lie in Rn. Next, compute generators of kerRpγq
according to the description in Lemma 5.7, i.e., compute finitely many generators

σ1, . . . , σd

of kerRn
pγq for d P N, and finitely many generators

τ1, . . . , τe

of kerkrxspγxq for e P N. Note that all τi can be chosen s.t. their entries lie in krx1, . . . , xns by
Remark 5.5.

Lemma 5.8. We have

Syz
`

R1ˆa γ
ÝÑ R1ˆb ÐÝ 0

˘

Ď Syz
`

R1ˆa γ1

ÝÑ R1ˆb1 ρ1

ÐÝ R1ˆc1˘

if and only if

pR
σi
ÝÑ R1ˆaq, pR

xn`1¨τj
ÝÑ R1ˆaq P Syz

`

R1ˆa γ1

ÝÑ R1ˆb1 ρ1

ÐÝ R1ˆc1˘

for i “ 1, . . . d and j “ 1, . . . , e.
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Proof. By Lemma 5.7, the elements σi and xn`1 ¨ τj lie in Syz
`

R1ˆa γ
ÝÑ R1ˆb ÐÝ 0

˘

, so, we only
have to prove the “ðù” direction. For this direction, we have to show that an arbitrary syzygy

pR1ˆsÝÑR1ˆaq P Syz
`

R1ˆa γ
ÝÑ R1ˆb ÐÝ 0

˘

already lies in Syz
`

R1ˆa γ1

ÝÑ R1ˆb1 ρ1

ÐÝ R1ˆc1˘. Since such an arbitrary syzygy is nothing but a
collection of s-many row syzygies, we may assume that s “ 1. So, let

pR1ˆ1 σ
ÝÑ R1ˆaq P Syz

`

R1ˆa γ
ÝÑ R1ˆb ÐÝ 0

˘

be a syzygy, which means σ P kerRpγq. By Lemma 5.7, we can write σ as a sum of the form

σ “ p
d
ÿ

i“1
ri ¨ σiq ` p

ÿ

iąn
j“1,...,e

sij ¨ xi ¨ τjq

for ri, sij P R, all but finitely many equal to zero. It follows that we only need to prove

pR1ˆ1 xi¨τj
ÝÑ R1ˆaq P Syz

`

R1ˆa γ1

ÝÑ R1ˆb1 ρ1

ÐÝ R1ˆc1˘

for i ą n` 1. By assumption, we have

pR1ˆ1 xn`1¨τj
ÝÑ R1ˆaq P Syz

`

R1ˆa γ1

ÝÑ R1ˆb1 ρ1

ÐÝ R1ˆc1˘,

which means that there exists a commutative diagram of the form

R1ˆ1

R1ˆa R1ˆb1 R1ˆc1 .
γ1 ρ1

ωxn`1 ¨ τj (8)

For any i ą n` 1, we can define a ring automorphism φi of R by

φipzq :“ z,

φipxn`1q :“ xi,

φipxiq :“ xn`1,

φipxjq :“ xj , j R ti, n` 1u.

Applying φi to the diagram (8) yields

R1ˆ1

R1ˆa R1ˆb1 R1ˆc1

γ1 ρ1

φipωq
xi ¨ τj

since φi leaves γ1, ρ1, τj invariant due to our choice of n. This proves that xi ¨ τj P Syz
`

R1ˆa γ1

ÝÑ

R1ˆb1 ρ1

ÐÝ R1ˆc1˘ for i ą n ` 1 and consequently that σ is a syzygy in Syz
`

R1ˆa γ1

ÝÑ R1ˆb1 ρ1

ÐÝ

R1ˆc1˘.

Proof of Theorem 5.2. Since k is computable, the rings Rn and krxs are also computable by
Remark 5.5. In particular, we may compute the finitely many elements σ1, . . . , σd and xn`1 ¨
τ1, . . . , xn`1 ¨ τe of Lemma 5.8. By Remark 5.9 below, RowsR has decidable lifts, which means
that we can check if these finitely many elements are syzygies or not.
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Remark 5.9. If we start with a diagram

R1ˆa

R1ˆc R1ˆb
β

α

in RowsR, there exists an n P N such that all entries of α and β lie in Rn. There exists a lift

R1ˆa

R1ˆc R1ˆb
β

α

in RowsR if and only if there exists a lift in RowsRn
, since we can always apply the natural

epimorphism R� Rn to the entries of a lift in RowsR in order to obtain a lift in RowsRn
.

5.2 Subcategories of graded modules and functors
We have seen that the category constructor Qp´q applied to RowsR for a ring R yields a compu-
tational model for a certain subcategory of R-Mod. As a benefit of the abstraction that we made
in this paper, we give two more examples of additive categories that yield interesting results when
we apply Qp´q to them.

Example 5.10 (Graded modules). Let G be a group and let S be a G-graded ring, i.e., it
comes equipped with a decomposition into abelian groups S “

À

gPG Sg such that Sg ¨ Sh Ď Sgh
for all g, h P G, and the multiplicative unit of S lies in Se for e the neutral element of G. For
such a G-graded ring, we may define the category grRowsS of graded left row modules. Its
objects are given by direct sums of shifts of S (considered as a graded S-module), where the shift
by g P G of a graded left S-module M “

À

hPGMh is defined by

Mpgq :“
à

hPG

Mh¨g.

Morphisms in grRowsS are given by G-graded S-module homomorphisms, which can be identified
with matrices over S having homogeneous entries whose degrees are compatible with the shifts
occurring in the source and range. Concretely, a morphism

Spd1q ‘ ¨ ¨ ¨ ‘ Spdrq Ñ Spe1q ‘ ¨ ¨ ¨ ‘ Spesq

for d1, . . . , dr, e1, . . . , es P G, r, s P Zě0 is given by a matrix pHijqij P S
rˆs such that Hij P Sd´1

i
¨ej

for all i, j. A functor
F : grRowsop

S ÝÑ Ab
gives rise to a graded left S-module

À

gPG F pSpg
´1qq, and similar to the non-graded case described

in Example 3.1, we have an equivalence between Mod-grRowsS and the category of graded S-
modules. It follows by Corollary 3.9 that QpgrRowsSq can be seen as a computational model for
the smallest full and replete additive subcategory of all graded S-modules that includes shifts of
S, cokernels, and images.

Example 5.11 (Functors). For an additive category P, the category QpPq always has coker-
nels by Construction 2.22. Thus, QpPqop has kernels, so in particular weak kernels, which implies

QpQpPqopq » fppQpPq,Abq

by Theorem 4.1. Thus, an iterated application of Qp´q can yield a computational model for
categories of finitely presented functors on QpPq.
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