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We take a category-theoretic perspective on the relationship between probabilistic
modeling and gradient based optimization. We define two extensions of function com-
position to stochastic process subordination: one based on a co-Kleisli category and
one based on the parameterization of a category with a Lawvere theory. We show how
these extensions relate to the category of Markov kernels Stoch through a pushforward
procedure.

We extend stochastic processes to parametric statistical models and define a way to
compose the likelihood functions of these models. We demonstrate how the maximum
likelihood estimation procedure defines a family of identity-on-objects functors from
categories of statistical models to the category of supervised learning algorithms Learn.

Code to accompany this paper can be found on GitHub1.

1 Introduction
The explosive success of machine learning over the last two decades has inspired theoretical work
aimed at developing rigorous frameworks for reasoning about and extending machine learning
algorithms. For example, inspired by the inherent compositional structure at the heart of gradient
based optimization, several authors have developed category theoretic frameworks for reasoning
about neural networks and automatic differentiation [5; 9; 11; 12]. Separately, one of the most
active areas of applied category theory focuses on building a categorical framework for probability
theory and statistics. Researchers like Fritz [14], Cho and Jacobs [4], and Culbertson and Sturtz
[6; 7] have developed strategies for describing the construction of probabilistic models from data in
categorical terms. We aim to bridge these streams of research by using a probabilistic construction
to define an optimization objective.

Cho and Jacobs [4] and Culbertson and Sturtz [6; 7] explore how new data points affect their
models’ epistemic uncertainty, or uncertainty due to limited data or knowledge. For example, a
simple model of a complex nonlinear system is likely to have high epistemic uncertainty. Another
form of uncertainty is aleatoric uncertainty, or inherent uncertainty in a system that will cause
results to differ each time we run the same experiment. For example, if we aim to predict the
output of a system that includes a non-deterministic stage (such as a coin toss), we will need to
cope with aleatoric uncertainty.

Aleatoric uncertainty is common in physical systems. For example, many biological processes
will produce slightly different results based on randomness in turbulent fluid flows. For this reason,
models that approximate physical systems often implicitly or explicitly produce a probability
distribution over the possible outputs conditioned on some input [25].

Even models that produce point estimates, such as the ones described by Fong et al. [12],
can be viewed as predicting the expected value of some unknown probability distribution. For
example, suppose we have some system X → y that contains a degree of aleatoric uncertainty
such that P (y|X) is Gaussian. Now suppose we train a point estimate model that predicts y from
X such that the mean square error between the model’s predictions and the observations from
the execution of this system is minimized. This is approximately equivalent to minimizing the
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Kullback-Leibler (KL) divergence (which measures how one probability distribution is different
from a second, reference probability distribution) between a distribution with expected value given
by the model’s output and P (y|X). In this way the structure of the model’s aleatoric uncertainty
is captured in its loss function (mean square error in this case).

Now consider a physical system which has several components, each of which has some degree
of aleatoric uncertainty. Suppose we want to build a compositional model for this system. If we
use the neural network-like composition of Fong et al. [12], then we can only represent the full
model’s uncertainty with the loss function that parameterizes the backpropagation functor. As a
result, we cannot characterize the interactions between the uncertainty in the different parts of the
system.

For example, Eberhardt et al. [8] build a convolutional neural network model to assess how the
visual cortex performs a rapid stimulus categorization task. Their model includes multiple layers
which represent the hierarchy within the central nervous system from photorecepters in the eye,
to edge-detecting neurons in the primary visual cortex, to higher-order feature detectors in the
later stages of visual cortex. Although there is aleatoric uncertainty at each layer of this biological
system, Eberhardt et al. use a standard composition of neural network layers and therefore can
only represent this uncertainty with a cross-entropy loss over the model’s final output.

In this paper we describe an alternative strategy for constructing and composing parametric
models such that we can explicitly characterize how different subsystems’ uncertainties interact. We
use this strategy to build a generalized framework for training neural networks that have stochastic
processes as layers. To do this, we replace the domain of Fong et al.’s [12] Backpropagation functor
(Para, also written as Para(Euc) [16]) with a probabilistically motivated category over which we
can define the error function er : R × R → R through the maximum likelihood procedure. Our
specific contributions are to:

• Develop a strategy for composing stochastic processes that is compatible with both subordi-
nation [20] and parametric function composition [12].

• Introduce two categories with this compositional structure, one based on Para(Euc) [16] and
one based on the co-Kleisli category of the co-monad (Ω⊗ ), and explore their relationships
with each other and with the category Stoch of Markov kernels.

• Extend the category of stochastic processes to a category of parametric statistical models.

• Demonstrate that the Radon-Nikodym derivative with respect to the Lebesgue measure acts
as a semifunctor from a sub-semicategory of parametric statistical models into a semicategory
of likelihood functions.

• Define a family of subcategories of parametric statistical models over which we can use the
maximum likelihood procedure to define a backpropagation functor into the category Learn
of learning algorithms [12].

2 Preliminaries
2.1 Probability Measures, Random Variables and Markov Kernels
A probability space is a triplet (Ω,Σ, µ) where (Ω,Σ) is a measurable space and µ is a probability
measure over (Ω,Σ). That is, µ is a countably additive function over the σ-algebra Σ that returns
results in the unit interval [0, 1] such that µ(Ω) = 1, µ(∅) = 0. Recall that Σ is a set of subsets of
Ω. For some topological space Ω, we will write B(Ω) for the Borel algebra of Ω, or the smallest
σ-algebra that contains all open sets.

A random variable defined on the probability space (Ω,Σ, µ) is a measurable function from
(Ω,Σ) to (R,B(R)). We will sometimes use the term “random variable” to refer to measurable
functions into (Rn,B(Rn)) as well. These are also called multivariate random variables or random
vectors. While some authors use uppercase letters like X to denote random variables, we will use
lowercase letters like f, g to emphasize that random variables are functions. Given a probability
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space (Ω,B(Ω), µ) and a random variable f : Ω → R, the pushforward f∗µ of µ along f is a
probability measure over (R,B(R)) defined to be:

f∗µ(σR) = µ(f−1(σR)).

A Markov kernel between the measurable space (A,ΣA) and the measurable space (B,ΣB) is a
function µ : A× ΣB → [0, 1] such that:

• For all σb ∈ ΣB , the function µ( , σb) : A→ [0, 1] is measurable.

• For all xa ∈ A, µ(xa, ) : ΣB → [0, 1] is a probability measure on (B,ΣB). In particular:

µ(xa, B) = 1 µ(xa,∅) = 0.

For example, a Markov Kernel between the one-point set and the measurable space (A,ΣA) is just
a probability measure over (A,ΣA).

A stochastic process defined in the probability space (Ω,Σ, µ) is a family of random variables
indexed by some set T . That is, we can write a stochastic process as a function f : Ω × T → R.
In this paper we will limit our study to stochastic processes that are jointly Borel-measurable.
We can define the pushforward of µ along such a stochastic process f to be the Markov Kernel
f∗µ : T × B(R)→ [0, 1] where for xt ∈ T, σR ∈ B(R):

f(xt, )∗µ(σR) = µ(f(xt, )−1(σR)).

2.2 Categories
A central category that we will work in is the symmetric monoidal category Meas of measurable
spaces and measurable functions. The objects in Meas are pairs (A,ΣA), where ΣA is a σ-algebra
over A. A morphism from (A,ΣA) to (B,ΣB) in Meas is a measurable function f such that for
any σB ∈ ΣB , f−1(σB) ∈ ΣA. The tensor product of the measurable spaces (A,ΣA) and (B,ΣB)
in Meas is the space (A×B,ΣA ⊗ΣB), where ΣA ⊗ΣB is the product σ-algebra of ΣA and ΣB .
Note that Meas is not cartesian closed. Staton et al. [19] introduce a similar category QBS that
is cartesian closed. The objects in QBS are quasi-Borel spaces, or tuples (X,MX) where X is a
set and MX is a set of functions from R into X such that:

• If f ∈MX and g : R→ R is Borel measurable, then f ◦ g ∈MX .

• If f : R→ X is constant then f ∈MX .

• If R = ]i∈N Si such that each set Si is Borel and ∀i∈Nfi : R → X ∈ MX , then g is in MX ,
where g(r) = fi(r) for r ∈ Si.

We will generally work in the following subcategory of Meas:

Definition 2.1. Euc is the strict Cartesian monoidal subcategory of Meas where objects are
restricted to be (Rn,B(Rn)) for some n ∈ N and morphisms are restricted to be continuously
differentiable.

Note that in Euc the tensor product of the objects (Ra,B(Ra)) and (Rb,B(Rb)) is (Ra+b,B(Ra+b)).
Another important category that we will consider is Stoch [18; 21], which has measurable

spaces as objects and Markov kernels as morphisms. We define the composition of the Markov
kernels µ : A×ΣB → [0, 1] and µ′ : B×ΣC → [0, 1] to be the following, where xa ∈ A and σc ∈ ΣC :

(µ′ ◦ µ)(xa, σc) =
∫
xb∈B

µ′(xb, σc)dµ(xa, ).

The identity morphism at (A,ΣA) is δ where for xa ∈ A, σa ∈ ΣA:

δ(xa, σa) =
{

1 xa ∈ σa
0 xa 6∈ σa

.
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The tensor product of the Markov Kernels µ : A× ΣB → [0, 1] and µ′ : C × ΣD → [0, 1] in Stoch
is the Markov Kernel (µ′ ⊗ µ) : (A × C) × (ΣB ⊗ ΣD) → [0, 1] where ΣB ⊗ ΣD is the product
sigma-algebra and for xa ∈ Ra, xc ∈ Rc, σb ∈ ΣB , σd ∈ ΣD:

(µ′ ⊗ µ)((xa, xc), σb × σd) = µ(xa, σb)µ(xc, σd).

The objects in Stoch are also equipped with a commutative comonoidal structure that is com-
patible with the monoidal product in Stoch. Fritz et al. [14] dub categories with this structure
Markov Categories.

Definition 2.2. A Markov category is a semicartesian symmetric monoidal category (C,⊗, 1) in
which every object X is equipped with a comultiplication map cp : X → X ⊗X and a counit map
del : X → 1 that satisfy the commutative comonoid equations, naturality of del and:

cpX⊗Y = (idX ⊗ σY,X ⊗ idY )(cpX ⊗ cpY ),

where σY,X is the symmetric monoidal swap map in C.

Stoch naturally arises as the Kleisli category of the Giry Monad, which is an affine symmetric
monoidal monad that sends a measurable space to the space of probability measures over that
space [18].

Stoch has many notable subcategories based on restrictions of these measurable spaces. For
example, the category FinStoch consists of finite measurable spaces and Markov Kernels between
them. In order to be able to define regular conditional probabilities, Fong [10] and Culbertson et
al. [7] restrict to countably generated measurable spaces (CGStoch), whereas Fritz et al. [15]
restrict to standard Borel spaces (BorelStoch), which are the Borel spaces associated with Polish
spaces.

2.2.1 Random Variables and Independence in BorelStoch

In any categorical presentation of probability, a natural question is how to reason about the notion
of independence of random variables [13; 14; 17].

Since BorelStoch is the Kleisli category of the restriction of the Giry monad [18] over the
Meas-subcategory of standard Borel spaces, we can define an embedding functor from this sub-
category into BorelStoch that acts as an identity on objects and sends the measurable function
f : (A,ΣA)→ (B,ΣB) to the Dirac Markov kernel δf : A×ΣB → [0, 1] where for xa ∈ A, σb ∈ ΣB :

δf (xa, σb) =
{

1 f(xa) ∈ σb
0 f(xa) 6∈ σb

.

This formalizes the intuition that Markov Kernels are a generalization of both measurable functions
and probability measures, and provides an avenue to directly study random variables and their
independence in BorelStoch.

Now suppose we have a probability space (Ω,Σ, µ) such that (Ω,Σ) is standard Borel, and two
real-valued random variables defined on this space f, f ′. We can think of these random variables
as morphisms in Meas from (Ω,Σ) to (R,B(R)). We can represent this probability space as a
morphism in BorelStoch between 1 and (Ω,Σ): that is, a Markov kernel µ : 1×Σ→ [0, 1]. Going
forward we will write the type signature 1× Σ→ [0, 1] as Σ→ [0, 1] for convenience.

We can then represent f and f ′ with their embeddings into BorelStoch: the Dirac Markov
kernels δf , δf ′ . If we compose δf and µ in BorelStoch, we form a new probability measure
(δf ◦ µ) : B(R)→ [0, 1], which is the pushforward measure f∗µ of µ along f .

We now have a hint of how we can reason about the independence or dependence of random vari-
ables in BorelStoch. First, consider the probability measure (δf ◦µ)⊗ (δf ′ ◦µ) : B(R×R)→ [0, 1]
where for σ × σ′ ∈ B(R× R):

[(δf ◦ µ)⊗ (δf ′ ◦ µ)] (σ × σ′) =[∫
ω∈Ω

δf (ω, σ)dµ
] [∫

ω∈Ω
δf ′(ω, σ′)dµ

]
=

f∗µ(σ)f ′∗µ(σ′).
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This is simply the product measure over (R×R,B(R×R)) of the probability measures (δf ◦µ) and
(δf ′ ◦µ) over (R,B(R)). It is completely determined by the marginal distributions of f and f ′ over
the probability space (Ω,Σ, µ), and it is agnostic to the independence or dependence structure of
f and f ′. The reason for this is that the measure µ is essentially “duplicated”, and the random
variables f and f ′ are not actually compared over the same probability space.

In contrast, consider instead the probability measure (δf ⊗ δf ′) ◦ cp ◦ µ : B(R × R) → [0, 1],
where cp : Ω→ Ω⊗ Ω is the comonoidal copy map at Ω in BorelStoch [14]. We can see that for
σ × σ′ ∈ B(R× R):

[(δf ⊗ δf ′) ◦ cp ◦ µ] (σ × σ′) =
[∫

ω∈Ω
δf (ω, σ)δf ′(ω, σ′)dµ

]
.

This is the probability measure over (R × R,B(R × R)) associated with the joint distribution of
the random variables f and f ′ over (Ω,Σ, µ).

Therefore, the random variables f and f ′ are independent over the probability space (Ω,Σ, µ)
if and only if the probability measures (δf ◦ µ)⊗ (δf ′ ◦ µ) and (δf ⊗ δ′f ) ◦ cp ◦ µ are equal.

3 The co-Kleisli Construction
Fong et al. [12] and Gavranović [16] build their characterization of machine learning optimization
problems on top of the category Para(Euc) of Euclidean spaces and parameterized differentiable
maps between them. Rather than represent the loss function itself categorically, the authors treat
it as an externally-provided hyperparameter.

However, in practice the loss function is usually implied by the problem. A common problem
statement is as follows: given some parameterized random variable, derive the parameters that
maximize the likelihood of some observed data being drawn from the distribution of this ran-
dom variable. A natural question is therefore whether it is possible to replace the parameterized
differentiable maps in Para(Euc) with parameterized random variables.

Before moving to Para(Euc), we will start with the category Euc of Euclidean spaces and
differentiable maps between them. Our first step will be to replace the morphisms in Euc with
stochastic processes, or indexed families of random variables. We start with the following definition:

Definition 3.1. For some Cartesian monoidal category C and object A in C, CoKlA(C) is the
co-Kleisli category of C under the co-monad (A⊗ ).

For example, if Ω is Rn for some n ∈ N, the category CoKl(Ω,B(Ω))(Euc) (which we will
hereafter abbreviate CEuc, see Table 3.1) has the same objects as Euc, and the morphisms
between Ra and Rb are continuously differentiable (and therefore Borel-measurable) functions of
the form f : Ω× Ra → Rb. In CEuc, the composition of f : Ω× Ra → Rb and f ′ : Ω× Rb → Rc
is (f ′ ◦ f) : Ω× Ra → Rc where for ω ∈ Ω, xa ∈ Ra:

(f ′ ◦ f)(ω, xa) = f ′(ω, f(ω, xa)).

And the tensor of f : Ω × Ra → Rb and f ′ : Ω × Rc → Rd is (f ′ ⊗ f) : Ω × Ra × Rc → Rb × Rd
where for ω ∈ Ω, xa ∈ Ra, xc ∈ Rc:

(f ′ ⊗ f)(ω, (xa, xc)) = (f(ω, xa), f ′(ω, xc)).

One important thing to note is that ω is reused when we compose or tensor f and f ′. This allows
us to make the following claim:

Proposition 1. For any ω ∈ Ω, the identity-on-objects map that sends the function f : Ω×Ra → Rb
in CEuc to the function f(ω, ) : Ra → Rb in Euc is a strict monoidal functor Rω : CEuc→ Euc,
which we call the realization functor.

Proof. First, if f is the identity map in CEuc then f(ω, ) is by definition the identity function.
Next, consider f : Ω× Ra → Rb, f ′ : Ω× Rb → Rc in CEuc and any xa ∈ Ra. Then:

(Rωf ′ ◦Rωf)(xa) = (f ′(ω, ) ◦ f(ω, ))(xa) = f ′(ω, f(ω, xa)) = Rω(f ′ ◦ f)(xa)
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so composition is preserved. Finally, consider g : Ω × Ra → Rb, g′ : Ω × Rc → Rd in CEuc and
any xa ∈ Ra, xc ∈ Rc. Then:

(Rωg ⊗Rωg′)(xa, xc) = (g(ω, xa), g′(ω, xc)) = Rω(g ⊗ g′)(xa, xc)

so the monoidal tensor is preserved.

Given a probability measure µ : B(Ω)→ [0, 1], we can think of CEuc as a category of differen-
tiable stochastic processes defined on the probability space (Ω,B(Ω), µ). One particularly impor-
tant kind of stochastic process is a Levy Process. We can view Levy Processes as continuous-time
generalizations of random walks, or as Brownian motions with drift. Formally, a Levy Process is
a one-dimensional stochastic process f : Ω× R→ R defined on the probability space (Ω,B(Ω), µ)
such that:

• f( , 0) = 0 almost surely.

• For td > tc > tb > ta ∈ R, the random variables f( , tb) − f( , ta) and f( , td) − f( , tc) are
independent.

• For tb > ta ∈ R, the random variables f( , tb) − f( , ta) and f( , tb − ta) have the same
distribution.

• For any ω ∈ Ω the function f(ω, ) is continuous.

A subordinator is a non-decreasing Levy Process. That is, for any fixed ω ∈ Ω the function
f(ω, ) is non-decreasing.

Proposition 2. Continuously differentiable subordinators form a single-object subcategory of CEuc
at (R,B(R)).

Proof. First, note that the identity arrow on R is trivially a subordinator. Next, suppose f and
g are subordinators. By Lalley [20] we have that g ◦ f is a Levy Process. Since both f and g are
non-decreasing, for t2 > t1 we have for any fixed ω ∈ Ω that:

g(ω, f(ω, t2)) > g(ω, f(ω, t1)).

Therefore, g ◦ f is a subordinator as well.

3.1 Independence and Dependence in CEuc
Since all of the stochastic processes in CEuc are defined over the same probability space (Ω,B(Ω), µ),
there is a major difference between how CEuc and BorelStoch represent independence and de-
pendence. Given the arrows f : Ω × Ra → Rb and f ′ : Ω × Rc → Rd in CEuc and the vectors
xa ∈ Ra, xc ∈ Rc, the random variables f( , xa) and f ′( , xc) may be either dependent or indepen-
dent.

In order to see how this differs from the situation in BorelStoch, recall that the pushforward
of µ along the stochastic process f : Ω× Ra → Rb is a mapping from CEuc to BorelStoch such
that for xa ∈ Ra, σb ∈ B(Rb):

f∗µ(xa, σb) = f( , xa)∗µ(σb) = µ(f( , xa)−1(σb)) =
∫
ω∈Ω

δ(f(ω, xa), σb)dµ.

However, this mapping does not form a functor. We see that for f : Ω×Ra → Rb, f ′ : Ω×Rb → Rc,
xa ∈ Ra, σc ∈ B(Rc):

(f ′ ◦ f)∗ µ(xa, σc) =
∫
xb∈Rb

∫
ω∈Ω

δ(f ′(ω, xb), σc) dδ(f(ω, xa), ) dµ.

whereas:

[f ′∗µ ◦ f∗µ] (xa, σc) =
∫
xb∈Rb

(∫
ω∈Ω

δ(f ′(ω, xb), σc)dµ
)(∫

ω∈Ω
dδ(f(ω, xa), )dµ

)
.
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These are not necessarily equivalent if the random variables f ′( , xb), xb ∈ Rb are not independent
of the random variable f( , xa).

The reason for this mismatch comes down to the fact that tensor and composition in BorelStoch
are based on the Markov property. We can slightly modify CEuc to define a new category of
stochastic processes that exhibit this independence behavior.

Shorthand Name Full Name
CEuc CoKl(Ω,B(Ω))(Euc)
PEuc Para(Ω,B(Ω))∗(Euc)
DF Para(Ω,B(Ω))∗(ParaEuc(Euc))

Table 1: This paper introduces several compositional constructions for building new categories. These can
produce unwieldy names, so for readability we have abbreviated some of them here.

4 The Parameterization Construction
In order to reason about the behavior of a system of stochastic processes, it is useful to study them
in a simpler setting. There are two simple ways to do this: take pushforwards and study stochastic
processes as Markov Kernels, or take expectations and study stochastic processes as functions. In
order to make these lines of study rigorous, we first need to establish the functoriality of these
transformations. To this end, in this section we build a new category of stochastic processes such
that the map f → f∗µ described in Section 3.1 is functorial. In Sections 5.2 and 6 we will explore
the functoriality of the expectation.

In order to elevate the pushforward to a functor, we need to modify the definition of how
stochastic processes compose. Unlike in CEuc, where we treat all stochastic processes as if they
were defined over the same probability space, the category in this section will consist of stochastic
processes defined over different, non-interacting probability spaces. The composition or tensor of
two stochastic processes in this new category will produce a stochastic process over the product
of those processes’ associated probability spaces. This will allow us to treat all of the stochastic
processes in this category as if they were mutually independent.

We note that this strategy of expanding the probability space each time we introduce a new
source of randomness is commonly used by probability theorists [1; 2; 24].

4.1 An extension of Para
We will begin by slightly modifying Gavranović’s [16] Para construction, which is itself a general-
ization of Para from Fong et al. [12].

Consider the small symmetric strict monoidal categories C and D such that there exists a faith-
ful identity-on-objects monoidal functor ι : D ↪→ C. That is, we can think of D as a subcategory
of C. Then write ( ⊗A)◦ ι : D ↪→ C to denote the functor that sends the object A′ in D to A′⊗A
in C and write cB : D→ C for the constant functor that sends all objects in D to B.

Definition 4.1. For the small symmetric strict monoidal categories C and D equipped with a faith-
ful identity-on-objects monoidal functor ι : D ↪→ C, the category ParaD(C) has the same objects
as C with homset ParaD(C)[A,B] equal to the set of objects in the comma category ( ⊗A)◦ι ↓ cB.
That is, the morphisms between A and B in ParaD(C) are morphisms of the form P ⊗A→ B in
C, where P is an object in D. The composition of the arrows:

f : P ⊗A→ B ∈ ParaD(C)[A,B] f ′ : Q⊗B → C ∈ ParaD(C)[B,C]

in ParaD(C) is then as follows, where we write ◦C and ⊗C for the composition and tensor of
arrows in C respectively:

f ′ ◦ f : Q⊗ P ⊗A→ C f ′ ◦ f = f ′ ◦C (idQ ⊗C f).
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And the tensor of arrows g : P ⊗A→ B and g′ : Q⊗ C → D in ParaD(C) is:

g ⊗ g′ : P ⊗Q⊗A⊗ C → B ⊗D
g ⊗ g′ = (g ⊗C g′) ◦C (idP ⊗C σ(Q,A) ⊗C idC)

where σ(Q,A) : Q⊗A→ A⊗Q is the symmetric monoidal swap map in C. The monoidal unit 1 is
the same in ParaD(C) as in C and the identity arrow at A in ParaD(C) is −⊗C idA : 1⊗A→ A,
where idA : A→ A is the identity arrow at A in C.

Note that unlike Gavranović [16], we require C to be strict monoidal in order to ensure that
composition is associative without resorting to equivalence classes.

Proposition 3. Suppose C and C′ are small symmetric strict monoidal categories with a strict
monoidal functor F : C → C′ between them. Suppose D is a small symmetric strict monoidal
category equipped with a faithful identity-on-objects strict monoidal functor ι : D ↪→ C and that
the image of F ◦ ι is a subcategory D′ of C′. Then the map Fp : ParaD(C) → ParaD′(C′) that
applies the same actions on objects and arrows as F is a strict monoidal functor.

Proof. We will first show that Fp is a functor, and then we will show that it is strict monoidal.
Like above, we write ◦C, ⊗C, and σ(Q,A) for the composition, tensor, and symmetric monoidal
swap of arrows in C.

First note that since Fp : ParaD(C) → ParaD′(C′) applies the same actions on objects and
arrows as F : C → C′, it trivially preserves identity morphisms. Next, we will show that Fp
preserves composition. Suppose f : P ⊗ A → B, g : Q ⊗ B → C are arrows in ParaD(C). Then
we have that:

Fp(g ◦ f) = F (g ◦C (idQ ⊗C f)) = Fg ◦C′ (idQ ⊗C′ Ff) = Fpg ◦ Fpf.

Next, we will show that Fp is strict monoidal. We first note that Fp trivially preserves the monoidal
unit, since the monoidal unit is the same in C and ParaD(C). Next, suppose f : P ⊗A→ B and
g : Q⊗ C → D are arrows in ParaD(C). Then we have that:

Fp(f ⊗ g) =
F ((f ⊗C g) ◦C (idP ⊗C σ(Q,A) ⊗C idC)) =

(Ff ⊗C′ Fg) ◦C′ (idP ⊗C′ σ(Q,A) ⊗C′ idC) =
Fpf ⊗ Fpg.

4.2 A Category of Parametric Measurable Maps
In this Section, we will use the Para construction to build a new category of stochastic processes
over which the mapping f → f∗µ is functorial. In this category the tensor and composition will
have the same independence structure that they have in Stoch.

4.2.1 Lawvere Parameterization

We begin with the following definition:

Definition 4.2. Suppose C is a strict Cartesian monoidal category, O∗ is a Lawvere theory with
generating object O, and ι is a faithful identity-on-objects functor ι : O∗ ↪→ C. Then ParaO∗(C)
is a Lawvere parameterization of C.

Note that the objects in O∗ are of the form O ⊗ O ⊗ · · · ⊗ O. When the tensor is repeated
n times we will write this as On. For any strict Cartesian monoidal category C with a Lawvere
parameterization we can define a mapping Copy : ParaO∗(C) → CoKlO(C). This mapping acts
as identity-on-objects and sends the arrow f : On × A→ B in ParaO∗(C) to the following arrow
in CoKlO(C):

f ◦C (∆n−1
O ⊗C idC

A) : O ×A→ B.
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For clarity, idC
A is the identity arrow on A in C , ∆O : O → O⊗O is the copy (aka diagonal) map

in C, ∆n−1
O : O → O ⊗O ⊗ · · · ⊗O is the repeated application of this map n− 1 times and ∆0

O is
the identity on O.

Proposition 4. Copy is a full identity-on-objects strict monoidal functor.

Proof. First, we note that Copy is identity-on-objects by definition.
Next, consider any objects A,B in C and any arrow f : O × A→ B in the co-Kleisli category

of C under (O × ). Then f is also an arrow in ParaO∗(C) and Copy maps f to f . Therefore
Copy is full.

Next, since the idA arrow in ParaO∗(C) is of the form 1⊗A→ A, Copy maps it to the arrow
idA ◦C (∆0

O ⊗ idC
A) = idA. Therefore, Copy preserves identity morphisms.

Next, we will show Copy preserves composition. Suppose f : Om×A→ B and f ′ : On×B → C
are arrows in ParaO∗(C):

(Copyf ′ ◦ Copyf) =(
f ′ ◦C (∆n−1

O ⊗C idC
B)
)
◦
(
f ◦C (∆m−1

O ⊗C idC
A)
)

=
(f ′ ◦ f) ◦C (∆n+m−1

O ⊗C idC
A) =

Copy(f ′ ◦ f).

Finally, we will show that Copy preserves tensor. Suppose f : Om×A→ B and f ′ : On×C → D
are arrows in ParaO∗(C):

(Copyf ′ ⊗ Copyf) =[
f ′ ◦C (∆n−1

O ⊗C idC
C )
]
⊗
[
f ◦C (∆m−1

O ⊗C idC
A)
]

=
(f ′ ⊗ f) ◦C (∆n+m−1

O ⊗C idC
C⊗A) =

Copy(f ′ ⊗ f).

4.2.2 Applying Para to Euc

Now suppose we have a probability space (Ω,B(Ω), µ) where Ω is Rk, k ∈ N. We can form the
Lawvere theory (Ω,B(Ω))∗ with generating object (Ω,B(Ω)) and tuples (Ω,B(Ω))n = (Ωn,B(Ωn))
as objects. We can also form the faithful identity-on-objects functor ι : (Ω,B(Ω))∗ ↪→ Euc. Then
for any (Ωn,B(Ωn)) ∈ (Ω,B(Ω))∗, we can create the probability space (Ωn,B(Ωn), µn) where µn is
the product measure:

µn(σ1 × σ2 × · · · × σn) = µ(σ1)µ(σ2) · · ·µ(σn).

Now consider the Lawvere parameterization Para(Ω,B(Ω))∗(Euc) (which we will hereafter abbre-
viate PEuc). Intuitively, PEuc allows us to reason about probabilistic relationships in terms of
measurable functions rather than probability measures. We can make this probabilistic intuition
more formal. First, PEuc behaves similarly to a category of Markov Kernels and we can show the
following:

Proposition 5. We can construct a Markov Category [14] on top of PEuc by equipping each
object with the comultiplication map cp and and the counit map dc defined as follows:

cp : 1× Ra → Ra × Ra dc : 1× Ra → 1
cp(−, xa) = (xa, xa) dc(−, xa) = −

Proof in Appendix

Next, by Proposition 4, we have an identity-on-objects functor, Copy, from PEuc to CEuc.
Let’s drill deeper into this relationship. We can view an arrow of the form f : Ωn × Ra → Rb in
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PEuc as a stochastic process over (Ωn,B(Ωn), µn). However, unlike in CEuc, if we compose or ten-
sor f with another arrow in PEuc, we do not get another stochastic process over (Ωn,B(Ωn), µn).
Instead, we get a stochastic process over some other probability space. Intuitively, we can think
of the stochastic processes in PEuc as being defined over different, non-interacting probability
spaces.

Now given some arrow f : Ωn×Ra → R in PEuc and xa ∈ Ra, the measurable function f( , xa)
is a real-valued random variable over the probability space (Ωn,B(Ωn), µn). The pushforward of µn

along this random variable f( , xa)∗µn( ) is then a probability measure over the space (R,B(R)).
In general, we can extend this pushforward procedure to define a mapping between parametric

families of measurable maps and Markov Kernels. Given some f : Ωn × Ra → Rb we can define
Pushµf : Ra × B(Rb)→ [0, 1] where for xa ∈ Ra, σb ∈ B(Rb):

Pushµf(xa, σb) = f( , xa)∗µn(σb) =
∫
ωn∈Ωn

δ(f(ωn, xa), σb)dµn.

Proposition 6. The mapping Pushµ that takes a parametric family f : Ωn×Ra → Rb of measur-
able maps to the Markov Kernel f∗µn is an identity-on-objects strict monoidal functor from PEuc
to BorelStoch.

Proof. We first note that for any Ra, Pushµ trivially maps the identity at Ra in PEuc to its
identity in BorelStoch. Next, we will demonstrate that Pushµ preserves composition. Suppose
we have some f : Ωn × Ra → Rb, f ′ : Ωm × Rb → Rc, xa ∈ Ra, σc ∈ B(Rc):

Pushµ (f ′ ◦ f) (xa, σc) =∫
(ωm,ωn)∈Ωm×Ωn

δ((f ′ ◦ f)((ωm, ωn), xa), σc)dµn+m =∫
ωm∈Ωm

∫
ωn∈Ωn

δ((f ′(ωm, f(ωn, xa)), σc)dµndµm =∫
ωm∈Ωm

∫
ωn∈Ωn

∫
xb∈Rb

δ(f ′(ωm, xb), σc)dδ(f(ωn, xa), )dµndµm =∫
xb∈Rb

∫
ωm∈Ωm

∫
ωn∈Ωn

δ(f ′(ωm, xb), σc)dδ(f(ωn, xa), )dµndµm =∫
xb∈Rb

[∫
ωm∈Ωm

δ(f ′(ωm, xb), σc)dµn
] [∫

ωn∈Ωn
dδ(f(ωn, xa), )dµm

]
=∫

xb∈Rb
[Pushµf ′](xb, σc) d[Pushµf ](xa, ) =

(Pushµf ′ ◦ Pushµf)(xa, σc).

Finally, we will demonstrate that Pushµ preserves tensor. Suppose we have some f : Ωn×Ra → Rb,
f ′ : Ωm × Rc → Rd, xc ∈ Rc, xa ∈ Ra, σd ∈ B(Rd), and σb ∈ B(Rb):

Pushµ (f ′ ⊗ f) ((xc, xa), (σd × σb)) =∫
ωm∈Ωm

∫
ωn∈Ωn

δ((f ′ ⊗ f)((ωm, ωn), (xc, xa)), (σd × σb))dµmdµn =∫
ωm∈Ωm

∫
ωn∈Ωn

δ(f ′(ωm, xc), σd)δ(f(ωn, xa), σb)dµmdµn =∫
ωm∈Ωm

δ(f ′(ωm, xc), σd)dµm
∫
ωn∈Ωn

δ(f(ωn, xa)), σb)dµn =

(Pushµf ′)(xc, σd)(Pushµf)(xa, σb) =
(Pushµf ′ ⊗ Pushµf)((xa, xc), (σd ⊗ σb)).
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5 Parameterized Statistical Models
We have been discussing the arrows in PEuc as parameterized random variables, or stochastic
processes, but we can also think of them as Euc arrows with an element of randomness that
is dictated by the probability measure µ. One of the primary goals of this work is to replace
the domain of Fong et al.’s [12] Backpropagation functor, Para(Euc), with a probabilistically
motivated category over which we can define the error function er : R×R→ R through maximum
likelihood. Therefore, a natural next step is to extend PEuc to a category in which we can instead
think of the arrows as Para(Euc) arrows with an element of randomness added.

In order to do this, we will replace the stochastic processes in PEuc with parameterized stochas-
tic processes, which we will also refer to as parametric statistical models. That is, the arrows in
this category will consist of families of random variables that have two layers of parameterization:
one layer acts as the model input (e.g. the independent variable in a linear regression model) and
one layer acts as the model parameters (e.g. the slope, intercept and variance terms).

5.1 The Category DF
Given a probability space (Ω,B(Ω), µ) where Ω = Rk, k ∈ N, any stochastic process f : Ωn×Ra → Rb
in PEuc defines a stochastic relationship between values in Ra and Rb. A parametric statistical
model is a parameterized family of such relationships. For example, consider a univariate linear
regression model l : Ωn × R3 × R→ R where for ωn ∈ Ωn, [a, b, s] ∈ R3, x ∈ R:

l(ωn, [a, b, s], x) = ax+ b+ fN (0,s2)(ωn)

and fN (0,s2) is a normally distributed random variable with variance s2. Any value [a, b, s] ∈ R3

defines the stochastic process, or PEuc arrow:

l( , [a, b, s], ) : Ωn × R→ R.

For any model input value x ∈ R, the function l( , [a, b, s], x) is then a random variable defined on
the probability space (Ωn,B(Ωn), µn). Like with any ordinary univariate linear regression model,
this random variable is normally distributed on the real line.

We can define a category of such models by applying Para(Ω,B(Ω))∗ to ParaEuc(Euc) to form
the category Para(Ω,B(Ω))∗(ParaEuc(Euc)), which we will rename DF for brevity (see Table 1
for a list of all such abbreviations). This naming derives from the fact that the arrows in this
category are Discriminative and Frequentist statistical models. That is, each arrow operates as
if both the parameters and input values are fixed and only the output value is probabilistic. For
example, the homset DF[R,R] includes the linear regression model above. In contrast, generative
models and Bayesian models assume a probability distribution over the input and parameter values
respectively.

5.2 A subcategory of Gaussian-preserving transformations
Definition 5.1. A Gaussian-preserving transformation T : Ra → Rb is a function such
that for any multivariate normal random variable f : Ω → Ra defined on the probability space
(Ω,B(Ω), µ), the random variable T (f( )) : Ω→ Rb is multivariate normal and we have:∫

ω∈Ω
T (f(ω))dµ = T

(∫
ω∈Ω

f(ω)dµ
)
.

For example, any linear function is Gaussian-preserving.
Now for some probability space (Ω,B(Ω), µ) where Ω = Rk, k ∈ N, we can construct a set

of DF-arrows Nµ such that for any f ∈ Nµ with the signature f : Ωn × Rp × Ra → Rb and
ωn ∈ Ωn, xp ∈ Rp, xa ∈ Ra:

f(ωn, xp, xa) = T (xp, xa) +G(ωn)

where T (xp, ) : Ra → Rb is a Gaussian-preserving transformation and G : Ωn → Rb is a multi-
variate normal random variable defined on the probability space (Ωn,B(Ωn), µn). Note that this
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includes the univariate linear regression model l, as well as the identity arrow, since constant
distributions are multivariate normal with variance 0.

Note that Nµ is closed under the tensor in DF, since given the maps f ′ : Ωm ×Rq ×Rc → Rd,
f : Ωn × Rp × Ra → Rb in Nµ and ωm ∈ Ωm, ωn ∈ Ωn, xq ∈ Rq, xp ∈ Rp, xc ∈ Rc, xa ∈ Ra:

(f ′ ⊗ f)((ωm, ωn), (xq, xp), (xc, xa)))) =
(T ′(xq, xc) +G′(ωm), T (xp, xa) +G(ωn)) =

(T ′(xq, xc), T (xp, xa)) + (G′(ωm), G(ωn)).

Next, we will define DFNµ to be the category with the same objects as DF and arrows generated
by the composition of arrows in Nµ.

Proposition 7. DFNµ is a strict symmetric monoidal subcategory of DF.

Proof. Since DFNµ contains the identities and is closed under composition by definition, we only
need to demonstrate that DFNµ is closed under the monoidal product on arrows. We will demon-
strate that for any f, g in Ar(DFNµ) we can write g ⊗ f as a composition of arrows in Nµ. First
note that:

f = (fn ◦ ... ◦ f1) g = (gm ◦ ... ◦ g1)

where for all i ≤ n, j ≤ m, fi and gj are arrows in Nµ. Without loss of generality, we will assume
that n ≤ m, which implies that:

f = (idm ◦ idm−1 ◦ ... ◦ idn+1 ◦ fn ◦ ... ◦ f1).

We can now write the following:

g ⊗ f = (gm ⊗ idm) ◦ (gm−1 ⊗ idm−1) ◦ ... ◦ (gn+1 ⊗ idn+1) ◦ (gn ⊗ fn) ◦ ... ◦ (g1 ⊗ f1).

Since this is a composition of arrows in Nµ, g ⊗ f is in Nµ.

Proposition 8. Given any arrow f : Ωn × Rp × Ra → Rb in DFNµ and xp ∈ Rp, xa ∈ Ra,
f( , xp, xa) is a multivariate normal random variable defined on the probability space (Ωn,B(Ωn), µn).

Proof. We will show that this property holds for the arrows in Nµ and that it is preserved by
composition.

To begin, note that for any n,m, the pushforward of µm along f : Ωm → Ra is equivalent to the
pushforward of µm+n along the random variable f l(ωm, ωn) = f(ωm) where ωm ∈ Ωm, ωn ∈ Ωn.
For σa ∈ B(Ra):

f l∗µ
m+n(σa) =∫

(ωm,ωn)∈Ωm+n
δ(f l(ωm, ωn), σa)dµm+n =∫

ωm∈Ωm

∫
ωn∈Ωn

δ(f l(ωm, ωn), σa)dµmdµn =∫
ωm∈Ωm

δ(f(ωm), σa)dµm
∫
ωn∈Ωn

dµn =

f∗µ
m(σa).

By a similar argument we have that the pushforward of µm along f : Ωm → Ra is equivalent to
the pushforward of µn+m along the random variable fr(ωn, ωm) = f(ωm).

Next, we note that for any xp ∈ Rp, xa ∈ Ra and arrow f : Ωn × Rp × Ra → Rb ∈ Nµ, the
random variable f( , xp, xa) : Ωn → Rb is multivariate normal and defined on the probability space
(Ωn,B(Ωn), µn). This follows from the fact that for ωn ∈ Ωn:

f(ωn, xp, xa) = T (xp, xa) +G(ωn)
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where T (xp, xa) is a constant and G : Ωn → Rb is multivariate normal. Next, we show that for any
xp ∈ Rp, xq ∈ Rq, xa ∈ Ra, arrow f ′ : Ωm×Rq ×Rb → Rc in Nµ and arrow f : Ωn×Rp×Ra → Rb
in DF such that the random variable f( , xp, xa) : Ωn → Rb is multivariate normal, the random
variable:

(f ′ ◦ f)( , (xq, xp), xa) : Ωm+n → Rb

is multivariate normal over (Ωm+n,B(Ωm+n), µm+n) since:

(f ′ ◦ f)((ωm, ωn), (xq, xp), xa) =
f ′(ωm, xq, f(ωn, xp, xa)) =

T ′(xq, f(ωn, xp, xa)) +G′(ωm).

Since the random variable f( , xp, xa) : Ωn → Rb is multivariate normal over (Ωn,B(Ωn), µn),
by the note above we have that the random variable fr((ωm, ωn), xp, xa) = f(ωn, xp, xa) defined
over (Ωm+n,B(Ωm+n), µm+n) is multivariate normal. Since xq is constant this implies that the
following random variable is also multivariate normal:

T ′(xq, fr( , xp, xa)) : Ωm+n → Rc.

Similarly, the random variable G′l(ωm, ωn) = G′(ωm) is also multivariate normal and independent
of T (xq, fr( , xp, xa)). Therefore, we can write:

(f ′ ◦ f)((ωm, ωn), (xq, xp), xa) =
T ′(xq, f(ωn, xp, xa)) +G′(ωm) =

T ′(xq, fr((ωm, ωn), xp, xa)) +G′l(ωm, ωn).

Since this is a sum of independent normally distributed random variables, the following random
variable is also multivariate normal:

(f ′ ◦ f)( , (xq, xp), xa) : Ωm+n → Rb.

As an aside, note thatNµ itself is not closed under composition. Suppose f ′ : Ωm×Rq×Rb → Rc
and f : Ωn × Rp × Ra → Rb are in Nµ and that f ′(ωm, xq, xb) = T ′(xq, xb) + G′(ωm) where
T ′(xq, xb) = ‖xq‖1xb. Note that T ′ is Gaussian preserving since the product of a constant and a
Gaussian is Gaussian. Now if we write f(ωn, xp, xa) = T (xp, xa) +G(ωn) we see that:

(f ′ ◦ f)((ωm, ωn), (xq, xp), xa) = ‖xq‖1T (xp, xa) + ‖xq‖1G(ωn) +G′(ωm),

which we cannot express as a sum of a Gaussian-preserving transformation over Rq+p × Ra → Rb
and a multivariable normal random variable defined on (Ωn+m,B(Ωn+m), µn+m).

5.2.1 Relationship to Gauss

DFNµ is similar to the category Gauss from Section 6 of Fritz et al. [14], with a few key differences.
In Gauss, objects are natural numbers and morphisms a → b are tuples (M,C, s) where M is a
matrix in Rb×a, C is a positive semidefinite matrix in Rb×b and s is a vector in Rb.

Intuitively, the morphisms in Gauss represent transformations of random variables. That is,
(M,C, s) implicitly represents the following transformation of random variables:

g(f) = Mf + ξs,C .

Where ξs,C is a multivariate normal random variable with mean s and covariance matrix C that
is independent of f . If the random variable f is normally distributed, then g(f) is as well.

A primary difference between Gauss and DFNµ is that the morphisms in DFNµ explicitly
include the functional form of ξs,C in the morphism itself. For any arrow (M,C, s) : a→ b in Gauss
and a choice of such an ξs,C over (Ω,B(Ω), µ), we can form the DFNµ arrow f ′ : Ω×R0×Ra → Rb
where for ω ∈ Ω, xa ∈ Ra:

f ′(ω, xa) = Mxa + ξs,C(ω).

However, since this arrow is dependent on the choice of ξs,C , this mapping is not functorial.
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5.2.2 Expectation Composition

Definition 5.2. A subcategory C of DF is an Expectation Composition category if for any
f : Ωn × Rp × Ra → Rb and f ′ : Ωm × Rq × Rb → Rc in C and xp ∈ Rp, xa ∈ Ra:∫

(ωm,ωn)∈Ωm+n
f ′(ωm, xq, f(ωn, xp, xa))dµm+n =∫

ωm∈Ωm
f ′
(
ωm, xq,

∫
ωn∈Ωn

f(ωn, xp, xa)dµn
)
dµm.

Proposition 9. DFNµ is an Expectation Composition category.

Proof. We will use a proof by induction. By the definition of DFNµ , there exists some k ∈ N such
that we can express f ′ as a composition of k arrows in Nµ. First note that if k = 1, then f ′ is in
Nµ, and the statement must hold since for xq ∈ Rq, xp ∈ Rp, xa ∈ Ra:∫

(ωm,ωn)∈Ωm+n
f ′(ωm, xq, f(ωn, xp, xa))dµm+n =∫

(ωm,ωn)∈Ωm+n
T ′(xq, f(ωn, xp, xa)) +G′(ωm)dµm+n =∫

ωm∈Ωm

∫
ωn∈Ωn

T ′(xq, f(ωn, xp, xa))dµn +G′(ωm)dµm =∫
ωm∈Ωm

T ′
(
xq,

∫
ωn∈Ωn

f(ωn, xp, xa)dµn
)

+G′(ωm)dµm =∫
ωm∈Ωm

f ′
(
ωm, xq,

∫
ωn∈Ωn

f(ωn, xp, xa)dµn
)
dµm.

Next, if k > 1 then we can express f ′ = h ◦ f ′k−1, where h is in Nµ and f ′k−1 is the composition
of k − 1 arrows in Nµ. Without loss of generality we will assume f ′k−1 and h have the following
signatures:

f ′k−1 : Ωm
′
× Rq

′
× Rb → Rd h : Ωm

′′
× Rq

′′
× Rd → Rc.

Note that q′ + q′′ = q and m′ +m′′ = m. Now we can show the following, where the step marked
∗ holds by induction and xq′′ ∈ Rq′′ , xq′ ∈ Rq′ , xp ∈ Rp, xa ∈ Ra:∫

(ωm′′ ,ωm′ ,ωn)∈Ωm′′+m′+n
f ′((ωm′′ , ωm′), (xq′′ , xq′), f(ωn, xp, xa))dµm

′′+m′+n =∫
(ωm′′ ,ωm′ ,ωn)∈Ωm′′+m′+n

Th(xq′′ , f ′k−1(ωm′ , xq′ , f(ωn, xp, xa)) +Gh(ωm′′)dµm
′′+m′+n =∫

(ωm′′ ,ωm′ )∈Ωm′′+m′
h

(
ωm′′ , xq′′ ,

∫
ωn∈Ωn

f ′k−1(ωm′ , xq′ , f(ωn, xp, xa))dµn
)
dµm

′′+m′ =∗∫
(ωm′′ ,ωm′ )∈Ωm′′+m′

h

(
ωm′′ , xq′′ , f

′
k−1(ωm′ , xq′ ,

∫
ωn∈Ωn

f(ωn, xp, xa))dµn
)
dµm

′′+m′ =∫
(ωm′′ ,ωm′ )∈Ωm′′+m′

f ′
(

(ωm′′ , ωm′), (xq′′ , xq′),
∫
ωn∈Ωn

f(ωn, xp, xa)dµn
)
dµm

′′+m′ .

By induction we have that the original statement holds for all f ′, f ∈ DFNµ .

For f : Ωn × Rp × Ra → Rb in an Expectation Composition category C and xp ∈ Rp, xa ∈ Ra
the following function must be differentiable by the Leibniz integration rule:

fE(xp, xa) = Eµn [f( , xp, xa)] =
∫
ωn∈Ωn

f(ωn, xp, xa)dµn.

We can therefore define a functor Exp : C→ Para(Euc) that acts as the identity on objects and
sends the arrow f to fE .
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6 Likelihood and Learning
In this section we will apply the maximum likelihood procedure to the arrows in DF to derive the
error function er : R × R → R. We will then use this error function to define a modification of
Fong et al.’s [12] backpropagation functor. However, since different arrows in DF have likelihood
functions of different forms, we will not define a single backpropagation functor out of DF. Instead,
we will define multiple functors from subcategories of DF into Learn.

To do this, we will first define a substructure of DF with well-defined likelihood functions.
Then, we will describe a class of subcategories of DF derived from this substructure. Finally, we
will define two backpropagation functors for any subcategory in this class.

6.1 Conditional Likelihood
The conditional likelihood is a general measure of the goodness of fit of a set of parameters
and observed data for a given parametric statistical model. We can define the conditional like-
lihood of a parametric statistical model f : Ωn × Rp × Ra → Rb over the probability space
(Ωn,B(Ωn), µn) at the points xp ∈ Rp, xa ∈ Ra, xb ∈ Rb in terms of the pushforward measure of
µn along the random variable f( , xp, xa). To do this, we evaluate the Radon-Nikodym derivative
of f( , xp, xa)∗µn = µn(f( , xp, xa)−1) with respect to a reference measure at the point xb. In
this work we select the Lebesgue measure over Rb, λb, as the reference measure. Note that the
Radon-Nikodym derivative with respect to the Lebesgue measure is not defined for all measures.
For example, no discrete measure has a Radon-Nikodym derivative with respect to the Lebesgue
measure, since for any finite collection of points A in Rb, λb(A) = 0. Formally the conditional
likelihood function for f is Lf : Rp × Ra × Rb → R where for xp ∈ Rp, xa ∈ Ra, xb ∈ Rb:

Lf (xp, xa, xb) = d f( , xp, xa)∗µn

dλb
(xb).

For example, the conditional likelihood function for the univariate linear regression model l that
we introduced in Section 5.1 is Ll : R3 × R× R→ R where for [a, b, s] ∈ R3, x ∈ R, y ∈ R:

Ll([a, b, s], x, y) = 1
s
√

2π
exp

(
− (y − (ax+ b))2

2s2

)
.

Definition 6.1. An abstract conditional likelihood from Ra to Rb is a Borel-measurable and
Lebesgue-integrable function of the form L : Rp × Ra × Rb → R.

We can define the composition of the abstract conditional likelihoods L : Rp×Ra×Rb → R and
L′ : Rq×Rb×Rc → R to be (L′◦L) : Rq+p×Ra×Rc → R where for xq ∈ Rq, xp ∈ Rp, xa ∈ Ra, xc ∈ Rc:

(L′ ◦ L)((xq, xp), xa, xc) =
∫
xb∈Rb

L′(xq, xb, xc)L(xp, xa, xb)dxb.

Similarly, we can define a tensor product of abstract conditional likelihoods. The tensor of
L′ : Rq × Rc × Rd → R and L : Rp × Ra × Rb → R is (L′ ⊗ L) : Rq+p × Rc+a × Rd+b → R
where for xq ∈ Rq, xp ∈ Rp, xc ∈ Rc, xa ∈ Ra, xd ∈ Rd, xb ∈ Rb:

(L′ ⊗ L)((xq, xp), (xc, xa), (xd, xb)) = L′(xq, xc, xd)L(xp, xa, xb).

We can define a monoidal semicategory of abstract conditional likelihoods, which we name CondLikelihood.
Monoidal semicategories are similar to monoidal categories but lack identity morphisms.

Definition 6.2. A monoidal semicategory is a monoid object in SemiCat, the monoidal category
of semicategories.

The objects in CondLikelihood are spaces of the form Rn for some n ∈ N. The tensor of the
objects Ra and Rb in CondLikelihood is defined to be Ra+b. The unit of this tensor is R0.

The morphisms between Ra and Rb are equivalence classes of abstract conditional likelihood
functions such that for L,L∗ : Rp × Ra × Rb → R we have L ∼ L∗ if for all xp ∈ Rp, xa ∈ Ra, the
functions L(xp, xa, ) : Rb → R and L∗(xp, xa, ) : Rb → R are λb-a.e. equivalent.
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We define the composition and tensor of these equivalence classes in terms of their representa-
tives. That is, consider the equivalence classes L and L′ and suppose Li : Rp×Ra×Rb → R is in L
and L′j : Rq×Rb×Rc → R is in L′. Then the representatives of L′◦L are L′j◦Li for Li ∈ L, L′j ∈ L′.
Note that for any xq ∈ Rq, xp ∈ Rp, xa ∈ Ra, the functions (L′j ◦ Li)((xq, xp), xa, ) : Rc → R for
all Li ∈ L, L′j ∈ L′ are λc-a.e. equivalent, so CondLikelihood is closed under composition. The
tensor of equivalence classes is defined similarly.

However, CondLikelihood does not form a category, because objects in CondLikelihood do
not necessarily have identities. For example, for b > 0 there is no function δb : R0 × Rb × Rb → R
such that the following holds for all L : Rp × Ra × Rb → R and xp ∈ Rp, xa ∈ Ra, xb ∈ Rb:

(δb ◦ L)(xp, xa, xb) =
∫
x′
b
∈Rb

δb(xb, x′b)L(xp, xa, x′b)dx′b = L(xp, xa, xb).

Proposition 10. CondLikelihood is a monoidal semicategory.

Proof. We will first show that CondLikelihood is a semicategory. We have already shown that
CondLikelihood is closed under composition, so we simply need to show that composition is
associative. Suppose the following are representatives of three arrows in CondLikelihood:

f1 : Rp1 × Ra × Rb → R f2 : Rp2 × Rb × Rc → R f3 : Rp3 × Rc × Rd → R

Now consider the representatives of their composition f3◦(f2◦f1) : Ra → Rd and (f3◦f2)◦f1 : Ra → Rd.
For xp3 ∈ Rp3 , xp2 ∈ Rp2 , xp1 ∈ Rp1 , xa ∈ Ra, xd ∈ Rd:

(f3 ◦ (f2 ◦ f1))((xp3 , xp2 , xp1), xa, xd) =∫
xc∈Rc

f3(xp3 , xc, xd)
(∫

xb∈Rb
f2(xp2 , xb, xc)f1(xp1 , xa, xb)dxb

)
dxc =∫

xb∈Rb

(∫
xc∈Rc

f3(xp3 , xc, xd)f2(xp2 , xb, xc)dxc
)
f1(xp1 , xa, xb)dxb =

((f3 ◦ f2) ◦ f1)((xp3 , xp2 , xp1), xa, xd).

Therefore, composition in CondLikelihood is associative, so CondLikelihood is a semicategory.
Next, we will show that CondLikelihood is a monoid object in SemiCat. Note that:

Ra ⊗ (Rb ⊗ Rc) = (Ra ⊗ Rb)⊗ Rc = Ra+b+c

R0 ⊗ Ra = Ra ⊗ R0 = Ra.

Now suppose the following are representatives of three arrows in CondLikelihood:

g1 : Rp1 × Rb1 × Ra1 → R g2 : Rp2 × Rb2 × Ra2 → R g3 : Rp3 × Rb3 × Ra3 → R.

Consider the representatives of their tensor ((g3 ⊗ g2) ⊗ g1) and (g3 ⊗ (g2 ⊗ g1)). For xp3 ∈ Rp3 ,
xp2 ∈ Rp2 , xp1 ∈ Rp1 , xb3 ∈ Rb3 , xb2 ∈ Rb2 , xb1 ∈ Rb1 , xa3 ∈ Ra3 , xa2 ∈ Ra2 , and xa1 ∈ Ra1 :

((g3 ⊗ g2)⊗ g1)(((xp3 , xp2), xp1), ((xb3 , xb2), xb1), ((xa3 , xa2), xa1)) =
(g3(xp3 , xb3 , xa3)g2(xp2 , xb2 , xa2))g1(xp1 , xb1 , xa1) =
g3(xp3 , xb3 , xa3)(g2(xp2 , xb2 , xa2)g1(xp1 , xb1 , xa1)) =

(g3 ⊗ (g2 ⊗ g1))((xp3 , (xp2 , xp1)), (xb3 , (xb2 , xb1)), (xa3 , (xa2 , xa1))).

Therefore, ⊗ satisfies the associative law as well as the left and right unit laws.

If we extend from functions to generalized functions (distributions) we can form a category simi-
lar to CondLikelihood. For example, Blute et al. [3] define a category DRel of tame distributions
in which the Dirac delta δ exists as a singular distribution. The semicategory CondLikelihood is
similar in spirit to the nuclear ideal of DRel that Blute et al. describe. However, we will use condi-
tional likelihood functions to define optimization objectives, and there is no obvious way to do this
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with a singular distribution. For this reason we will keep CondLikelihood as a monoidal semi-
category. Next, given a probability space (Ω,B(Ω), µ) define DFRµ to be the substructure of DF
with the same objects, but with morphisms between Ra and Rb limited to f : Ωn ×Rp ×Ra → Rb
such that the following Borel-measurable and Lebesgue-integrable function exists:

Lf (xp, xa, xb) = d f( , xp, xa)∗µn

dλb
(xb)

where xp ∈ Rp, xa ∈ Ra, xb ∈ Rb.

Proposition 11. DFRµ is a monoidal semicategory.

Proof. We will first show that DFRµ is closed under composition. Suppose f : Ωn×Rp×Ra → Rb
and f ′ : Ωm×Rq×Rb → Rc are arrows in DFRµ . We can show that for all xa ∈ Ra, xp ∈ Rp, xq ∈ Rq
there exists some Borel-measurable and Lebesgue integrable g : Rc → R such that for σc ∈ B(Rc):

(f ′ ◦ f)( , (xq, xp), xa)∗µm+n(σc) =
∫
xc∈σc

g(xc)dλc

where λc is the Lebesgue measure over Rc:

(f ′ ◦ f)( , (xq, xp), xa)∗µm+n(σc) =∫
xb∈Rb

f ′( , xq, xb)∗µm(σc) df( , xp, xa)∗µn =∫
xb∈Rb

[∫
xc∈σc

df ′( , xq, xb)∗µm

dλc
(xc)dλc

] [
df( , xp, xa)∗µn

dλb
(xb)dλb

]
=∫

xc∈σc

[(∫
xb∈Rb

df ′( , xq, xb)∗µm

dλc
(xc)

)(
df( , xp, xa)∗µn

dλb
(xb)dλb

)]
dλc.

Next, we will show that DFRµ is closed under tensor. Suppose f : Ωn × Rp × Ra → Rb and
f ′ : Ωm×Rq×Rc → Rd are arrows in DFRµ . We can show that for all xq ∈ Rq, xp ∈ Rp, xc ∈ Rc,
xa ∈ Ra there exists some measurable g : Rd × Rb → R such that for σd × σb ∈ B(Rd × Rb):

(f ′ ⊗ f)( , (xq, xp), (xc, xa))∗µm+n(σd × σb) =
∫

(xd,xb)∈σd×σb
g(xd, xb)dλd+b

where λd+b is the Lebesgue measure over Rd+b:

(f ′ ⊗ f)( , (xq, xp), (xc, xa))∗µm+n(σd × σb) =
(f ′( , xq, xc)∗µm(σd)) (f( , xp, xa)∗µn(σb)) =[∫

xd∈σd

df ′( , xq, xc)∗µm

dλd
(xd)dλd

] [∫
xb∈σb

df( , xp, xa)∗µn

dλb
(xb)dλb

]
=∫

(xd,xb)∈σd×σb

[(
df ′( , xq, xc)∗µm

dλd
(xd)

)(
df( , xp, xa)∗µn

dλb
(xb)

)]
dλd+b.

Next, we can define the mapping RN µ : DFRµ → CondLikelihood that acts as the identity
on objects and sends any morphism f : Ωn×Rp×Ra → Rb in DFRµ to the equivalence class that
contains the function RN µf : Rp × Ra × Rb → R where for xp ∈ Rp, xa ∈ Ra, xb ∈ Rb:

RN µf(xp, xa, xb) = df( , xp, xa)∗µn

dλb
(xb).

Note that Proposition 11 implies that this function exists.

Definition 6.3. A strict monoidal semifunctor is a semifunctor F : C→ D such that:

• F (1C) = 1D
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• For o1, o2 ∈ Ob(C), F (o1 ⊗ o2) = F (o1)⊗ F (o2)

• For a1, a2 ∈ Ar(C), F (a1 ⊗ a2) = F (a1)⊗ F (a2)

Proposition 12. RN µ is a strict monoidal semifunctor.

Proof. We will first show that RN µ is a semifunctor. Suppose f : Ωn × Rp × Ra → Rb and
f ′ : Ωm × Rq × Rb → Rc are arrows in DFRµ . Then for xq ∈ Rq, xp ∈ Rp, xa ∈ Ra, xc ∈ Rc:

RN µ(f ′ ◦ f)((xq, xp), xa, xc)) =
d(f ′ ◦ f)( , (xq, xp), xa)∗µm+n

dλc
(xc) =

d
∫
xb∈Rb f

′( , xq, xb)∗µm(( )c) df( , xp, xa)∗µn

dλc
(xc) =

d
∫
xb∈Rb

[∫
x′c∈(( )c)

df ′( ,xq,xb)∗µm
dλc (x′c)dλc

]
df( , xp, xa)∗µn

dλc
(xc) =

d
∫
xb∈Rb

[∫
x′c∈(( )c)

df ′( ,xq,xb)∗µm
dλc (x′c)dλc

] [
df( ,xp,xa)∗µn)

dλb
(xb)dλb

]
dλc

(xc) =

d
∫
x′c∈( )c

[∫
xb∈Rb

df ′( ,xq,xb)∗µm
dλc (x′c)

df( ,xp,xa)∗µn)
dλb

(xb)dλb
]
dλc

dλc
(xc) =∫

xb∈Rb

df ′( , xq, xb)∗µm

dλc
(xc)

df( , xp, xa)∗µn)
dλb

(xb)dλb =

(RN µf
′ ◦ RN µf)((xq, xp), xa, xc).

Next, we will show that RN µ satisfies the conditions in Definition 6.3. Since RN µ is identity-
on-objects, the monoidal tensor has the same action on objects in DFRµ and CondLikelihood
and the monoidal unit in both DFRµ and CondLikelihood is R0, the first and second conditions
are trivial. To see that RN µ satisfies the third condition, suppose f : Ωn × Ra → Rb and
f ′ : Ωm × Rc → Rd are arrows in DFRµ . Then for xq ∈ Rq, xp ∈ Rp, xc ∈ Rc, xa ∈ Ra, xd ∈ Rd,
xb ∈ Rb:

RN µ(f ′ ⊗ f)((xq, xp), (xc, xa), (xd, xb)) =
d [(f ′ ⊗ f)( , (xq, xp), (xc, xa))∗µm+n]

dλd+b ((xd, xb)) =

d [[f ′( , xq, xc)∗µm(( )d)] [f( , xp, xa)∗µn(( )b)]]
dλd+b ((xd, xb)) =

d
[(∫

x′
d
∈( )d

df ′( ,xq,xc)∗µm
dλd

(x′d)dλd
)(∫

x′
b
∈( )b

df( ,xp,xa)∗µn
dλb

(x′b)dλb
)]

dλd+b ((xd, xb)) =

d
[∫

(x′
d
,x′
b
)∈( )d×( )b

(
df ′( ,xq,xc)∗µm

dλd
(x′d)

)(
df( ,xp,xa)∗µn

dλb
(x′b)

)
dλd+b

]
dλd+b ((xd, xb)) =(
df ′( , xq, xc)∗µm

dλd
(xd)

)(
df( , xp, xa)∗µn

dλb
(xb)

)
=

(RN µf
′ ⊗RN µf)((xq, xp), (xc, xa), (xd, xb)).

6.2 Maximum Likelihood
Suppose we have a probability space (Ra × Rb,B(Ra × Rb), τ) such that for each xa ∈ Ra, the
map τ(xa, ) : B(Rb) → [0, 1] is a probability measure. Suppose that we also have an arrow
f : Ωn × Rp × Ra → Rb in DFRµ and we want to find the xp ∈ Rp such that for each xa ∈ Ra,
the distribution f( , xp, xa)∗µn : B(Rb) → [0, 1] best approximates τ(xa, ) : B(Rb) → [0, 1]. The
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maximum expected log-likelihood estimator for f with respect to τ is the vector xp ∈ Rp that
maximizes the following function:

Lτ (xp) =
∫

(xa,xb)∈Ra×Rb
log

df( , xp, xa)∗µn

dλb
(xb)dτ.

That is, the maximum expected log-likelihood estimator for f with respect to τ is the vector xp

that maximizes the expected value of log
df( ,xp,xa)∗µn

dλb
(xb) over τ . Equivalently, xp minimizes the

weighted sum over xa of the KL-divergences between f( , xp, xa)∗µn and τ(xa, ), where the weight
of each xa is determined by τ [23].

Now suppose that instead of observing a probability space (Ra×Rb,B(Ra×Rb), τ) directly we
have a dataset of samples Sn = {(xa1 , xb1), (xa2 , xb2), ..., (xan , xbn)} in Ra×Rb. The maximum log
likelihood estimator for f with respect to this dataset is the vector xp ∈ Rp that maximizes the
function:

LSn(xp) =
n∑
i=1

log
df( , xp, xai)∗µn

dλb
(xbi).

Note that if we assume the samples in Sn are drawn from (Ra × Rb,B(Ra × Rb), τ), then by
the weak law of large numbers 1

nLSn converges to Lτ in probability as n→∞.
However, it will be challenging to derive an objective function for Fong et al.’s [12] backpropa-

gation functor from LSn directly, since their construction assumes that the error function has the
signature er : R × R → R and has an invertible derivative. We will slightly modify LSn to make
this easier.

For any j ≤ b, the jth component of f is the function f [j] : Ωn×Rp×Ra → R and the marginal
likelihood at xp ∈ Rp of this component for some sample (xai , xbi) ∈ Sn is:

lij(xp) = df( , xp, xai)[j]∗µn

dλ
(xbi [j])

where we write xbi [j] for the jth component of xbi . The maximum log-marginal likelihood estimator
for f with respect to this dataset is then the vector xp ∈ Rp that maximizes the function:

MSn(xp) =
n∑
i=1

b∑
j=1

log lij(xp).

Note that MSn(xp) = LSn(xp) when the real-valued random variables f( , xp, xai)[j] are mutually
independent for all xai .

This suggests a criterion for an error function er : R×R→ R over which we can define Fong et
al.’s [12] backpropagation functor: we want the following two real-valued functions of Rp to move
in tandem for any fixed (xa, y) ∈ Ra × R and j ≤ b:

l(xp) = er (Eµn [f( , xp, xa)[j]], y) l′(xp) = df( , xp, xa)[j]∗µn

dλ
(y).

We will now make this formal.

6.3 Learning from Likelihoods
Suppose we have a real-valued random variable f over the probability space (Ωn,B(Ωn), µn). Write
Eµn [f ] ∈ R for the expectation of f over µn:

Eµn [f ] =
∫
ωn∈Ωn

f(ωn) dµn.

And define f0 to be:

f0(ωn) = f(ωn)− Eµn [f ].

Next, suppose U : Cat→ SemiCat is the forgetful functor.
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Definition 6.4. An Expectation Composition category C is a Marginal Likelihood Factoriza-
tion Category over the measure µ : B(Ω)→ [0, 1] if the following cospan in SemiCat, where inc
and inc′ are respectively the inclusion maps of U(C) and DFRµ into U(DF)

U(C) inc
↪−−→ U(DF) inc′←−−↩ DFRµ

has a pullback U(C) hl←− CRµ
hr−→ DFRµ that satisfies the following property. There exists:

• A differentiable function with invertible derivative er : R× R→ R

• For each n ∈ N, a function αn : (Ωn → R)→ R

• For each n ∈ N, a non-negative function βn : (Ωn → R)→ R

such that for any xp ∈ Rp, xa ∈ Ra, j ≤ b and arrow in the semicategory CRµ whose image under
inc ◦ hl : CRµ → U(DF) has the signature f : Ωn × Rp × Ra → Rb, we can write:

log
df( , xp, xa)[j]∗µn

dλ
(y) =

αn(f0( , xp, xa)[j])− βn(f0( , xp, xa)[j])er (Eµn [f( , xp, xa)[j]], y) .

We will refer to er as a marginal error function of C.

Proposition 13. DFNµ is a Marginal Likelihood Factorization Category with a marginal error
function er(a, b) = (a− b)2.

Proof. To begin, consider the structure CRµ that has the same objects as DFRµ and:

CRµ [Ra,Rb] = U(DFNµ)[Ra,Rb] ∩DFRµ [Ra,Rb].

Since U(DFNµ) and DFRµ are small, this intersection is well-defined and CRµ is a semicategory.
Now note that there exist identity-on-objects and identity-on-morphisms inclusion semifunctors

idl : CRµ ↪→ U(DFNµ) idr : CRµ ↪→ DFRµ

such that the following diagram commutes:

CRµ DFRµ

U(DFNµ) U(DF)

idr

idl inc′

inc

Now consider any other semicategory C′ equipped with monic semifunctors:

l : C′ → U(DFNµ) r : C′ → DFRµ

such that the following diagram commutes:

C′ DFRµ

U(DFNµ) U(DF)

r

l inc′

inc
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Since inc and inc′ are inclusion maps, l and r must act identically on objects and morphisms.
Therefore, any object or morphism in the image of l or r must also be in CRµ , so we can define
the unique semifunctor h : C′ → CRµ that has the same action on objects and morphisms as l
and r. This implies that

idl ◦ h = l idr ◦ h = r.

And so CRµ is the pullback of the diagram:

U(DFNµ) inc
↪−−→ U(DF) inc′←−−↩ DFRµ

Next, consider some f : Ωn×Rp×Ra → Rb in CRµ , and note that for any xp ∈ Rp, xa ∈ Ra, j ≤ b,
the random variable f( , xp, xa)[j] is univariate normal. For each n ∈ N we also define the standard
deviation function sn : (Ωn → R)→ R where for g : Ωn → R:

sn(g) =
√
Eµn [(g − Eµn [g])2].

Now for any xp ∈ Rp, xa ∈ Ra, y ∈ R, j ≤ b we can write:

log
df( , xp, xa)[j]∗µn

dλ
(y) =

log
1

sn(f( , xp, xa)[j])
√

2π
exp

(
−
(
y − Eµn [f( , xp, xa)[j]]

4sn(f( , xp, xa)[j])

)2
)

=

− log(2πsn(f( , xp, xa)[j])2)
2 − 1

2sn(f( , xp, xa)[j])2 (y − Eµn [f( , xp, xa)[j]])2
.

Therefore:

αn(g) = − log(2πsn(g)2)
2 βn(g) = 1

2sn(g)2 er(a, b) = (a− b)2.

6.4 Backpropagation Functors
For any Marginal Likelihood Factorization Category C and choice of learning rate ε we can define
two kinds of backpropagation functors: one into Fong et al.’s Learn category [12] and one into a
probabilistic analog of Learn.

We will first show the functor that maps C into Learn. Write Fer for Fong et al.’s Backpropa-
gation functor with learning rate ε under the marginal error function er of C. Then we can define
the following functor that maps a parametric statistical model in C to a learning algorithm:

Eer : C→ Learn
Eer = Fer ◦ Exp.

For example, this functor sends parametric statistical models in DFNµ to learning algorithms
that minimize the square error function with gradient descent. We can think of Eer as a point
estimation functor: it sends an arrow f in C to a learner whose inference function is formed from
f ’s expectation. The higher order moments of the pushforward distributions of the arrows in C
are only used to define the loss function er.

Next, consider the strict symmetric monoidal subcategory LearnR of Learn where objects are
restricted to be Rn, n ∈ N and the tensor of objects is Rn ⊗ Rm = Rn+m. Now given the proba-
bility space (Ω,B(Ω), µ) where Ω = Rk, k ∈ N, we can form the category Para(Ω,B(Ω))∗(LearnR).
A morphism between Ra and Rb in Para(Ω,B(Ω))∗(LearnR) is a tuple (I, U, r) where I, U, r are
functions of types:

I : Rp × Ωn × Ra → Rb

U : Rp × Ωn × Ra × Rb → Rp

r : Rp × Ωn × Ra × Rb → Ωn × Ra.
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Intuitively, we can think of such a morphism as a statistical learner in which each of the inference,
update and request functions are stochastic processes over (Ωn,B(Ωn), µn).

Now since DF = Para(Ω,B(Ω))∗(Para(Euc)), by Proposition 3 the mapping:

Per : DF→ Para(Ω,B(Ω))∗(LearnR)

that applies the same actions on objects and arrows as Fer is a strict monoidal functor. Unlike Eer
however, this functor does not define the gradient update for the statistical model f in terms of its
expectation. Instead, given a parameter vector xp ∈ Rp, input vector xa ∈ Ra and output vector
xb ∈ Rb, the update function U in the image of Per will generate different updates for different
samples of ωn from (Ωn,B(Ωn), µn). This is similar to how Tensorflow Probability [22] defines the
update step for Distribution layers.

7 Discussion and Future Work
Consider once again a physical system that is composed of several components, each of which has
some degree of aleatoric uncertainty. If we construct a neural network model for this system like
we describe in Section 1, we cannot characterize the interactions between the uncertainty in the
different parts of the system. However, if we model the components of the system as stochastic
processes and apply DF composition, we can capture how the uncertainty of the component parts
combine. For example, given estimates of the kind of uncertainty inherent to the photorecepters in
the eye, edge-detecting neurons in primary visual cortex, and higher-order feature detectors in the
later stages of visual cortex, we may be able to build a more realistic model of how these sources
of uncertainty interact than the one that Eberhardt et al. [8] use to assess how the visual cortex
performs a rapid stimulus categorization task.

Once we build such a model, we can use either Eer or Per to derive a Learner with a structure
that incorporates this combined uncertainty. The functor Eer will convert the model to a point
estimator and bundle the combined uncertainty into a loss function. In contrast, Per will preserve
the uncertainty and produce a learning algorithm where both forward and backward passes are
stochastic.

One of the largest differences between this construction and those of Cho and Jacobs [4] and
Culbertson and Sturtz [6] is the treatment of model updates in the face of new data. While these
authors also describe categorical frameworks in which we can model how a new observation updates
the parameters of a statistical model, they primarily study Bayesian algorithms in which the model
parameters are represented with a probability distribution.

In contrast, our construction is inherently frequentist. While the backpropagation functors
above aim to find an optimal parameter value given the data we have seen, they make no as-
sumptions about what that value may be. Although uncertainty motivates the objective that
our parameter estimation procedure aims to optimize, the optimization algorithm does not use
it directly. Therefore, a potential future direction for this work is to extend the category DF of
deterministic and frequentist models to handle generative algorithms that model uncertainty in
the input vector and Bayesian algorithms that model uncertainty in the parameter vector.

Furthermore, our current definition of Marginal Likelihood Factorization Categories may be
overly restrictive. For example, our definition specifies that each category is characterized by a
single marginal error function er. This makes it challenging to build a theory for how we could
compose Marginal Likelihood Factorization Categories with different marginal error functions.
Another potential future direction would be to relax the restrictions on these categories or prove
that they are necessary.

8 Appendix A: Extra Proofs
8.1 Proof of Proposition 5
Proof. First, let’s note that PEuc is semicartesian because the monoidal unit (R0,B(R)0) is the
terminal object. Next, we will show that cp and dc satisfy the conditions in Definition 2.1 of Fritz
et al. [14]. Note that we write the symmetric swap map as σ : Ra ⊗ Rb → Rb ⊗ Ra.
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Commutative Comonoid Condition (Equation 2.2 in Fritz et al. [14])

(id⊗ cp) ◦ cp ◦ f =
(id⊗ cp) ◦ (f ⊗ f) =

(f ⊗ (f ⊗ f)) =
((f ⊗ f)⊗ f) =

(cp ◦ f)⊗ (id ◦ f) =
(cp⊗ id) ◦ (f ⊗ f) =

(cp⊗ id) ◦ cp ◦ f.

Commutative Comonoid Condition (Equation 2.3a in Fritz et al. [14])

(dc⊗ id) ◦ cp ◦ f = (dc⊗ id) ◦ (f ⊗ f) = 1⊗ f = f ⊗ 1 = (id ◦ f)⊗ (dc ◦ f) = (id⊗ dc) ◦ cp ◦ f.

Commutative Comonoid Condition (Equation 2.3b in Fritz et al. [14])

σ ◦ σ ◦ cp ◦ f = cp ◦ f.

Compatibility with the Monoid Structure (Equation 2.4.a in Fritz et al. [14])

dc ◦ (f ⊗ f ′) = 1 = 1⊗ 1 = (dc ◦ f)⊗ (dc ◦ f ′).

Compatibility with the Monoid Structure (Equation 2.4.b in Fritz et al. [14])

cp ◦ (f ⊗ f ′) =
(f ⊗ f ′)⊗ (f ⊗ f ′) =
f ⊗ (f ′ ⊗ f)⊗ f ′ =

f ⊗ (σ ◦ (f ⊗ f ′))⊗ f ′ =
(id⊗ σ ⊗ id) ◦ [f ⊗ f ⊗ f ′ ⊗ f ′] =

(id⊗ σ ⊗ id) ◦ [(cp ◦ f ′)⊗ (cp ◦ f ′)] .

Naturality of dc (Equation 2.5 in Fritz et al. [14])

dc ◦ f = 1 = dc ◦ (f ′ ◦ f).
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