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Compositionality of Rewriting Rules with Conditions
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Université de Paris, CNRS, IRIF, F-75205, Paris, France

We extend the notion of compositional associative rewriting as recently studied in
the rule algebra framework literature to the setting of rewriting rules with conditions.
Our methodology is category-theoretical in nature, where the definition of rule composi-
tion operations encodes the non-deterministic sequential concurrent application of rules
in Double-Pushout (DPO) and Sesqui-Pushout (SqPO) rewriting with application con-
ditions based uponM-adhesive categories. We uncover an intricate interplay between
the category-theoretical concepts of conditions on rules and morphisms, the composi-
tionality and compatibility of certain shift and transport constructions for conditions,
and thirdly the property of associativity of the composition of rules.

1 Introduction and relation to previous work
Graph rewriting has emerged as a powerful formalism to represent complex systems whose dy-
namics can be captured by a finite set of rules. The rule-based modeling approach, originally
introduced by V. Danos and C. Laneve in the early 2000s [28–30], has developed into one of the
main frameworks for the study of biochemical reaction systems (in the form of the two main frame-
works Kappa [20, 31] and BioNetGen[18, 50]). The approach proposes to model protein-protein
interaction networks using graph rewriting models, in which proteins are the vertices of a graph
whose connected components denote molecular complexes. A paradigmatic application scenario for
rule-based methods in the systems biology community is the study of signaling pathways [31, 33],
which are highly intricate biochemical reaction networks ubiquitous in living cells.

While the algorithmic aspects of graph rewriting are well-studied, programming language ap-
proaches to modeling with graphs are to date still a comparatively underdeveloped topic. Contrary
to classical term rewriting, the notion of a match of a graph rewriting rule and its effects on a
term (a graph) is subject to various definitions, allowing more or less control over possible rewrites.
In addition, the mere nature of the graphs that are being rewritten impacts both the algorithmic
design and expressiveness of graph rewriting. Category theory is a practical toolkit for equip-
ping graphs with well-defined operational semantics. Double-Pushout (DPO) rewriting [25] is a
widespread technique, partly because it does not yield side effects when rules are applied (which
makes it amenable to static analysis for instance). However, when a graph rewriting rule entails
node deletion, DPO semantics will not allow a match of such a rule to trigger if the node that
is deleted is connected outside the domain of the match (which would yield side-effects). This
has limited the practicality of DPO semantics in the context of biological modeling, where more
permissive techniques have been employed. Sesqui-Pushout (SqPO) rewriting [26] in particular is
the technique that is used to rewrite Kappa graphs [31].

Quite orthogonal to the issue of defining rule matches and effects, having access to a fine-grained
control over rule triggering is a key issue when graph rewriting is used as a modeling language. To
this aim, graph rewriting rules have been equipped with application conditions [42, 46], which can
be seen as constraints that need to be checked “on the fly” when a rewrite rule is applied.

This paper presents a compositional variant of DPO and SqPO-type rewriting for rules with
conditions in a general category-theoretical setting. From a mathematical perspective, while the
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framework of both types of rewriting developed here relies upon the original definitions of DPO-
rewriting (see e.g. [42]) and of SqPO-rewriting [26], new developments are necessary in order to
obtain the desired compositionality properties. For rules without conditions, one of the core tech-
nical obstacles has proved to be establishing a compositional associativity property for sequential
compositions of rewriting rules, which for the DPO-type case has been achieved in [11–13], and
for the SqPO-type case in [8]. The latter work also established a novel compositional concur-
rency property for SqPO-type rewriting theories. Lifting these results to the settings of rules with
application conditions is the core contribution of this work.

The main motivation for our search for compositional rewriting theories is two-fold: in the
setting of rewriting without conditions, the notion of rule algebras [8, 11, 13, 14] has been devel-
oped as a new mathematical framework to encode the concurrent and combinatorial interactions of
rewriting rules, which in particular allows one to develop principled and novel analysis techniques
for stochastic rewriting systems [11, 13, 15]. Especially the recent results of [15] hint at the inti-
mate interplay of design choices in constructing rewriting systems with regards to their dynamical
properties, and with the potential of greatly improving the tractability of the analysis of such
systems via judiciously chosen constraints on objects and rewriting rules (such as implemented in
the form of rigidity constraints in the Kappa formalism [32]).

Our second main motivation originates in the desire to analyze rewriting systems statically,
rather than via simulation-based techniques. While the traditional rewriting theory generally
approaches this problem from the viewpoint of derivation traces (i.e. sequences of rule applications
to a given input graph), we posit that a viable alternative approach may consist in focusing instead
on sequential rule compositions, which in particular when combined with application conditions is
anticipated to yield a powerful framework to study the causality of rewriting systems. For certain
specialized applications of DPO-type graph rewriting, namely those in the well-established field
of chemical graph rewriting [3, 7, 17], such types of analyses have already proven very fruitful [4–
6, 43]. Therefore, we believe that our compositional refinements described in the present paper
can provide a significant contribution to future algorithm developments in this field.

1.1 Related work
1.1.1 Traditional rewriting literature

First and foremost, the work presented in this paper relies heavily upon the rich literature on
categorical rewriting theories with its almost 50 year long history. The introduction of the seminal
concept of adhesive categories by Lack and Sobociński in the early 2000s [52, 53] and its refinement
to M-adhesive categories in the work of Ehrig et al. [22, 39, 41, 42, 47] resulted in a powerful
mathematical framework for Double-Pushout (DPO) rewriting, and in particular permitted to unify
numerous concepts from the earlier graph rewriting literature [63]. While M-adhesive categories
have been demonstrated to be capable of describing a broad range of data structures of relevance
in applications of rewriting theories (see e.g. [37] and [12] for curated lists of examples), it is only
via a second key refinement of the rewriting theory that more elaborate data structures such as e.g.
chemical molecules may be encoded: the theory of constraints and application conditions. This
theory had been a well-established component of some of the earliest categorical formulations of
graph rewriting theories since the 1980s by Habel et al. [35, 49], and was later generalized to the
M-adhesive setting as utilized in the present paper in [42, 46, 60].

Building upon this extensive body of work, and motivated by applications to modeling in the life
sciences (cf. [10] and comments below), we demonstrate in the present paper that by requiring the
underlyingM-adhesive category to satisfy certain additional technical assumptions, one obtains a
refined variant of DPO-semantics that is well suited for developing novel static analysis techniques
for rewriting systems. Referring to Remarks 1 and 2 in the main text for the precise technical
details of the relationship between our “refined” and the “traditional” DPO semantics, our work
moreover extends the traditional DPO-theory by providing an associativity theorem which had not
been previously known in the literature (cf. Theorem 6).

The second type of categorical rewriting semantics considered in this paper is the Sesqui-
Pushout (SqPO) rewriting theory introduced in [26]. Despite the importance of this type of se-
mantics especially in the modeling of biochemical reaction systems (cf. Section 1.1.2), the approach
had been considerably less well-developed than the DPO-variant, lacking in particular a theory of
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constraints and application conditions as well as notions of concurrency and associativity theorems.
While in [34] an attempt had been made to identify a special sub-class of SqPO-type rewriting
systems over M-adhesive categories in which the rewriting semantics coincides with that of the
DPO-setting, and thus allowing to reuse the theory of application condition from this setting, this
special case of “reversible” SqPO-rules constitutes too strong a restriction in order to study the
rewriting systems of relevance e.g. in biochemistry (Section 1.1.2). Building upon our earlier work
on SqPO-rewriting in the setting of rules without conditions [8], and taking advantages of the close
analogies with our refined DPO-type framework as presented in comprehensive technical detail in
the present paper, we develop these missing elements of SqPO-rewriting theory (cf. Section 5).
Referring to [26] for an extended discussion, it might finally be worthwhile to note that SqPO-
semantics in the setting of (M-) linear rules and (M-) monic matches (as is the case in the present
paper) is well known to coincide with single-pushout (SPO) semantics [54].

1.1.2 Bio- and organo-chemistry

An intriguing trend in modern rewriting theory over the past 15 years has been the development
of rule-based modeling approaches in biochemistry (Kappa [20], BioNetGen [50]) and in organic
chemistry (MØD [3]), which are based upon SqPO- and DPO-type semantics, respectively. While
an detailed discussion of the numerous sophisticated theoretical and algorithmic techniques (in-
cluding in particular various notions of static analysis techniques, cf. e.g. [1, 23, 31–33, 44, 56, 61]
and [4, 6, 7, 17, 43]) is beyond the scope of the present paper, suffice it here to comment on a
salient technical point: notably, many of the developments in the aforementioned frameworks were
not explicitly rooted in categorical rewriting theory itself, despite the foundations of the two fields
upon this type of theory. We recently demonstrated in [10] that based upon the results of the
present paper, one may not only reformulate equivalently the current implementations of chemical
rewriting theories, but one may also take advantage of our novel compositionality and associativity
results in order to formulate rule algebra and tracelet theories (see below) to develop new ap-
proaches to the static analysis of complex reaction systems and their dynamics. The encodings of
chemical molecules and their reactions as reported in [10] in both the bio- and the organo-chemical
settings are based upon typed variants of undirected simple graphs that satisfy suitable sets of
constraints, which is why we will take undirected simple graphs and rewriting rules thereof as a
running example throughout this paper.

1.1.3 Rule algebra and tracelet theory

Rule-based modeling approaches for chemical reaction systems are part of a larger class of theo-
ries known as stochastic rewriting theories. Over the past five years, we have demonstrated that
one may express such systems based upon the general theory of continuous-time Markov chains
(CTMCs) [58], leading to the so-called stochastic mechanics framework [8, 10–13, 15]. At the
core of this framework is the notion of rule algebras, which encode the non-determinism in the
choices of admissible matches in sequential compositions of rules via the construction of a certain
binary operation (on a vector space whose basis is indexed by equivalence classes of linear rules).
As explained in detail in [12, 15], since the “blueprint” of this type of construction in the general
mathematics and in particular combinatorics literature is provided by the operations of derivative
and multiplication by formal variables acting upon the space of formal power series, the aforemen-
tioned binary operation must satisfy two fundamental technical properties: it must be associative
(in the standard sense of associativity of binary operations), and it must possess a neutral element.
Referring to loc. cit. for the precise technical details, the former property requires an associativity
theorem for sequential rule compositions, while the latter property requires the underlying cate-
gory to possess a (strict)M-initial object. Finally, in order to formulate the stochastic rewriting
theories themselves, it is necessary to endow the rule algebras with canonical representations, the
construction of which in turn hinges on the concurrency theorems for the respective sort of rewrit-
ing. The technical results presented in the present paper have been recently applied in [10] to
establish precisely the rule algebra theories for linear rules with conditions both in DPO- and in
SqPO-semantics.

A second recent line of developments has been the introduction of the theory of tracelets in [9],
which also relies heavily on the technical results of the present paper. Intuitively, while the
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aforementioned rule algebraic constructions aim to reason based upon rule algebra products of
linear rules (which, in a sense, encode “sums over all possible ways to compose rules”), the con-
cept of tracelets is more directly related to the classical rewriting-theoretical notion of derivation
traces [26, 37, 63]. We refer the interested readers to [9] for an in-depth review of the relationship of
tracelet theory with the traditional concepts of concurrency and related static analysis techniques,
mentioning here only the fact that yet again this new theory relies upon the notion of associative
compositional rewriting theories.

1.2 A motivating example: rewriting simple graphs
Since our main constructions will be somewhat technical, let us start with a simple example in order
to provide the readers with an intuitive picture of the main concepts. To this end, consider the
task of defining a sound notion of rewriting for undirected simple graphs, the type of graphs where
at most one undirected edge may exist between any two given vertices of the graph, as opposed
to undirected multigraphs. While there exist various attempts in the literature to encode simple
graphs directly via a suitable category-theoretical construction (cf. e.g. [2, 21, 22, 26, 34]), the
disadvantage of such an approach consists of the fact that these categories are not M-adhesive,
and thus do not permit to profit from the constructions for M-adhesive categories available in
the general DPO-rewriting framework. In fact, constructions of simple graph categories such as
RDFGraph of [21] (for a notion of directed typed simple graphs called RDF graphs) or SGraph
of [2, 26] (of undirected simple graphs) are well known to lack uniqueness of pushout complements
(POCs), quintessential in defining DPO-semantics (Section 4) as well as (compositional) SqPO-
semantics (Section 5) in the first place. Albeit several elaborate workarounds to this problem have
been considered in the literature (such as e.g. the minimal-POC-PO semantics for RDF-graph
rewriting in [21]), these workarounds introduce alterations to the rewriting semantics that do not
necessarily reflect the intuitions one might have for simple graph rewriting from a mathematics or
general applied sciences background.

To circumvent these issues, we will instead start our construction from a “host category”
uGraph of undirected multigraphs1 [10, 12, 59] that is itself M-adhesive and satisfies all re-
quirements to admit compositional rewriting theories of both DPO- and SqPO-type. Imposing the
aforementioned structural constraint prohibiting parallel edges via the framework of conditions,
we obtain an algorithmically versatile implementation of simple graphs. Following the rewriting
theory paradigms, one may envision manipulating graphs via application of graph rewriting rules.
Intuitively, specifying a rewriting rule amounts to providing the following data:

• An Input pattern I,

• an Output pattern O, and

• a Kontext pattern K together with embedding morphisms i : K ↪→ I and o : K ↪→ O.

Then in order to apply a rule r := (O o←−↩ K i
↪−→ I) to a graph G, one has to

1. specify an embedding m : I ↪→ G of the input pattern I into G (i.e. one has to select a
particular occurrence of the pattern I in G), referred to as a match,

2. in m(I) ⊂ G, replace m(I) with m ◦ i(K), and

3. “glue” a copy of O onto m ◦ i(K) (according to the embedding morphism o : K ↪→ O).

For example, one may consider the rewriting rules

e+ := ( ←↩ ↪→ ) , e− := ( ←↩ ↪→ ) , (1)

which implement the manipulations of adding a new edge between two vertices (e+) and deleting
an edge between two vertices (e−). However, in the setting of rewriting of simple graphs, the

1Interestingly, the category uGraph constitutes one of the simplest non-trivial examples of a category that is
M-adhesive, but not adhesive, unlike the prototypical example of an adhesive category Graph [52].
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above tentative definition for the rewriting of graphs is as of yet incomplete. For example, given
the graph below,

e1 2

3

,

if we were to apply our edge creation rule at a match comprising the vertices marked 1 and 2, we
would produce the non-simple graph depicted below (with e′ the newly produced edge):

e

e′

1 2

3

Therefore, in order to ensure that our transformations via application of rules keep intact the
constraint of graphs to be simple, we need to endow the rules with application conditions. While this
approach is well known in the rewriting literature, it turns out that, via a careful re-implementation
of the traditional framework, some interesting mathematical structures may be uncovered: rules
with conditions are endowed with a structure of composition operation that allows one to synthesize
sequences of causally sound rewriting steps without reference to a host object. Crucially, this
operation can be shown to be associative. Contact with the traditional techniques of rewriting is
then made in the form of a suitable adaption of the concurrency theorem, whereby a sequence of
rule applications to a given object can always be equivalently described by a “one-shot” application
of a sequential composite of the rules to that object (i.e. in a sense characterizing the effect of
the sequential rule applications by the application of a single composite rule). The most subtle
part of our results then consists in a certain compositional associativity property present in triple
sequential compositions of rules.

To relate to the example at hand, in addition to using the standard application condition
technique to express constraints on rules (such as the constraint that the edge creation rule should
only be applied to a graph if its input is matched to two vertices that are not already linked), we
will also be able to compute causal information, such as e.g. that applying the edge creation rule
e+ followed by applying the edge deletion rule e− (in a fashion such as to delete the previously
created edge) will lead to a rule with no effect, which can only be applied at two vertices that
cannot be already linked (transforming the graph identically). Finally, we will present examples of
the property of associativity in Examples 5 and 6 in the setting of DPO- and SqPO-type rewriting
theories, respectively.

1.3 Overview of main results and structure of the paper
The main results of this paper are summarized as follows (cf. Figure 1):

• We provide a self-contained account of all category-theoretical prerequisites and specialized
definitions extracted from the rich literature on categorical rewriting theories (Sections 2
and 3; Appendix 6), intended not least as an entry-point for the general applied category
theory audience.

• For Double-Pushout (DPO) rewriting (Section 4), we identify a set of sufficient assumptions
on the underlying categories such that the resulting rewriting theories have suitable composi-
tionality properties (in the sense of a certain form of concurrency and associativity properties
of sequential rule compositions). This part of our theory is thus to a large extent a care-
ful “fine-tuning” of results from the traditional DPO-rewriting literature, combined with a
number of original results.

• For Sesqui-Pushout (SqPO) rewriting (Section 5), we present the first-of-its-kind category-
theoretical compositional SqPO-type rewriting theory for rules with conditions, profiting
from fruitful analogies to results in the DPO-type theory as presented in the first part of the
paper.
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Category theory (Section 2):
· M-adhesive categories (Sections 2.1 and 2.2)
· Assumptions for DPO- and SqPO-settings (Section 2.3)
· Collection of technical lemmas (Appendix A)

Conditions (Section 3)
· Core definitions (Section 3.1)
· Refined Shift construction (Section 3.2)

Compositional associative DPO and SqPO rewriting (Sections 4 and 5):
· DPO/SqPO rewriting w/o conditions (Sections 4.1/5.1)
· Trans construction (DPO: Section 4.2/SqPO: Section 5.2)
· Refined DPO/SqPO rule composition w/ conditions (Sections 4.3/5.3)
· DPO/SqPO compositional concurrency theorems (Section 4.4/5.4)
· DPO/SqPO compositional associativity theorems (Section 4.5/5.5)

Figure 1: Structure and original contributions of the paper.

2 Category-theoretical preliminaries
Rewriting in its modern formulations is a concept that heavily relies on specific types of categorical
structures. In this section, we collect all the necessary prerequisites that allow one to formulate
consistent frameworks of associative rewriting theories with conditions on objects and morphisms,
in both the Double-Pushout (DPO) and the Sesqui-Pushout (SqPO) approaches. While many of
the mathematical details of these setups are by now standard in the literature, we will emphasize
the specific additional conditions that are required in order to guarantee associativity (in the sense
of [11]) and compositionality, where both of these properties concern concurrent compositions of
rules with conditions.

2.1 M-adhesive categories
We begin by quoting a number of essential definitions and standard results from the literature,
where our main references will be [22, 42, 46] (see also [62, 64] for some more recent works). Let
us first recall the notion ofM-adhesive categories, which is the most general mathematical setting
currently known that allows one to define DPO- and SqPO-type rewriting theories, and which
generalizes adhesive categories [53].

Definition 1 ([22], Def. 2.1) Let C be a category, and let M be a class of monomorphisms. Then
the data (C,M) defines an M-adhesive category if the following requirements are satisfied:

(i) The classM⊂ mor(C) contains all isomorphisms and is closed under

(a) composition,
∀g ◦ f ∈ mor(C) : f ∈M∧ g ∈M⇒ g ◦ f ∈M , (2)

(b) decomposition,
∀g ◦ f ∈M : g ∈M⇒ f ∈M . (3)

(ii) C has pushouts and pullbacks alongM morphisms, i.e. pushouts of spans and pullbacks of
cospans where at least one of the two morphisms of the (co-) span is inM exist.
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(iii) M morphisms are closed under pushouts and pullbacks: if in the diagram below (1) is a
pushout, then m ∈M implies n ∈M, while if (1) is a pullback, then n ∈M implies m ∈M:

A C

B D

m (1) n

(4)

(iv) Pushouts along M-morphisms are M-van Kampen (M-VK) squares (also referred to as
vertical weak VK squares in the literature): given a commutative cube in C as shown below,
where the bottom square is a pushout along anM-morphism m ∈M, the back faces are both
pullbacks, and if b, c, d ∈M, then the top face is a pushout if and only if the two front faces
are pullbacks.

A′ C ′

B′ D′

A C

B D

c

b

m

f d . (5)

For certain applications, it is also of interest to consider a variant of the definition called weak
M-adhesive categories, which are categories in which all of the above axioms hold except for the
M-VK property; the latter is modified to the weakM-VK property:

(iv)’ Pushouts alongM-morphisms are weakM-van Kampen (M-VK) squares: given a commu-
tative cube in C as shown in (5), where the bottom square is a pushout along anM-morphism
m ∈M, the back faces are both pullbacks, and if

(b, c, d ∈M) or (f ∈M) ,

then the top face is a pushout if and only if the two front faces are pullbacks.

Strictly speaking, several points in the above definition are redundant, since the closure under
isomorphisms (i) and the decomposition property (ib) are known to follow directly from closure
under compositions and stability of M-morphisms under pullbacks (see Appendix B for the for-
mer property). It is moreover worthwhile to note that in some of the earlier literature (cf. [41]
for a review), several authors referred to categories satisfying properties (i− iv) as vertical weak
M-adhesive categories, and by analogy to categories satisfying (i − iii) and only the second al-
ternative of (iv′) (i.e. that the “horizontal” morphisms m and f should be in M) as horizontal
weak M-adhesive categories. In practice (cf. e.g. [12] for a review and a list of examples), most
categories considered in the rewriting literature in fact qualify as both horizontal and vertical weak
M-adhesive categories, yet since a few exceptions only satisfy the vertical variant, and since more-
over in the relevant proofs only this variant is required, the standard convention has become to
refer to the vertical variant simply asM-adhesive categories [22]. M-adhesive categories enjoy a
number of special properties (some of which referred to in the literature as high-level replacement
(HLR) properties) that will be important to our main constructions. We collect these properties
in Appendix A.

As advocated in particular in the work of Ehrig [22], one of the optimal compromises for
a general setting in which DPO (and, as we shall see, also SqPO) rewriting theories involving
constraints on objects and morphisms can be formulated efficiently is provided by M-adhesive
categories with certain additional special properties. A central role in this setup is played by the
following concepts:
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Definition 2 (M-initial object; [22], Def. 2.5) An object ∅ of anM-adhesive category C is defined
to be an M-initial object if for each object A ∈ obj(C) there exists a unique monomorphism
iA : ∅ ↪→ A, which is moreover required to be in M. An M-initial object ∅ is said to be strict if
for each object X ∈ obj(C), every morphism X → ∅ must be an isomorphism.

Lemma 1 ([22], Fact 2.6) If anM-adhesive category C possesses anM-initial object ∅ ∈ obj(C),
then the category has finite coproducts, and moreover the coproduct injections are in M. In
particular, the coproduct A + B of two objects A,B ∈ obj(C) is then given as the pushout of the
span (A iA←− ∅ iB−→ B).

For later convenience, we present a number of consequences of an M-adhesive category pos-
sessing a (strict)M-initial object in Appendix D.

Definition 3 (Finite objects, finitary categories, finitary restrictions; [22], Def. 2.8 and Def. 4.1) Let
C be anM-adhesive category. An object A ∈ obj(C) is said to be finite, if there exist only finitely
many isoclasses of M-morphisms B ↪→ A into A (i.e. if “A has finitely many M-subobjects”). C
is finitary if all its objects are finite. Let Cfin denote the full subcatgory of C spanned by finite
objects, and let Mfin denote the class of M-morphisms between finite objects. Then we refer to
(Cfin,Mfin) as the finitary restriction of C.

Theorem 1 ([22], Thm. 3.14) The finitary restriction (Cfin,Mfin) of an M-adhesive category
C is a finitaryM-adhesive category.

Definition 4 (Epi-M-factorizations; cf. e.g. [46], Def. 3) An M-adhesive category C is said to
possess an epi-M-factorization if every morphism f of C can be factorized into an epimorphism e
and a monomorphism m ∈ M such that f = m ◦ e, and such that this factorization is unique up
to isomorphism.

It is worthwhile to note that a large class ofM-adhesive categories of practical importance (see
e.g. the examples listed below) indeed possess an epi-M-factorization.

Example 1 Referring to [22, Ex. 2.3ff] and [37, Section 4.2] for further details, well-known exam-
ples ofM-adhesive categories withM-initial objects include:

• (Set,MS), the category of sets and (total) set functions, with MS the class of all injective
set morphisms, and with theMS-initial object the empty set ∅S ∈ obj(Set).

• (uGraph,MU ), the category of undirected multigraphs [12] and graph homomorphisms,
with MU the class of all injective homomorphisms of uGraph, and with MU -initial object
the empty graph ∅U ∈ obj(uGraph).

• (Graph,MG), the category of directed multigraphs, withMG the class of all injective graph
homomorphisms, and withMG-initial object the empty graph ∅G ∈ obj(Graph).

• (GraphTG,MTG), the category of typed graphs and morphisms thereof (constructed as the
slice category GraphTG := Graph/TG for some fixed type graph TG ∈ Graph), withMTG

the class of all injective typed graph homomorphisms.

• The categories of Petri nets and of elementary Petri nets [22, Ex. 2.3ff] are M-adhesive
andM-initial for certain classes ofM.

All categories in the above list possess an epi-M-factorization, as do their finitary restrictions. For
example, in Graph, every graph homomorphism can be factored into the a surjective composed with
an injective graph homomorphism. Interestingly, the well-known non-examples, which are certain
categories of (typed or untyped) attributed graphs, fail to possess an M-initial object and an epi-
M-factorization. There exist a number of functorial constructions that allow one to construct
finitary M-adhesive categories with the desired properties from known such categories. We refer
the reader to [22, Sec. 5] for the details.
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One of the most important additional properties required in view of compositionality of rewrit-
ing rules is the following one:

Definition 5 (M-effective unions) Let C be an M-adhesive category, for M a class of monomor-
phisms. Then C is said to possess M-effective unions if for every commutative diagram as below
where all morphisms except d are inM, where (1) is a pushout and where the exterior square is a
pullback,

A

B C

D

E

b′ c′

(1)

b

e

c

f

∃! d

, (6)

the morphism d is inM.

While adhesive categories (which constitute a special case of M-adhesive categories where
M = mono(C)) are well known to posses (mono(C)-) effective unions [53], we are not aware of a
set of sufficient conditions to ensure the property ofM-effective unions in the generalM-adhesive
case. Referring to [12] for an extended discussion, for some of these more general cases such as for
the category uGraph [10] the following technical result allows one to verify the property:

Theorem 2 ([12], Thm. 1.15) Let C be a horizontal weakM-adhesive category. Then in a diagram
of the form (6), the morphism d is a monomorphism (however not necessarily in the classM).

Finally, the property of balancedness defined below will be an essential ingredient for our
rewriting framework (cf. Theorem 3).

Definition 6 (compare [53], Lem. 4.9) A category is said to be balanced if every morphism that is
both a mono- and an epimorphism is an isomorphism.

2.2 Additional prerequisites for the Sesqui-Pushout (SqPO) framework
Referring to [8] for a more extensive presentation, we focus here on quoting some necessary back-
ground materials, and on discussing the generalM-adhesive setting.

Definition 7 (Final Pullback Complement (FPC); [26, 55]) Given a commutative diagram of the
form

P

B A

C D

Q

x

w

yc

a

b

d

z

∃! w ∗

, (7)

a pair of morphisms (d, b) is a final pullback complement (FPC) of a pair (c, a) if

(i) (a, b) is a pullback of (c, d), and

(ii) for each collection of morphisms (x, y, z, w) as in (7), where (x, y) is pullback of (c, z) and
where a◦w = x, there exists a morphism w∗ with d◦w∗ = z and w∗ ◦y = b◦w that is unique
(up to isomorphisms).
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Lemma 2 (cf [55], Fact 2, and [26], Lemma 2ff) For an arbitrary morphism f : A→ B, (idB , f) is
an FPC of (f, idA) and vice versa. Moreover, every pushout square is also an FPC square. FPCs
are unique up to isomorphism and preserve monomorphisms.

If we are working over an adhesive category (i.e. an M-adhesive category where M coincides
with the class of all monomorphisms [22]), the stability of monomorphisms under FPCs as guar-
anteed by Lemma 2 will be sufficient for our purposes. However, in the more generalM-adhesive
setting, we will have to require the following stronger property:

Definition 8 (Stability ofM-morphisms under FPCs) Let C be anM-adhesive category (forM a
class of monomorphisms). ThenM-morphisms in C are said to be stable under FPCs if whenever
for a pair of morphisms (a, b) with a : A ↪→ B in M and b : C → B arbitrary, if (b′, a′) such that
a ◦ b = b′ ◦ a′ is the FPC of (a, b), then b′ ∈M.

2.3 Summary: full set of assumptions for DPO and SqPO rewriting
Combining all findings of the previous two sections (together with some insights from the con-
structions presented in the following sections), we present here sets of requirements for associative
Double-Pushout (DPO) and Sesqui-Pushout (SqPO) rewriting that admit conditions on both ob-
jects and morphisms. As we were primarily motivated by deriving a sufficient set of assumptions
in order to study rewriting theories in the life-sciences (as in [10]), we have not attempted to prove
that the assumptions provided are strictly necessary, albeit the latter point might in itself provide
an interesting direction for future work.

Assumption 1 (Associative DPO rewriting with conditions) We assume that C is an M-adhesive
category with epi-M-factorization. We also assume that C is balanced, possesses a strictM-initial
object ∅ ∈ obj(C) and M-effective unions.

Note that according to [53, Lem. 4.9], all adhesive categories are balanced, while for the general
case the requirement is more non-trivial to demonstrate. An example of the former class which
also satisfies all additional assumptions stated above is given by the category Graph of directed
multigraphs [53], while a more general example of anM-adhesive category satisfying Assumption 1
is given by the category uGraph [10, 12] of undirected multigraphs.

Assumption 2 (Associative SqPO rewriting with conditions) We assume that C is an M-adhesive
category satisfying Assumption 1, and we assume in addition that for all pairs of composableM-
morphisms A

m
↪−→ B

n
↪−→ C, the final pullback complement exists, and moreover that M-morphisms

are stable under FPCs.

According to [27], examples of M-adhesive categories for which the existence of FPCs as re-
quired in Assumption 2 is guaranteed are those categories that possess anM-partial map classifier
(cf. [27, Thm. 1 and Sec. 2–5]; compare [24]). While we refer the interested readers to these
references for the full technical details, we mention here that examples of categories possessing
anM-partial map classifier include theM-adhesive categories Set and Graph, all presheaf cat-
egories, numerous variants of typed or polarized graphs, and more generally all slice categories
C ↓ X with C a topos and X ∈ obj(C). To the best of our knowledge there are no known suf-
ficient conditions to guarantee this stability property, other than a result by J.R.B. Cockett and
S. Lack [24, Prop. 4.16 and Example 4.17], which however in effect only reaffirms the case of C
being an adhesive category. In the generalM-adhesive setting,M-stability under FPCs will have
to be verified at a case-by-case level. Note that the guaranteed existence of final pullback comple-
ments in the configurations encountered in SqPO rewriting will drastically simplify the framework,
and is in fact necessary to guarantee associativity as discussed in [8].

3 Conditions on objects and morphisms
The central concepts of the framework of conditions are the following notions of constraints (i.e.
conditions over objects), application conditions (i.e. conditions over morphisms) and the associated
notions of satisfiability. We quote the precise definitions from [42], and also from [46], where some
important clarifying details are given (on the notion of satisfiability on objects and morphisms).
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3.1 Core definitions
Definition 9 (Conditions; cf. [42], Def. 3.3, and [46], Def. 4) (Nested) conditions are recursively
defined as follows:

(i) Trivial condition: for every object P ∈ obj(C), true is a condition over P .

(ii) “Transported” conditions: for every object P ∈ obj(C), for every2 M-morphism (a : P → Q)
and for every condition cQ over Q, ∃(a : P → Q, cQ) is a condition over P .

(iii) Negation: for every condition cP over P ∈ obj(C), ¬cP is a condition over P .

(iv) Conjunction: given a family of conditions {c(i)
P }i∈I (for some index set I) over an object

P ∈ obj(C), ∧i∈Ic(i)
P is a condition over P .

The following two shorthand notations are customary:

∃a := ∃(a, true) , ∀(a, c) := ¬∃(a,¬c) . (8)

The precise meaning of the above definitions is specified via the associated notions of satisfiability,
which are also defined inductively:

S1 EveryM-morphism p : P → P ′ satisfies the trivial condition true.

S2 Given M-morphisms p : P → P ′ and a : P → Q as well as a condition ∃(a, cQ) over
P , the morphism p is defined to satisfy the condition ∃(a, cQ) if and only if there exists an
M-morphism q : Q→ P ′ such that q ◦ a = p and such that q satisfies the condition cQ,

P Q cQ

P ′

a

p q
� . (9)

S3 Given anM-morphism p : P → P ′ and a condition cP over P , p satisfies ¬cP if it does not
satisfy cP . If {c(i)

P }i∈I (for some indexing set I) is a family of conditions over P , p satisfies
∧i∈Ic(i)

P if it satisfies each of the application conditions cPi
.

For anM-morphism p : P → P ′, we write

p � cP

to denote that p satisfies the condition cP . Two application conditions cP , c′P over some object
P ∈ obj(C) are equivalent, denoted cP ≡ c′P , if and only if for allM-morphisms p : P → H, i.e.
for arbitrary H ∈ obj(C) with P as anM-subobject, we find that

p � cP ⇔ p � c′P . (10)

Finally, a (nested) condition or constraint on an object P ∈ obj(C) is defined as a (nested)
condition over the M-initial object ∅, and the associated notion of satisfiability of constraints as
satisfaction of the condition over ∅ by theM-initial morphism (iP : ∅ ↪→ P ) ∈M [46]:

C1 Every object P ∈ obj(C) satisfies true.

C2 An object P ∈ obj(C) satisfies the condition ∃(iQ : ∅→ Q, cQ) if there exists anM-morphism
q : Q→ P such that q ◦ iQ = iP and q � cQ.

2It is here that our restriction toM-morphisms in the formulation of conditions reflects our choice of framework,
i.e. that ofM-satisfiability (forM-morphisms). We refer the interested readers to [46] for the proof that this is in
fact the most general framework available when working with M-morphisms in matches and rewriting rules only,
i.e. generalizing morphisms in conditions of arbitrary morphisms in this setting does not lead to more expressivity.
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C3 Given an object P ∈ obj(C) and a condition c∅ over theM-initial object ∅, P satisfies ¬c∅
if it does not satisfy c∅.

C4 If {c(i)
∅ }i∈I (for some indexing set I) is a family of conditions over ∅, P satisfies ∧i∈Ic(i)

∅ if
it satisfies each of the conditions c(i)

∅ .

It may be instructive to the readers to explicitly parse the potentially somewhat counter-
intuitive definition of conditions on objects in a concrete example:

Example 2 Given an object P ∈ obj(C), a condition of the form “P contains an M-subobject Q”
is expressed in the present framework as P � ∃(iQ) = ∃(iQ : ∅ → Q, true), since by virtue of
the definition of satisfiability of conditions on objects, P � ∃(iQ) iff there exists an M-morphism
q : Q→ P such that q ◦ iQ = iP :

∅∃(iQ) Q true

P

iQ

iP
q

�� (11)

Next, consider the following example for illustration of the concept of nested conditions. We
will, in practice, be interested exclusively in finite nested conditions, i.e. in sequences (or in general
directed acyclic graphs) of conditions that ultimately end in an instance of a condition of the form
∃(x, true). In this sense, the example below is sufficiently generic.

Example 3 The condition below (on undirected multigraphs)

∃
(
a :

1
→ 1 2 ,∃

(
b : 1 2 → 1 2 , true

))
(12)

parses more explicitly into the diagram

1 1 2 1 2

G

∃(b, true)

true∃(a, ∃(b, true)) a b

p
q

r

(13)

expressing the condition that a morphism p : 1 ↪→ G satisfies the condition if G contains at least one
other vertex 2 (which is the information encoded in the first part of the condition), and such that

1 and 2 are linked by an edge. Moreover, theM-morphism q in the above diagram automatically
exists if the entire condition is satisfied. This is in fact a typical example of refinement (or M-
coverability [46]), whereby the condition ∃(a, true) is refined by the condition ∃(a,∃(b, true)).

3.2 A refined notion of shift construction
One of the key concepts in the theory of rewriting with conditions is the notion of shift construction,
which is, in essence, a category-theoretical characterization of the interplay between conditions and
extensions of their domains. We introduce here an optimized version of the classical shift construc-
tion presented in [42]) (which is itself a variant of an earlier construction as reviewed in [46]). Our
optimization hinges on the assumed properties of the underlyingM-adhesive categories according
to Assumption 1. We believe this optimization will be of key importance in future developments of
algorithms and software implementations of our framework. The following theorem is at the basis
of our novel construction:
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Theorem 3 Given an M-adhesive category C satisfying Assumption 1, consider a commutative
diagram of the form below,

X

B1 A

D B2

E

b1

b2
d1

e1

a1

a2(1)

x

e
d2

e2

(14)

where the square marked (1) is a pushout, where a1, a2 ∈M (and thus by stability ofM-morphisms
under pushout also d1, d2 ∈ M), e1, e2 ∈ M and X = PB(B1

e1−→ E
e2←−B2) (and thus by stability

of M-morphisms under pullbacks also b1, b2 ∈ M, plus due to the decomposition property of M
morphisms, also x ∈ M). Then the following holds: the morphism e is an epimorphism if and
only if the exterior square is a pushout.

Proof: “⇒” direction: Suppose that the exterior square in (14) is a pushout. Let e = m ◦ f be

B1 A

D B2

B′
1 X ′

F B′
2

B1 X

E B2

f

m

e

B1 A

D B2

B1 X

F ′ B2

B1 X

E B2

f ′

m′

e

(15)

the epi-M-factorization of e (with (f : D → F ) ∈ epi(C) and (m : F → E) ∈M). Then construct
the commutative diagram presented in the left part of (15) as follows: form the two pullbacks
B′i = PB(F →E ← Bi), which by the universal property of pullbacks also induces morphisms
Bi → B′i (for i = 1, 2); according to Lemma 13 of Appendix C, we conclude that B′1 ∼= B1 and
B′2 ∼= B2. Next, let X ′ = PB(B′1 → F ← B′2); by the universal property of pullbacks, this implies
the existence of morphisms A→ X ′ and X ′ →X (and by decomposition of M-morphisms, the
latter is in M). Since the square just constructed is a pullback, the bottom square a pushout
alongM-morphisms (and thus a pullback), and since, due to B′i ∼= Bi (for i = 1, 2) and m ∈ M,
Lemma 12(i)c entails that the bottom left and bottom front vertical squares are pullbacks, we
conclude via invoking pullback-pullback decomposition (Lemma 12(iii)a) that also the bottom
back and bottom right vertical squares are pullbacks. Thus by virtue of stability of isomorphisms
under pullbacks (Lemma 12(i)d), X ′ ∼= X. Moreover, the M-van Kampen property entails that
the middle horizontal square is a pushout, whence by uniqueness of pushouts up to isomorphism,
we have that F ∼= E, which proves the claim that e = m ◦ f ∈ epi(C).
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“⇐” direction: Suppose that e ∈ epi(C) and that the exterior square in (14) is a pullback.
Construct the commutative diagram depicted in the right part of (15) as follows: start by forming
the pushout F ′ = PO(B1 ← X → B2), which by the universal property of pushouts (recalling that
the top square is by assumption also a pushout) furnishes morphisms f ′ : D→ F ′ and m′ : F ′ →E
such that e = m′ ◦ f ′. By stability ofM-morphisms under pushouts, the morphisms B1 → F ′ and
B2 → F ′ are in M. The top commutative cube thus precisely satisfies the properties necessary
to invoke the theorem in the “⇒” direction, in order to conclude that f ′ ∈ epi(C). Since by as-
sumption e ∈ epi(C), and since e = m′ ◦ f ′, invoking decomposition of epimorphisms yields that
m′ ∈ epi(C). On the other hand, since by assumption the bottom square is a pullback, invoking the
property ofM-effective unions permits us to conclude that m′ ∈ M. As the underlying category
is assumed to be balanced, and sinceM ⊆ mono(C), we conclude that m′ ∈ iso(C), i.e. F ′ ∼= E,
which proves that the bottom square is a pushout (by uniqueness of pushouts, and since pushouts
alongM-morphisms are also pullbacks). �

An interesting consequence of the above theorem is the following result, which allows one to
compare our technical framework more directly with the traditional literature:

Corollary 1 In anM-adhesive category C satisfying Assumption 1, given twoM-morphisms (c1 :
C1 ↪→ D), (c2 : C2 ↪→ D) ∈M, let theM-morphisms

(c′1 : C1 ↪→ D̄) , (c′2 : C2 ↪→ D̄) , (d : D̄ ↪→ D) ∈M

be defined (uniquely up to isomorphisms) as follows: denoting by (C1 ←↩ X ↪→ C2) the pullback of
the cospan (c1, c2), define (c′1, c′2) as the pushout of this span, and let d be defined as the induced
morphism from D̄ into D. Then the cospan (c′1, c′2) is jointly epimorphic.

Proof: Given that c1, c2, d ∈ M (which follows from stability of M-morphisms under pullback
and pushout, and from the property of M-effective unions, respectively), construct the following
commutative diagram:

X

∅

C1 C1 + C2 C2

D̄

D

c1 c2

c′
1 c′

2

d

inC1 inC2

e

(16)

Here, given the unique M-morphisms (∅ ↪→ C1), (∅ ↪→ C2) and (∅ ↪→ X) from the M-initial
object ∅, and with (C1 ↪→ C1 + C2 ←↩ C2) the pushout of (C1 ←↩ ∅ ↪→ C2), the existence of the
morphism (e : C1 + C2 → D̄) follows by the universal property of pushouts. Then it follows via
invoking Theorem 3 that e is an epimorphism. �

We will take advantage of this corollary when discussing the results of Theorem 4 below as well
as the notion of DPO-type rule compositions in its various forms in Section 4.1. Theorem 4 below
constitutes another interesting consequence of Theorem 3, deriving an algorithmic refinement of the
so-called Shift construction, which allows one to extend application conditions to larger contexts:

Theorem 4 (Shift construction; compare [46], Thm. 5 and Lem. 3, [42] Lem. 3.11) Given an M-
adhesive category C satisfying Assumption 1, there exists a shift construction, denoted Shift, such
that for every condition cP over an object P ∈ obj(P ) and for every M-morphism p : P → Q,
an M-morphism n ◦ p : P→ H (with n ∈ M) satisfies the condition cP iff (n : Q→H) satisfies
Shift(p, cP ), referred to as the shift of cP along p:

n ◦ p � cP ⇔ n � Shift(p, cP ) , (17a)
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with

PcP Q Shift(p, cP )

H

p

n◦p n

� � . (17b)

Here, the application condition Shift(p, cP ) is constructed inductively as follows:

(i) Case cP = true:
Shift(p, true) := true . (18)

(ii) Case cP = ∃(a, cA) (for some (a : P → A) ∈ M and cA an application condition over
A ∈ obj(C)): construct the commutative diagram below, where the square marked PO is
a pushout3:

X

Q P

S A

cA

EShift(s, cA)

p′′

a′

p

PO

x

a

p′

s

a′′

r

e

(19)

Here, each M-morphism x : P → X such that there exist M-morphisms p′′ : X → Q and
a′′ : X → A, and with p′′ ◦ x = p and a′′ ◦ x = a, induces an object E and M-morphisms

r : Q→ E and s : A→ E via taking the pushout of the span (Q p′′
←− X a′′

−−→A). Since objects
in C are assumed to be finite, which entails in particular that there are only finitely many
M-subobjects of Q and A, up to isomorphisms of spans (induced by isomorphisms of X)

there are only finitely many isomorphism classes of spans (Q p′′
←− X a′′

−−→A). Denoting the set
of all isomorphism classes ofM-morphism pairs (r, s) thus obtained by E, we define

Shift(p,∃(a, cA)) :=
∨

(r,s)∈E
∃(r,Shift(s, cA)) . (20)

(iii) Case cP = ¬c′P :
Shift(b,¬c′P ) := ¬Shift(b, c′P ) . (21)

(iv) Case ∧i∈Ici:
Shift(b,∧i∈Ici) := ∧i∈IShift(b, ci) (22)

Proof: We will closely follow the proof strategy of [42, Lem. 3.11], adapted to our variant of the
Shift construction (and proving en passent the equivalence of our construction to the ones of [46,
Thm. 5 and Lem. 3] and [42, Lem. 3.11], see Remark 1 below). The statement is trivially true for
the case cP = true. For the case cP = ∃(a : P ↪→ A, cA) of a nested application condition, we will
prove the claim by induction over the levels of nesting.

3Besides a more concrete characterization of Shift, we also profit from restricting all morphisms involved in
this construction (except for the epimorphisms e) to be M-morphisms, which in particular guarantees due to the
assumedM-adhesivity of the underlying category C that the pushout to form the object S always exists.
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X

Q P

S A

cA

E

Shift(s, cA)

H

p′′

a′

p

PO

x

a

p′

s

a′′

r

e

n

m

h

(23)

“⇒” direction: Suppose that n◦p � ∃(a : P ↪→ A, cA), and take (20) as the induction hypothesis
in case that cA is itself a nested condition. By definition of satisfiability, this entails that there
exists (m : A ↪→ H) ∈ M such that m ◦ a = n ◦ p. Construct the span (p′′, a′′) by taking the
pullback of the cospan (n,m), which by universal property of pullbacks furnishes a morphism
x : P → X. By stability ofM-morphisms under pullbacks, we find that p′′, a′′ ∈ M, and thus by
the decomposition property ofM-morphisms also that x ∈ M. Next, construct the cospan (r, s)
via taking the pushout of the span (p′′, a′′), which by stability of M-morphisms under pushout
entails that r, s ∈ M. By the universal property of pushouts, there exist morphisms e : S → E
and h : E → H (see (23)), with e ∈ epi(C) (via Theorem 3) and h ∈ M (viaM-effective unions).
By definition of satisfiability, m � cA and m = h ◦ s together with the induction hypothesis for
cA entail that h � Shift(s, cA). Again invoking the definition of satisfiability, since h ◦ r = n and
h � Shift(s, cA), we have thus verified that indeed n � ∃(r,Shift(s, cA).

“⇐” direction: Let us assume that n � Shift(p,∃(a, cA)), with the shifted condition constructed
according to (20). We have to verify that this entails n ◦ p � ∃(a, cA). Combining the assumption
with the definition of satisfiability of conditions, there must exist r, s, h ∈ M such that h ◦ r = n
and h � Shift(s, cA). By the induction assumption, h � Shift(s, cA) entails that the morphism
m ∈ M given by m := h ◦ s (see (23)) satisfies m � cA. Since by construction m ◦ a = n ◦ p, by
definition of satisfiability we have thus demonstrated that indeed n ◦ p � ∃(a, cA).

Finally, the proof of statements (iii) and (iv) is obtained in an analogous fashion. �

Remark 1 Since an algorithmically tractable Shift construction is quintessential for developing a
calculus of compositional rewriting, let us briefly discuss the precise relationship of our refined
construction to the pre-existing constructions in the literature, highlighting in particular the nature
of the refinement:

• In the variant of the Shift construction and corresponding proof strategy presented in [42,
Lem. 3.11], the authors base their construction upon assuming a priori that a set of cospans

F = {(a′, p′) ∈ E ′ | p′ ∈M ∧ �(P,Q,E,A) commutes}

is provided, where no additional properties for the commutative squares �(P,Q,E,A) are
required. As for the class of cospans E ′, the origin of this class in [42] is an E ′-M-pair fac-
torization property that is assumed to hold for the category C, whereby any cospan (f1, f2) of
arbitrary morphisms (fi : Ci → D) ∈ mor(C) (i = 1, 2) factors uniquely up to isomorphisms
as

f1 = m ◦ e1 , f2 = m ◦ e2 , m ∈M , (e1, e2) ∈ E ′ .
On the one hand, this construction permits to consider the seemingly more general case
of conditions formulated in terms of non-M-morphisms, which however according to highly
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technical results presented in [46] in fact does not increase the expressivity of the calculus of
conditions. On the other hand, the construction of Ehrig et al. is strictly more general than
ours in that it permits to consider non-monic matches for applications of linear rules. Yet
for anM-adhesive category C satisfying Assumption 1 and for the case ofM-morphisms as
admissible matches, Corollary 1 entails that our construction is mathematically equivalent to
the one of [42, Lem. 3.11], since in this case the relevant E ′-M-pair-factorizations of cospans
of M-morphisms are precisely of the form presented in the corollary. From an algorithmic
standpoint, the class E ′ is typically non-trivial to construct, whereas our construction based
upon the results of Theorem 3 only requires algorithmically rather concrete notions of “form-
ing all larger overlaps” (Q←↩ X ↪→A) starting from a given “overlap” (Q ←↩ P ↪→ A). In
summary, for categories satisfying Assumption 1, our construction thus constitutes a certain
algorithmic refinement of the “traditional” Ehrig et al. construction.

• The construction of [46, Thm. 5 and Lem. 3] was developed for the setting ofM-morphisms
as admissible matches as in our case. This variant of a Shift construction is based upon a
shape of commutative diagram as in (23) without the subdiagrams involving the object X and
morphisms incident to it. Instead, the authors devise an algorithm whereby one iterates over
the triples of morphisms (r, s, e) such that r, s ∈ M, e ∈ epi(C) and such that the diagram
commutes. Inspecting the proof of Theorem 4, our refined construction precisely mirrors this
algorithmic idea, yet it provides by virtue of Theorem 3 also a concrete construction principle
for such triples of morphisms (which was not available in [46]).

• Finally, it is worthwhile noting that the complexity of the Shift construction may be signifi-
cantly reduced4 in an alternative setting within which conditions as well as satisfiability are
defined not in terms of M-morphisms, but in terms of arbitrary morphisms [57, Lem .1].
However, this generalized setting is unfortunately not the setting relevant to the type of com-
positional rewriting theories considered in the present paper (i.e. those that satisfy both con-
currency and associativity properties), which is why we indeed must necessarily rely upon the
M-morphism variant of the Shift construction as presented in Theorem 4.

As a first application of our refined Shift construction, let us consider a special situation for
shifts that plays a role later on in the theory of compositions of rewriting rules:

Lemma 3 (Shift along coproduct injections) Let C be anM-adhesive category satisfying Assump-
tion 1. Let P,Q ∈ obj(C) be objects, and let ∃(a : P → A, cA) be a condition over P . Then
Shift(P → P +Q,∃(a : P → A, cA)) is computed via the following type of diagram:

P + W

P + Q P

A + Q A

cA

EShift(s, cA)

[idP ,w1]

inP

inP

PO a

inA

s

[a,w2]

r

e

(24)

Proof: Consider the following specialization of Lemma 16: starting from the diagram depicted
in (14), anyM-morphism f : X → P +Q decomposes into the form [fp, fq] : XP +XQ → P +Q
(where XP + XQ

∼= X and fp, fq ∈ M), and analogously the morphism x : P → X decomposes
into the pair of M-morphisms [g, h] : P ′ + P ′′ → XP + XQ (with P ′ + P ′′ ∼= P ). But since by
commutativity of the diagram in (24) [fp, fq] ◦ [g, h] = inP , it follows that P ′ ∼= P and P ′′ ∼= ∅,
which upon invoking Theorem 4 proves the claim. �

4We would like to thank one of the anonymous reviewers for drawing our attention to this result.
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Example 4 As an illustrative application of Lemma 3, consider the following explicit computation
in the category uGraph of undirected multigraphs (which satisfies Assumption 1, with ∅ the empty
graph):

PO (25)

The image demonstrates how the shift along the embedding of the two-vertex graph with an edge
(highlighted in orange) into a disjoint union with a “square” graph yields a condition over this
disjoint union of graphs that tests for a disjoint pattern, but also (via the only other possible
non-trivial overlap up to isomorphisms, along an additional disjoint vertex marked in blue) an
alternative condition that tests for a non-disjoint pattern:

Shift
(

→ ,∃
(

→ , true
))

= ∃
(

→ , true
) ∨

∃
(

→ , true
)
.

(26)

Finally, we will require two additional technical lemmas of key importance to our framework
of compositional rewriting. Both results rely on the notion of equivalences of conditions (see
Definition 9 and equation (10)).

Lemma 4 (Units for Shift) For every object P ∈ obj(C) and for every condition cP over P , we
have that

Shift(idP : P → P, cP ) ≡ cP . (27)

Proof: This follows directly from the definition of Shift according to Theorem 4, by specializing (17)
in the form

n ◦ idP = n � cP ⇔ n � Shift(idP , cP ) , (28a)

with

PcP P Shift(idP , cP )

H

idP

n◦idP =n
n

� � . (28b)

�

Lemma 5 (Compositionality of Shift; compare [45], Fact 3.14) Let X ∈ obj(C) be an object, cX an
application condition over X, and let f : X → Y and g : Y → Z be two morphisms of C. Then
the following equivalence of conditions holds:

Shift(g,Shift(f, cX)) ≡ Shift(g ◦ f, cX) (29)
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Proof: The proof follows by a repeated application of Theorem 4. The equivalence holds if for all
morphisms c : Z → H, we find that

c � Shift(g,Shift(f, cX)) ⇔ c � Shift(g ◦ f, cX) . (30)

Starting from the diagram below,

XcX Y

Shift(f, cX)

Z Shift(g, cX)

H

f g

c◦g◦f
c◦g c� � �

, (31)

we may calculate:
c � Shift(g,Shift(f, cX))

(17)⇔ c ◦ g � Shift(f, cX)
(17)⇔ c ◦ g ◦ f � cX
(17)⇔ c � Shift(g ◦ f, cX) .

(32)

�

4 Compositional associative Double-Pushout rewriting with conditions
In this section, we will develop a variant of Double Pushout (DPO) rewriting for linear rules, which
may be obtained from the well-known “traditional” DPO-rewriting framework of Ehrig et al. [36]
with its nearly 50 years of developments [22, 25, 37–39, 41, 42, 47, 53, 63] via requiring the un-
derlying M-adhesive categories to satisfy Assumption 1. As we will demonstrate, this particular
specialization of the original theory yields a semantics for rewriting with certain additional proper-
ties, which we refer to as compositionality and associativity. The former property is a statement on
the existence of a certain form of sequential rule composition (cf. Definition 16), which via a variant
of the classical concurrency theorem (cf. Theorem 5) opens the possibility to develop algorithms
for the static analysis of rule application sequences. The associativity phenomenon for sequential
compositions of linear rules with conditions (cf. Theorem 6) is an original result of the present
paper, adding to the aforementioned tool-set of static analysis the possibility to analyze sequences
of more than two rule applications (ultimately leading to the notions of tracelet analysis [9] and
rule algebras [8, 10–13]).

Notational convention 1 Since many of the constructions and results presented in the following
constitute variants of well-known results from the rich DPO-rewriting literature, by convention
a mention of “compare” or “cf.” without additional comments indicates that the results coincide
with those in the literature (modulo possibly some notational adjustments and minor modifications).
On several occasions, we nevertheless provide full proofs of some of the essential statements, since
these will provide the “blueprint” for the corresponding constructions in the SqPO-setting presented
in Section 5. Our choices of notations follows mostly those taken in [11].

4.1 DPO-rewriting inM-adhesive categories
Contrary to the traditional graph rewriting literature, we prefer to interpret spans as encoding a
partial injective map going from the right leg to the left leg, rather than the other way around.
This notational convention as well as the focus on linear rules (i.e. rules based upon spans ofM-
morphisms as opposed to non-linear rules based upon generic morphisms) was motivated by our
work on the rule algebra and related tracelet constructions [8–13]. Furthermore, all constructions
presented in the following are naturally defined only up to isomorphisms, whence the choice to
consider isomorphism classes of linear rules.
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Definition 10 (Linear rules) Let C be an M-adhesive category. We denote by Lin(C) the set of
linear rules, defined as the set of isomorphism classes

Lin(C) :=
{
r =

(
O

o←− K i−→ I
)∣∣∣O,K, I ∈ obj(C), o, i ∈M

}
�∼= . (33)

Here, we define r = (O ← K → I) and r′ = (O′ ← K ′ → I ′) as isomorphic when there exist
isomorphisms ω : O → O′, κ : K → K ′ and ι : I → I ′ that make the evident diagram commute.
Thus a (representative of a) linear rule r ∈ Lin(C) is a span of M-morphisms o, i ∈ M with
Output object O, Kontext object K and Input object I.

The precise interpretation of the concept of linear rules is provided in the form of the following
main definition of DPO rewriting:

Definition 11 (DPO rewriting) Let r :=
(
O

o←− K i−→ I
)
∈ Lin(C) be a linear rule, let X ∈ obj(C)

be an object, and let m : I → X ∈M be anM-morphism5. Then m is defined to be an admissible
match for the application of r to X, if and only if the diagram below is constructible:

O K I

rm(X) K ′ X

m∗ PO

o

POC

i

m (34)

Here, the square marked POC must be constructible as a pushout complement, while if this square
exists the square marked PO is always constructible as a pushout (cf. Assumption 1), whence the
moniker Double-Pushout (DPO) rewriting is derived. In this case, we refer to rm(X) ∈ obj(C) as
the rewrite of X via the rule r along the (admissible) match m. We introduce the notation Mr(X)
for the set of admissible matches for the application of the rule r to the object X:

Mr(X) := {(m : I → X) ∈M | POC (1) in (34) exists} . (35)

For compatibility with the standard DPO rewriting literature, we will sometimes use the notation

rm(X)⇐==
r,m

X

in order to explicitly reference the information contained in (34). Moreover, the morphism m∗ is
referred to as the comatch of m (under the application of linear rule r to the object X).

In order to provide a quick intuitive illustration of the DPO rewriting concept, consider the
edge creation rule described in the introduction:

e+ :=
(

E

A B

←−
A B

−→
A B

)
(36)

Here, as customary in the graph rewriting literature, the structure of the linear rule (in this case
a span of undirected multigraphs) is indicated via the labeling indices, i.e. in the present case
reflecting that the vertices marked A and B are preserved in applications of this rule, and that the
edge marked E is created. An example for an admissible match and the respective rule application
to the example graph

X := e
1 2

along the example match m (which sends the vertices A and B of I to the vertices 1 and 2 of X,
respectively) is depicted below:

E

A B A B A B

e

E

1 2 e1 2 e1 2

PO POC m: A→1
B→2

5For our construction of a DPO-type rule algebra framework, we will only be interested in admissible matches
that are in the classM, even though DPO rewriting in its most general form as e.g. discussed in [42] would permit
also non-monic matches.
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4.2 From conditions to application conditions for rewriting rules
Conditions formulated for objects and for morphisms interact in a straightforward manner with
the concept of rewriting rules, which requires two key constructions: the shift construction, as
introduced in Theorem 4, and the so-called transport construction. We will follow the standard
literature onM-adhesive categories (cf. e.g. [42]) in defining the latter construction6.

Definition 12 (Transport of conditions over rules; cf. [42], Construction 3.15) Let

r :=
(
O

o←− K i−→ I
)
∈ Lin(C)

be a linear rule, and let cO be an application condition over O. Then we define a transport con-
struction Trans such that Trans(r, cO) is an application condition over I, and which is constructed
inductively as follows:

(i) Case cO = true:
Trans(r, true) := true . (37)

(ii) Case cO = ∃(a, c′O) with a : O → O′: if the diagram below

O K I

O′c′
O K ′ I ′ Trans(r′, c′

O)

a

o

o′

POC PO

i

i′

a∗ (38)

is constructible, i.e. if the pushout complement marked POC exists, we define

Trans(r, ∃(a, c′O)) := ∃(a∗,Trans(r′, c′O)) , (39)

with r′ :=
(
O′

o′
←− K ′ i

′
−→ I ′

)
. Otherwise, we define

Trans(r, ∃(a, c′O)) := false . (40)

(iii) Case cO = ¬c′O:
Trans(¬c′O) := ¬Trans(c′O) . (41)

(iv) Case cO = ∧j∈J c(j)
O :

Trans(r,∧j∈J c(j)
O ) := ∧j∈JTrans(r, c(j)

O ) . (42)

It is straightforward to verify that the transport construction is invariant under the various pos-
sible isomorphisms involved in the relevant constructions of pushouts and pushout complements,
for precisely the same reasons as those ensuring the invariance of the shift construction under
isomorphisms as detailed in the proof of Theorem 4.

Lemma 6 (Property of transport along DPO-type rules; cf. [42], Lemma 3.14) In an M-adhesive
category C satisfying Assumption 1, let r = (O ← K → I) ∈ Lin(C) be a linear rule, and let cO be
an application condition over O. Then for any DPO-admissible match (m : I → X) ∈ Mr(X) of
the rule r into an object X ∈ obj(C), and if m∗ denotes the comatch of m, one finds that

m∗ � cO ⇔ m � Trans(r, cO) , (43a)

with

OcO K I Trans(r, cO)

rm(X) K ′ X

m∗

o

PO POC

i

m

� �

. (43b)

6In this definition, there is, a priori, a choice to be made about the “direction” of the transport; our chosen
convention agrees with the one in the literature and will prove convenient in our later applications to notions of
compositionality of rules with application conditions.
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The transport construction allows us to choose, without loss of generality, a “standard position”
for the application conditions in a linear rule, where we fix the following conventions:

Definition 13 (Standard form for DPO-type rules with conditions and admissible matches) Let
Lin(C) denote the set of linear rules with application conditions in standard form, whose elements
R ∈ Lin(C) are defined to be of the form

R = (r, cI) , r =
(
O

o←− K i−→ I
)
∈ Lin(C) . (44)

Consequently, we introduce the notion of admissible matches for applications of rules with applica-
tion conditions to objects as follows; let X ∈ obj(C) be an object, R ∈ Lin(C) as above a rule with
application conditions, and m : I → X an element of M. Then we refer to m as an admissible
match if and only if m satisfies the application condition,

m � cI ,

and if the diagram below is constructible:

O K I cI

Rm(X) K ′ X

m∗

o

PO POC

i

m

�
. (45)

Equivalently, admissibility of m thus amounts to admissibility with respect to the linear rule without
application conditions (i.e. in the sense of (35)) combined with satisfaction of the application
condition, resulting in the following compact formula for the set of admissible matches MR(X):

MR(X) := {m ∈Mr(X) | m � cI} . (46)

For later convenience, we will employ the shorthand notation ≡̇ to signify “equivalence under
the constraint of admissibility” 7:

Definition 14 Let r =
(
O

o←− K i−→ I
)
∈ Lin(C) be a linear rule and cI , c̃I conditions over I. Then

we define
(cI≡̇c̃I) :⇔ (∀X ∈ obj(C) : ∀m ∈ Mr(X) : m � cI ⇔ m � c̃I) . (47)

As a further refinement, the Trans construction enables a certain form of compression of appli-
cation conditions for linear rules.

Definition 15 (Compressed standard form for conditions) Let R := (r = (O ← K → I), cI) ∈
Lin(C) be a linear rule with application conditions. Then we define the compressed standard form
for cI as

ċI := Trans(r,Trans(r̄, cI)) , (48)

where r̄ := (I ← K → O).

The intuition behind the above definition of “equivalence up to non-transportable subconditions”
is that while it is perfectly possible to define arbitrary conditions of the form ∃(a : I → A, cA)
over the input I of a linear rule, only those conditions will contribute in applications of the lin-
ear rule via matches that are transportable via Trans, since by definition of Trans the operation
Trans(r,Trans(r̄,∃(a : I → A, cA)) in effect tests whether or not the relevant pushout complement
exists such that an admissible match of the rule could satisfy ∃(a : I → A, cA). This also implies
that

cI ≡̇ ċI , (49)

7Following the standard notational convention in the rewriting literature, we choose to not make the linear rule
with respect to which admissibility is required explicit in our notation ≡̇, since we will only utilize this form of
equivalence in situations where the nature of this rule will be clear from the given context.
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thus motivating the notation ċI . A further illustration of this phenomenon is provided in Exam-
ple 5.

We conclude this subsection by stating a number of technical lemmas that are necessary in
order to derive our novel associative compositional DPO rewriting framework as presented in the
following subsection, which concern certain important properties of the Trans construction and of
the compatibility of the Shift and Trans constructions:

Lemma 7 (Units for Trans) Let X ∈ obj(C) be an arbitrary object and cX a condition over X.
Then with ridX

:=
(
X

idX←−− X idX−−→ X
)
∈ Lin(C) the “identity rule on X”, we find that

Trans(ridX
, cX) ≡ cX . (50)

Proof: The proof follows directly from the property of the Trans construction stated in Lemma 6,
whereby one finds for arbitrary admissible matches (m : X → Y ) ∈ MridX

(X) that

m∗ = m � cX ⇔ m � Trans(ridX
, cX) , (51a)

with

XcX X X Trans(ridX
, cX)

rm(X) = Y Y Y
idY idY

m∗=m

idX

PO POC

idX

m

� �

. (51b)

Here, the pushout complement in the squares marked POC always exists by virtue of Lemma 12(i)a,
and m∗ = m as well as rm(X) = Y follow due to stability of isomorphisms under pushouts. �

Lemma 8 (Compositionality of Trans) Given two composable spans ofM-morphisms

r ≡
(
C

b←− B a−→ A
)

and s ≡
(
E

d←− D c−→ C
)
,

define their composition via pullback as

F

D B

E C A

f e

PB
d c b a

s ◦ r := (E d◦f←−− F a◦e−−→ A) , (52)

which is again a span ofM-morphisms (by stability ofM-morphisms under pullbacks and compo-
sitions), and thus r, s, s ◦ r ∈ Lin(C). Let cE be a condition over E. Then we find that

Trans(r,Trans(s, cE)) ≡̇Trans(s ◦ r, cE) . (53)

Proof: The proof relies upon the property of the transport construction stated in Lemma 6 as well
as on the M-adhesivity of the underlying category C. We proceed by constructing the following
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commutative diagram in two different ways for the two directions of the proof:

EcE D C

Trans(s, cE)

B A Trans(s ◦ r, cE)

Trans(r, Trans(s, cE))

X ′′ D′ X ′ B′ X

F

F ′

d c b a

m∗∗ m∗ m

(54)

“⇒” direction: Suppose that m ∈ Mr(X) and that the comatch m∗ of m satisfies m∗ ∈ Ms(X ′)
(with X ′ = rm(X)). Then according to Lemma 6, this implies that

m∗∗ � cE ⇔ m∗ � Trans(s, cE)⇔ m � Trans(r,Trans(s, cE)) .

We have to demonstrate that m ∈ Ms◦r(X) as well as

m � Trans(r,Trans(s, cE)) ⇒ m � Trans(s ◦ r, cE) . (55)

Admissibility of m and m∗ entails that the squares formed in the back row of (54) (the ones drawn
in black and blue) are constructible as pushouts and pushout complements, respectively. Construct
the objects F and F ′ as pullbacks,

F = PB(D c−→ C
b←− B) and F ′ = PB(D′ → X ′ ← B′) ,

which by the universal property of pullbacks induces a unique arrow F → F ′. By stability of
M-morphisms under pullbacks and by theM-morphism decomposition property, respectively, all
morphisms thus constructed are found to be in M. Invoking pullback-pullback decomposition
(Lemma 12(iii)a) and the M-van Kampen property twice (cf. Definition 1), we conclude that
the induced squares �(F, F ′, D′, D) and �(F, F ′, B′, B) are in fact pushouts. Thus by pushout
composition, the front left and right “curvy” faces (in orange) are pushouts. This entails that
m ∈ Ms◦r(X), and thus by definition of Trans that indeed

m � Trans(s ◦ r, cE) .

“⇐” direction: Suppose that m ∈ Ms◦r(X), which by Lemma 6 implies that if m∗∗ is the
comatch of m under the application of the rule s ◦ r, then

m∗∗ � cE ⇔ m � Trans(s ◦ r, cE) .

Admissibility of m for the rule s ◦ r applied to the object X entails that the “curvy” front right
and front left squares of the diagram (54) drawn in black and orange are constructible as pushout
complement and pushout, respectively. We may then construct the remaining parts of the diagram
via forming the pushouts

D′ = PO(D ← F → F ′) , B′ = PO(B ← F → F ′) , X ′ = PO(C ← B → B′) ,

which uniquely induces the remaining arrows drawn in blue (and where we could have equivalently
defined X ′ as X ′ = PO(C ← D → D′)). By virtue of three applications of pushout-pushout
decomposition (Lemma 12(iii)b), we conclude that all squares in the back of diagram (54) thus
constructed are pushouts. Furthermore, stability of M-morphisms under pushouts implies that
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all newly constructed morphisms are in M. Since thus the back part of the diagram encodes
two DPO rewrite steps with m ∈ Mr(X), m∗ the comatch of m under application of the rule r,
m∗ ∈ Ms(rm(X)), and since m∗∗ is also the comatch of m∗ under application of s, we find by
Lemma 6 that

m∗∗ � cE ⇔ m∗ � Trans(s, cE) ⇔ m � Trans(r,Trans(s, cE)) ,

which concludes the proof. �

The compositionality of the Trans construction in particular permits an efficient encoding of
the reduced standard form of application conditions:

Corollary 2 Let R := ((O o←− K
i−→ I), cI) ∈ Lin(C) be a linear rule with application conditions.

Then the compressed standard form ċI for cI according to Definition 15 evaluates to

ċI ≡̇Trans(I i←− K i−→ I, cI) . (56)

Lemma 9 (Compatibility of Shift and Trans; compare [45], Fact 3.14) Given the data as in the
commutative diagram below,

O

cO

K I

O′ K ′ I ′

o i

PO POp∗ p p

o′ i′

, (57)

letting r =
(
O

o←− K i−→ I
)
and r′ =

(
O′

o′
←− K ′ i

′
−→ I ′

)
, we have that for all objects X and for all

admissible matches n ∈ Mr′(X) of r′ into X,

n � Shift(p,Trans(r, cO))⇔ n � Trans(r′,Shift(p∗, cO)) , (58)

which we can write more compactly as

Shift(p,Trans(r, cO)) ≡̇Trans(r′,Shift(p∗, cO)) . (59)

Proof: Let us fix an object X and some admissible match n ∈ Mr′(X).

“⇒” direction: Suppose that (n : I ′ → X) ∈ Mr′(X) satisfies n � Shift(p,Trans(r, cO)) (which
by definition of satisfaction of conditions entails in particular that Trans(r′,Shift(p∗, cO)) 6≡ false).
Since n is by assumption an admissible match of r′, we can rewrite X by applying r′ along n,
resulting in the diagram below (where the top part is inserted from the assumption of the lemma):

O

cO

K I

Trans(r, cO)

O′ K ′ I ′ Shift(p, Trans(r, cO))

r′
n(X) K ′ X

o i

PO POp∗ p p

o′ i′

n∗ n nPO POC

(60)

By composition of pushout squares, we conclude that theM-morphism m = n ◦ p is an admissible
match for r, which entails that r′n(X) ∼= rm(X). By definition of Shift, n � Shift(p,Trans(r, cO))
implies that m = n ◦ p satisfies m � Trans(r′, cO), and moreover that Trans(r′, cO) 6≡ false. Since
we found that m ∈ Mr(X), by definition of Trans we have that the comatch m∗ : O → rm(X) of
m (which is by construction of DPO rule applications inM) has the property m∗ = n∗ ◦ p∗ � cO.
The latter implies that n∗ � Shift(p∗, cO). Since by assumption n ∈ Mr′(X), and since n∗ is the
comatch of n, we finally conclude that indeed n � Trans(r′,Shift(p∗, cO)).
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“⇐” direction: The proof is entirely analogous to the previous case (starting from the observa-
tion that n ∈ Mr′(X) together with the data provided in (57) entails that m ∈ Mr(X)). �

4.3 A refined notion of sequential compositions of DPO-type rules with conditions
In this subsection, we will present a refinement of the notion of sequential rule compositions
known from the traditional rewriting literature [42] obtained via requiring the underlying M-
adhesive category C to satisfy Assumption 1, which as we will demonstrate guarantees a number
of additional technical properties of this type of composition. Referring to Remark 2 for the
precise technical disambiguation, the motivation for our construction consisted in the idea that
the operation of sequential composition of two linear rules should lift to an operation permitting
to compose arbitrary numbers of linear rules, in the sense that the composition operation should
satisfy a certain abstract associativity property (cf. Section 4.5). From a technical standpoint,
ensuring this notion of compositionality permits to develop novel static analysis techniques for rule-
based systems, such as the DPO-type rule algebra framework [11–13] for the study of stochastic
rewriting systems, which has recently been extended to the setting of linear rules with conditions
based upon the present article in [10]. The second main application of compositional rewriting has
been the development of the theory of tracelets [9].

Definition 16 Let C be a category satisfying Assumption 1. Let Rj ≡ (rj , cIj
) ∈ Lin(C) be two

linear rules with application conditions (j = 1, 2), and let

µ21 ≡
(
I2

m2←−−M21
m1−−→ O1

)

be a span of monomorphisms (i.e. m1,m2 ∈M). If the diagram below is constructible,

O2 K2 I2

cI2

M21 O1 K1 I1

cI1

O21 K ′
2 N21 K ′

1 I21 cI21

K21

o2

POC

i2

PO m′
2

m2

PO

m1

m′
1

o1

POC

i1

PO p1

PB
o21

=

i21

=

(61)

where
cI21 := Shift(p1, cI1)

∧
Trans (N21 ← K ′1 → I21,Shift(m′2, cI2)) , (62)

and if cI21 6≡ false, then we call µ21 an admissible match for the rules with conditions R2 and R1,
denoted

µ21 ∈MR2(R1) .

In this case, we introduce the notation R2
µ21J R1 to denote the composite,

R2
µ21J R1 :=

(
O21

o21←−− K21
i21−−→ I21, cI21

)
. (63)

Remark 2 The variant of rule composition provided in Definition 16 (i.e. starting from an “over-
lap” of two rules encoded as an M-monic span, followed by taking a pushout of this span) follows
the philosophy put forward in [19, 53] (sometimes referred to as D-concurrent composition). How-
ever, for the setting of DPO-rewriting over M-adhesive categories for rules with conditions, an
alternative construction, referred to as E-concurrent composition, had been the de facto standard
in the rewriting literature, developed by Ehrig et al. (cf. e.g. [42], Definition 4.13). More precisely,
based upon the assumption that the underlying M-adhesive category C possesses an E ′-M-pair-
factorization (cf. Remark 1), the starting point of constructing an E-concurrent rule composition
according to [42] consists in picking a cospan (m′2,m′1) ∈ E ′, as opposed to picking a span of
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M-morphisms (m2,m1) and taking the pushout to obtain the cospan (m′2,m′1) as in (61) for the
D-concurrent approach. While the E-concurrent approach possesses the technical advantage that it
does not require the category C to possess M-effective unions, nor that rules must be linear nor
matches necessarily inM (and thus applying to a broader class of rewriting systems), the reliance
upon the E ′-M-factorizations is also responsible for certain algorithmic disadvantages. In close
analogy to the discussion provided in Remark 1, exhaustively enumerating all possible cospans in
E ′ suitable for the composition of two rewriting rules is algorithmically quite non-trivial in the
general case, while enumerating the (isomorphism classes ofM-) monic spans (i.e. the “overlaps”)
of two linear rules is comparatively straightforward (c.f. e.g. [16] for a recent implementation via
the Microsoft Z3 SMT-solver). On the other hand, utilizing yet again the results of Corollary 1,
our refinement of D-concurrent compositions as well as the respective variant of the concurrency
theorem (see Theorem 5) can be demonstrated to constitute a special case of the E-concurrent
constructions of Ehrig et al. [42]: for an M-adhesive category satisfying Assumption 1, a cospan
(m′2,m′1) ofM-morphisms constructed via taking the pushout of a span ofM-morphisms (m2,m1)
is in particular jointly epimorphic, and thus constitutes a special case of a cospan in E ′ (cf. [22,
Fact 3.7], applied under the assumption ofM-effective unions).

The definition of the composition operation .
.
J . entails a number of highly non-trivial effects

in practical computations, which originate from the interplay of admissibility of matches for rules
without application conditions and the requirements on the induced composite application condi-
tions. One of the most striking such results, well known also from the traditional graph rewriting
literature [42], is the following:

Lemma 10 (Trivial matches) By definition of the notion of admissible matches, for any two linear
rules with application conditions Rj ≡ (rj , cIj ) ∈ Lin(C) (j = 1, 2), the trivial match

µ∅ := (I2 ←−↩ ∅ ↪−→ O1)

is an admissible match µ∅ ∈MR2(R1) if and only if the composite condition cI21 does not evaluate
to false.

Proof: The proof follows directly from the definition of the composition operation .
.
J ., namely

by construction of the following diagram:

O2 K2 I2

cI2

∅ O1 K1 I1

cI1

O2 + O1 K2 + O1 I2 + O1 I2 + K1 I2 + I1 cI21

K2 + K1

o2

POC

i2

PO m′
2

m2

PO

m1

m′
1

o1

POC

i1

PO p1

PB
o2+O1

=

i2+i1

=

(64)

By virtue of Lemma 1 and Lemma 14, the pushout complements marked POC in the diagram
above always exist. To determine whether the trivial match µ∅ is an admissible match, it then
remains to evaluate the composite condition cI21 , which according to (62) of Definition 16 reads

cI21 := Shift(p1 : I1 → I2 + I1, cI1)
∧

Trans (I2 +O1 ← I2 +K1 → I2 + I1,Shift(m′2 : I2 → I2 +O1, cI2)) .
(65)

Thus the claim follows, since the above condition may evaluate to false in general, such as in the
case where cI2 = ¬∃(I2 → I2 +O1, true). �

Nevertheless, it is possible to exhibit one special rule for which µ∅ is always an admissible
match:

Lemma 11 (Neutral element for .
.
J .) By definition of .

.
J ., the trivial rule

R∅ := (∅← ∅→ ∅, true)

is the (left- and right-) neutral element for .
.
J ..
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Proof: The proof follows from a specialization of (64) in the proof of Lemma 10, by specializing
either of the two linear rules involved to the trivial rule. Note first that on the level of rules without
application conditions, the only admissible match between the trivial rule and another linear rule is
the trivial match µ∅. Let us then compute the condition cI21 of the composite for the case r1 = r∅
and for generic r2 = (O2 ← K2 → I2), which reads according to (62) of Definition 16 reads

cI21 = Shift(p1 : ∅→ I2, true)
∧

Trans (I2 ← I2 → I2,Shift(q2 : I2 → I2, cI2))

≡ cI2 .

(66)

Thus for every linear rule r2 with application condition cI2 6≡ false, we have µ∅ ∈ MR2(R∅). For
the remaining case, consider that r1 = (O1 ← K1 → I1) is an arbitrary linear rule with application
condition cI1 6≡ false. Again, admissibility of µ∅ as a match of the rules without conditions follows
by a specialization of (64), so it remains to compute the composite condition cI21 :

cI21 = Shift(p1 : I1 → I1, cI1)
∧

Trans (O1 ← K1 → I1,Shift(q2 : ∅→ O1, true))

≡ cI1 .

(67)

�

4.4 Concurrency theorem for DPO-type rules with conditions
We will need the following concurrency theorem, which is a variant of a result of [47] adapted to
our refined notion of rule compositions, and which for the case of rules without conditions was
introduced in [12]:

Theorem 5 (Concurrency theorem, compare Thm. 4 of [48] and Thm. 2.7 of [12]) Let C be an
M-adhesive category satisfying Assumption 1, X0 ∈ obj(C) an object, and Rj ≡ (rj , cIj

) be two
linear rules with application conditions (j = 1, 2). Then there exists the following bijection:

(i) “Synthesis”: For every sequence of rule applications

X2 ⇐====
R2,m2

X1 ⇐====
R1,m2

X0 (68)

along admissible matches m1 ∈ MR1(X0) and m2 ∈ MR2(X1) with X1 = r1m1
(X0), there

exist admissible matches µ21 ∈MR2(R1) of the linear rule R2 into R1 and m21 ∈MR21(X0),
with R21 ≡ (r21, cI21), r21 = R2

µ21J R1, and an application condition cI21 computed as

cI21 = Shift(I1 → I21, cI1)
∧

Trans ((N21 ←−↩ K ′1 ↪−→ I21) ,Shift(I2 → N21, cI1)) , (69)

where the morphisms and objects in this formula depend (uniquely up to isomorphism) on
the input data, such that X2 ∼= R21m21

(X0).

(ii) “Analysis”: For every admissible match µ ∈MR2(R1) and for every rule application

X2 ⇐======
R21,m21

X0 (70)

with m21 ∈MR21(X) and R21 = R2
µ21J R1, there exists a pair of admissible matches such as

in (68) which transform X0 via X1 into the same (up to isomorphism) object X2.

Proof: Referring the interested readers to [12] for the precise details, note first that at the level
of linear rules without application conditions, the concurrency theorem of [12] entails the parts of
the above statements pertaining to the existence of the admissible matches of “plain” rules. The
concrete technical construction of the proof provided in [12] is summarized by the diagram below,
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where all vertical squares are pushouts (and where we have marked the relevant conditions for
later convenience). The aforementioned proof consisted in verifying that the parts of the diagram
marked in blue can be uniquely constructed from the parts of the diagram colored in orange and
vice versa:

O2 K2 I2 M21 O1 K1 I1

O21 K ′
2 N21 K ′

1 I21

X2 K2 X1X1 K1 X0

K21

K21

cI2 cI1

Shift(I2 → N21, cI2)

cI21 (71)

It thus remains to verify the part of the claim pertaining to the relevant conditions of the rules.

“Analysis” part of the proof: Suppose that we are given admissible matches (m1 : I1 → X0) ∈
MR1(X) and (m2 : I2 → X1) ∈ MR2(X1) with X1 = r1m1

(X0). Admissibility entails in particular
that m1 � cI1 and m2 � cI2 . By construction of the diagram in (71), we have that m1 and m2
factor as

m1 = (X0 ← I1) = (X0← I21) ◦ (I21 ←I1)
m2 = (X1 ← I2) = (X1← N21) ◦ (N21 ←I2) ,

which entails by definition of the Shift construction that m21 := (I21 →X0) and m̄21 = (N21 →X1)
satisfy m21 � Shift(I1→ I21, cI1) and m̄21 � Shift(I2→ N21, cI2), respectively. Noting that the
rightmost two bottom squares in the back of (71) are pushouts, we find in addition that

m21 � Trans (N21 ← K ′1 → I21,Shift(I2→ N21, cI1)) .

Since according to Definition 16, R21 := R2
µ21J R1 = (r21, cI21), with cI21 as defined in (69), we

confirm that m21 � cI21 , which concludes the proof of the “analysis” part of the theorem.

“Synthesis” part of the proof: Supposing that we are given an admissible match m21 of
the composite R21 of the rules with application conditions R2 with R1 along the admissible
match µ21 ∈ MR1(R2), the construction of the diagram in (71) provides two admissible matches
(m1 : I1 → X0) ∈ Mr1(X0) and (m2 : I2 → X1) ∈ Mr2(X1) with X1 = r1m1

(X0). It thus remains
to verify the claim that these matches satisfy the conditions cI1 and cI2 , respectively, which is
demonstrated by running the corresponding arguments of the “analysis” part of the proof “in re-
verse”. �

4.5 Associativity of DPO-type composition of rules with conditions
We will now state one of the main results of this paper, in the form of an associativity property
afforded by the DPO-type composition operation on rules with conditions. The case of DPO-type
compositions of rules without conditions was studied in [11–13], and the following result is an
extension to the setting of rules with conditions afforded by our refined framework for conditions
as introduced in Section 3 and the current section. In contrast to the DPO-type concurrency
theorem (which, in a slightly different formulation, had been previously known in the literature),
the associativity result presented below is, to the best of our knowledge, the first of its kind.
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Theorem 6 (DPO-type Associativity Theorem) Let Rj ≡ (rj , cIj
) (j = 1, 2, 3) be three linear rules

with application conditions. Then there exists a bijection between the pairs of admissible matches
MA and MB defined as

MA := {(µ21, µ3(21))|µ21 ∈ MR2(R1) , µ3(21) ∈ MR3(R21)}
MB := {(µ32, µ(32)1)|µ32 ∈ MR3(R2) , µ(32)1 ∈ MR32(R1)} (72)

with Ri,j := (ri
µij

J rj , cIij
) (and cIij

defined as in (62)) such that

∀(µ21, µ3(21)) ∈MA : ∃!(µ32, µ(32)1) ∈MB :

r3
µ3(21)
J

(
r2

µ21J r1

)
∼=
(
r3

µ32J r2

) µ(32)1
J r1 (73a)

∧ cI3(21) ≡̇ cI(32)1 (73b)

and vice versa. In this particular sense, the operation .
.
J . is associative.

Proof: Considering first the case of compositions of “plain” rules r1, r2, r3 ∈ Lin(C), i.e. of rules
without application conditions, we quote from [12] (Theorem 2.9) an isomorphism of pairs of
admissible matches of the form

M ′A := {(µ21, µ3(21))|µ21 ∈ Mr2(r1) , µ3(21) ∈ Mr3(r21)}
∼= M ′B := {(µ32, µ(32)1)|µ32 ∈ Mr3(r2) , µ(32)1 ∈ Mr32(r1)} . (74)

The isomorphism entails that for each corresponding pair, equation (73a) is verified. Consider then
two such isomorphic pairs

(µ21, µ3(21)) ∈M ′A and (µ32, µ(32)1) ∈M ′B
of admissible matches of “plain” rules. The isomorphism entails in particular that the following
commutative diagram is uniquely constructible (where we also draw the positions of the various
application conditions at play for later convenience):

O3 K3 I3 M32 O2 K2 I2 M21 O1 K1 I1

O3 K3 I3 M3(21) O21 K ′
2 N21 K ′

1 I21

O32 K ′
3 N32 K ′′

2 I32 M(32)1 O1 K1 I1

O321 K3 N3(21) K2 N(32)1 K1 I321

cI1cI2cI3

cI32

cI21

cI321

(75)

In order to verify the validity of (73b), it is sufficient to utilize our various technical lemmas
pertaining to the Shift and Trans constructions, and to follow the “paths” in the diagram depicted
in (75) along which the three conditions cIj

for j = 1, 2, 3 have to be shifted and transported in
order to form the conditions cI3(21) and cI(32)1 , respectively.

(i) contribution of cI1 :

Shift (I321 ← I21,Shift (I21 ← I1, cI1)) Lem. 5≡ Shift (I321 ← I1, cI1) (76)

(ii) contribution of cI2 :

Shift (I321 ← I21,Trans (N21 ←K ′1 → I21,Shift (N21 ←I2, cI2)))
Lem. 9
≡̇ Trans

(
N(32)1 ←K1 → I321,Shift

(
N(32)1 ← N21,Shift (N21 ←I2, cI2)

))

Lem. 5≡ Trans
(
N(32)1 ←K1 → I321,Shift

(
N(32)1 ←I32,Shift (I32 ← I2, cI2)

))
.

(77)

Here, in the last step, we have made use of the commutativity of the diagram (75), whereby
(
N(32)1 ← N21

)
◦ (N21 ←I2) =

(
N(32)1 ←I32

)
◦ (I32 ← I2) . (78)
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(iii) contribution of cI3 :

Trans
(
N(32)1 ← K1 → I321,Trans

(
N3(21) ← K2 → N(32)1,

Shift
(
N3(21) ← I3, cI3

)))

Lem. 5≡ Trans
(
N(32)1 ← K1 → I321,Trans

(
N3(21) ← K2 → N(32)1,

Shift
(
N3(21) ← N32,Shift

(
N32 ←I3, cI3

))))

Lem. 9
≡̇ Trans

(
N(32)1 ← K1 → I321,Shift

(
N(32)1 ← I32,

Trans
(
N32 ← K ′′2 → I32,Shift

(
N32 ←I3, cI3

))))

(79)

It is then easy to verify (using the definition of concurrent compositions of rules with application
conditions with rules according to Definition 16 and eq. (62)) that since

cI3(21) = lhs(76)
∧
lhs(77)

∧
lhs(79) , cI(32)1 = rhs(76)

∧
rhs(77)

∧
rhs(79) , (80)

where by “rhs” we mean the very last equality in each set of equations, we find indeed that

cI3(21)≡̇cI(32)1 . (81)

�

Example 5 In order to illustrate the notion of associativity more intuitively, we provide a concrete
example of a triple rule composition as depicted in Figure 2, with the application conditions of the
three rules given as

cI1 := ¬∃
(
↪→ , true

)
, cI2 := true , cI3 := cI1 .

Note that the application conditions as specified guarantee that applying the rules to simple undi-
rected graphs preserves the constraint of no two vertices being linked by more than one edge. Rather
than depicting the relevant data for this computation in the form of a “commutative tube” as in (75),
we opt here to “unfold” the two pair-wise sequential rule composition steps for each branch of the
equivalence

r3(21) ∼= r(32)1 ∧ cI3(21)≡̇ cI(32)1 ,

with the two sides of the equivalences depicted on the top and bottom parts of Figure 2, respectively.
The example allows us to highlight a number of interesting phenomena:

• Upon closer inspection, one may verify that the application condition cI1 of the rule R1
is not specified in “compressed standard form” in the sense of Definition 15, since in fact
cI1≡̇ true. Intuitively, under DPO-semantics the application condition cI1 does not constrain
the admissible matches, since in cases where the two vertices in I1 would be matched against
two vertices in a host graph linked by an edge, the rule R1 would not be applicable (since
edges cannot be deleted implicitly in DPO-rewriting).

• Utilizing the Shift and Trans constructions, followed by applying the “compression” according
to Definition 15, the application condition of the composite rule can be computed as follows:

cI21≡̇ true , cI32≡̇ ¬∃
(
↪→ , true

)
, cI3(21)≡̇ cI(32)1≡̇ true .

This is a typical illustration of the way associativity in sequential compositions gives rise to
causal relationships: while the rule R3 can only be applied to vertices not linked by an edge,
the fact that in the triple composition depicted the rule R1 is in a sense “providing” the two
vertices on its output that are later acted upon by R3, and since by the application of R2 as
shown the edge between the two vertices on the output of R1 is removed, it is indeed the case
that we find a graph pattern that R3 can be applied to.
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• Finally, associativity also entails that one may equivalently lead the preceding causality ar-
gument from the viewpoint depicted in the bottom part of Figure 2: composing rule R3 with
rule R2 as demonstrated, the composite rule has an application condition cI32 that demands
that the two vertices on the input of the composite rule are not linked to each other by two
edges. But then if the input pattern of the composite rule (two vertices linked by an edge)
is “provided” by the output of R1 as depicted (i.e. via computing the composition r3

µ32J r2
and the composite rule’s application condition cI32), and since R1 can only be applied at two
vertices not linked to each other, one finds again that the overall triple composite possesses
an application condition that is equivalent to a trivial condition true.

We refer the interested readers to [9] for further examples of such types of sequential rule
compositions and associativity properties, which play a quintessential role in the theory of tracelets,
where the latter are a form of invariant encoding of length n sequences of rule compositions for
general n ≥ 1. Associativity is moreover at the core of the construction of rule algebra theories [8,
11–13], and with the case of rule algebras for linear rules with conditions recently covered in [10],
yet a full discussion of this novel mathematical concept is out of the scope of the present paper.

5 Compositional associative Sesqui-Pushout rewriting with conditions
While the previously discussed notion of compositional DPO-type rewriting may be seen as a
refinement of pre-existing notions of DPO-rewriting from the literature (apart from the associativity
theorem), the corresponding construction for a framework of SqPO-rewriting is almost entirely new.
The first framework for a compositional SqPO-rewriting framework for rules without conditions
was introduced in [8]. The essential technical step in order to extend our framework from DPO-
to SqPO-type semantics consists in analyzing the interplay of final pullback complements with
application conditions and transformations thereof. We will first provide a brief introduction to
this type of rewriting, and then develop our new framework.

5.1 Definition of SqPO rule applications and rule compositions
Definition 17 (compare [26], Def. 4) Given an object X ∈ obj(C) and a linear rule r ∈ Lin(C), we
denote the set of SqPO-admissible matches Msq

r (X) as

Msq
r (X) := {(m : I → X) ∈M} . (82)

Let m ∈ Msq
r (X). Then the diagram below is constructed by taking the final pullback complement

marked FPC followed by taking the pushout marked PO:

O K I

X ′ K X

m∗

o i

kPO FPC m

o′ i′

(83)

We write rm(X) := X ′ for the object “produced” by the above diagram. The process is called
(SqPO)-derivation of X along rule r and admissible match m, and denoted rm(X) SqPO⇐====

r,m
X.

Notably, SqPO-type rewriting thus differs from DPO-type rewriting in the important aspect
that final pullback complements as well as pushouts are guaranteed to exist in our base category
(cf. Assumption 2), whereas pushout complements may fail to exist in general. A typical example
already mentioned in the introduction concerns the application of a vertex-deletion rule to a graph
that consists of two vertices linked by an edge:

∅ ∅
A

2 2 e1 2

PO (∗) m: A→1
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µ21

µ3(21)

µ(32)1

µ32

r2 r1

r3

r2

r1

r3

r3
µ32J r2

r2
µ21J r1

r3
µ3(21)
J

(
r2

µ21J r1

)

(
r3

µ32J r2

) µ(32)1
J r1

PO

PO

PO

PO

cI3

cI2 cI1

cI21

cI3(21)≡̇ cI(32)1

cI32

cI3 cI2

cI1

Figure 2: Illustration of the notion of associativity in a sequential composition of three rules with conditions.
The squares explicitly marked with PO are pushouts of the admissible matches of rules; all other squares are
obtained according to the semantics of DPO rule compositions (and are thus also pushout squares). The top
portion of the figure illustrates the order of composition r2

µ21J r1 followed by a composition with r3 along
the admissible match µ3(21). The bottom portion depicts the composition r3

µ32J r2 (with µ32 computed via
taking pullback as described in detail in Theorem 6), precomposed with r1 along the induced match µ(32)1.
Conversely, one could start from providing explicitly the pair of admissible matches (µ32, µ(32)1) and compute
from this data the pair of admissible matches (µ21, µ3(21)). Here, the composite rules’ application conditions are
indicated at the input interfaces of the composite rules. The second part of the statement of associativity of rule
compositions entails that in both orders of pair-wise sequential compositions along the matches as specified, the
resulting “triple composites” are isomorphic on their plain rule parts and have equivalent application conditions
(up to satisfiability of admissible matches, i.e. in the sense of ≡̇).
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In DPO-type rewriting, the deletion rule is not applicable along the match presented, since the
square (∗) is not constructible as a pushout complement. In SqPO-type rewriting however, since
the square (∗) is constructible as a final pullback complement as presented, the deletion rule is
applicable, resulting in a graph with just a single vertex. This example demonstrates the distin-
guishing feature of SqPO-type rewriting over DPO-rewriting, in that the former admits “deletion
in unknown context” (here the implicit deletion of the edge via application of the vertex deletion
rule).

It should be noted that one of the additional distinctive features of SqPO-rewriting (see [26])
consists in the possibility to faithfully model cloning of structures via considering non-linear rules
(i.e. rules based upon non-monic spans). While an interesting topic in its own right, we found
that our proofs for key properties such as the concurrency and associativity theorems in the forms
presented here would not easily carry over to this more general setting, which is why we did not
consider the case of non-linear rules in any further detail.

5.2 The transport construction in the SqPO-type setting
The following theorem demonstrates that the construction Trans as introduced in Definition 12 is
precisely the construction needed in order to implement “transporting” conditions over linear rules
also in the SqPO-rewriting setting. This quintessential result appears to be new.

Theorem 7 (Transport construction in SqPO rewriting) Let C be anM-adhesive category satisfy-
ing Assumption 2. Then the transport construction Trans satisfies the following property: for every
linear rule r ≡ (O o←− K i−→ I) ∈ Lin(C), for every SqPO-admissible match (m : I → X) ∈ Msq

r (X)
of r into an object X ∈ obj(C) and for every application condition cO over O, in the commutative
diagram below

OcO K I Trans(r, cO)

rm(X) K ′ X

m∗

o

PO FPC

i

m , (84)

it holds that
m∗ � cO ⇔ m � Trans(r, cO) . (85)

Proof: Due to the recursive nature of the definition of Trans (Definition 12), it suffices to verify
the claim on conditions of the form cO = ∃(b∗ : O ↪→ B, cB) (for b∗ ∈M).

“⇒” direction: Suppose that we are given an SqPO-type rewriting step and a condition of
the form cO = ∃(b∗ : O ↪→ B, cB), which by definition of satisfiability of conditions according to
Definition 9 furnishes a morphism (n∗ : B ↪→ rm(X)) ∈M such that n∗ ◦ b∗ = m∗:

O K I

rm(X) K X

B PO FPCcB PO FPCcB PO FPCcB PO FPCcB

m∗

PO FPCcB PO FPCcB

m

PO FPCcB PO FPCcB PO FPCcB PO FPCcB PO FPCcB PO FPCcB PO FPCcB PO FPCcB PO FPCcB PO FPCcB PO FPCcB PO FPCcB PO FPCcB

b∗

n∗

(86)
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We then construct the commutative diagram below,

O K I

rm(X) K X

B K ′ C Trans(r′, cB)cB Trans(r′, cB)cB Trans(r′, cB)cB Trans(r′, cB)cB

m∗

Trans(r′, cB)cB Trans(r′, cB)cB

m

Trans(r′, cB)cB Trans(r′, cB)cB Trans(r′, cB)cB Trans(r′, cB)cB Trans(r′, cB)cB Trans(r′, cB)cB Trans(r′, cB)cB Trans(r′, cB)cB Trans(r′, cB)cB Trans(r′, cB)cB Trans(r′, cB)cB Trans(r′, cB)cB Trans(r′, cB)cB

b

n

b∗

n∗

(2) (3)

(1) (4)

, (87)

with the following individual steps taken:

(i) The square (1) is formed by taking pullback, which by the universal property of pullbacks
furnishes a morphism K→ K ′. By stability ofM-morphisms under pullback, the morphisms
of the induced span are inM. Since thus in particular K ′ →K is inM, and since by stability
ofM-morphisms under pullback (and thus under FPC) also (K → K) ∈M, we conclude by
M-morphism decomposition that K→ K ′ is inM. Moreover, by virtue of pushout-pullback
decomposition (Lemma 12(iii)c), the squares (1) and (2) are both pushouts.

(ii) The square (3) is formed by taking pushout. The universal property of pushouts provides a
morphism n : C →X such that n◦b = m. Then invoking vertical FPC-pushout decomposition
(Lemma 12(iii)h), the resulting square (4) is an FPC and n ∈M.

If cB ≡ true, we have thus demonstrated by virtue of the definition of satisfiability of conditions
that theM-morphism n satisfies the condition ∃(b : I ↪→ C,Trans(r′, true)), since by definition of
Trans we have that Trans(r′, true) ≡ true. If cB is itself nested, we proceed by induction in the
evident fashion, i.e. repeat the preceding argument for cB and r′ := (B ← K ′ → C), thus the claim
of the “⇒” part of the theorem statement follows.

“⇐” direction Suppose that we are given the following part of data presented in diagram (87):

(i) The squares (1) + (2) (a pushout), (2) (a pushout), (3) + (4) (an FPC) and (3) (a pushout).

(ii) An arrow n ∈M that satisfies the condition Trans(r′, cB), and with n ◦ b = m.

What is somewhat hidden in this set of data is the fact that the square �(K,K ′, X, I) is a
pullback (where the M-morphism K ′ → X is provided as the composition of the M-morphisms
K ′ → C and n : C →X, which are by assumption part of the above data). This statement can be
verified by constructing the commutative cube below left:

K I

K I

K ′ C

K ′ X

m

b

n

K

K I

K X

K ′

FPC m

∃!

(88)

By virtue of Lemma 12(i)c, the right square is a pullback. Since the top square is a pushout and
thus also a pullback, by pullback composition the square �(K,K ′, X, I) (i.e. the composite of the
top and right squares) is indeed a pullback.

We then invoke the universal property of FPCs (compare Definition 7) in the form presented in
the right part of (88), which entails that there exists a morphism K ′ →K. Then byM-morphism
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decomposition, as K ′ →X and K → X are in M, so is the morphism K ′ →K. Consequently,
vertical FPC-pushout decomposition (Lemma 12(iii)h) implies that the square (4) in (87) is an
FPC, while due to pushout-pushout decomposition (Lemma 12(iii)b) the square (1) is verified to
be a pushout. The latter result entails in particular, by virtue of stability ofM-morphisms under
pushout, that the induced morphism n∗ is inM.

In summary, if cB ≡ true, we have verified that n∗ � cB , and thus that m∗ � ∃(b∗ : O → B, cB).
If cB is itself nested, we can prove the statement inductively in the evident fashion. �

The detailed structure of the above proof allows us to clarify that, while the Trans construction
from the DPO rewriting setting carries over to the SqPO setting seemingly verbatim, the precise
reasons for why it indeed furnishes an operation of transport of conditions in the desired sense in
the two settings are dependent on the semantics (i.e. in particular why satisfaction of conditions is
“transported” against the direction of SqPO linear rules as detailed above). Moreover, since there
does not exist a construction that would permit to transport conditions “with” the direction of
the linear rules (i.e. in the direction of rule applications) in SqPO rewriting8, the only degree of
freedom in describing linear rules with application conditions in SqPO semantics is to transport
any conditions a rule might carry on its output to its input, motivating the following definition:

Definition 18 (Standard form for SqPO-type linear rules with application conditions and for ad-
missble matches) . Let C be an M-adhesive category satisfying Assumption 2. Let Lin(C) denote
the set of linear rules with application conditions in standard form as introduced in Definition 13,
whence elements of R ∈ Lin(C) are of the form

R = (r, cI) , r =
(
O

o←− K i−→ I
)
∈ Lin(C) . (89)

We then introduce the notion of SqPO-admissible matches for applications of rules with application
conditions to objects under SqPO-type semantics as follows: let X ∈ obj(C) be an object, R ∈
Lin(C) as above a rule with application conditions, and (m : I ↪→ X) an element of M. Since
according to Assumption 2 FPCs of arbitrary pairs of composableM-morphisms exist, the diagram
below is always constructible,

O K I cI

Rm(X) K ′ X

m∗

o

PO FPC

i

m

�

, (90)

the SqPO-admissibility of m hinges solely on whether the match satisfies the condition cI of the
rule R. We thus define the set of SqPO-admissible matches for the application of the rule R to the
object X as

Msq
R (X) := {(m : I → X) ∈M | m � cI} . (91)

A beneficial side-effect of the former observation is the following result, most statements of
which carry over from the DPO-rewriting setting for the Trans construction:

Theorem 8 (Properties of Trans in SqPO-rewriting) Given an M-adhesive category C satisfying
Assumption 2, the transport construction Trans has the following properties:

(i) Units for Trans: Let X ∈ obj(C) be an arbitrary object and cX a condition over X. Then
with ridX

≡
(
X

idX←−− X idX−−→ X
)
∈ Lin(C) the “identity rule on X”, we find that

Trans(ridX
, cX) ≡ cX . (92)

8Consider for example the case of a rule R = (r, cI) with “plain” rule r = (•1 ← •1 → •1 •2) and application
condition cI = @(•1 •2 ↪→ •1−•2). Applying the “plain” rule to a graph with two vertices linked by an arbitrary
number of edges would result in a single-vertex graph under SqPO-semantics regardless of the number of edges
(which are all implicitly deleted), yet only the case without edges permits admissible matches of R, which provides
a counter-example to the hypothesis that one could formulate a post-condition “transport-equivalent” to cI .
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(ii) Compositionality of Trans: Given two composable spans ofM-morphisms

r ≡
(
C

b←− B a−→ A
)

and s ≡
(
E

d←− D c−→ C
)
,

we find that
Trans(r,Trans(s, cE)) ≡ Trans(s ◦ r, cE) . (93)

(iii) Compatibility of Shift and Trans:

O

cO

K I

O′ K ′ I ′

o i

PO FPCp∗ p p

o′ i′

, (94)

letting r =
(
O

o←− K i−→ I
)
and r′ =

(
O′

o′
←− K ′ i

′
−→ I ′

)
, we have that for all objects X and

for all admissible matches n ∈ Msq
r′ (X) of r′ into X,

n � Shift(p,Trans(r, cO))⇔ n � Trans(r′,Shift(p∗, cO)) , (95)

which we write more compactly as9

Shift(p,Trans(r, cO)) ≡ Trans(r′,Shift(p∗, cO)) . (96)

Proof: The proofs of the first two statements take precisely the same shape as the corresponding
proofs of Lemma 7 (units for Trans) and Lemma 8 (compositionality of Trans) for the DPO-rewriting
setting, as they are independent of the underlying type of rewriting. It remains to prove the third
statement, which follows by suitably adapting the proof strategy of Lemma 9 (compatibility of Shift
and Trans in DPO-rewriting). More precisely, construct the commutative diagram below, where
the top part is inserted from the assumption of the lemma, and where the bottom part constitutes
an SqPO-type rewrite step of applying the rule r′ to X along the match n:

O

cO

K I

Trans(r, cO)

O′ K ′ I ′ Shift(p, Trans(r, cO))

r′
n(X) K ′ X

o i

PO FPCp∗ p p

o′ i′

n∗ n nPO FPC

(97)

From hereon, the proof structure is fully analogous to the DPO rewriting case: since

n � (Shift(p,Trans(r, cO)) ,

we find that m = n ◦ p � Trans(r, cO). Since the top and bottom left squares compose into
a pushout and the top and bottom right squares into an FPC, m � Trans(r, cO) implies that
m∗ = n∗ ◦ p∗ � cO. Since m∗ = n∗ ◦ p∗, m∗ � cO implies that n∗ � Shift(p∗, cO), and since the
bottom left and right squares are of the form of an SqPO-type rewriting step, we find that indeed
n � Trans(r′,Shift(p∗, cO). The proof of the converse direction follows by reversing the order of the
preceding steps of the proof. �

9Note that unlike in the DPO rewriting case, since by Assumption 2 FPCs of arbitrary composable pairs of
M-morphisms exist, it is indeed the case that any M-morphism (n : I′ → X) ∈ M is an admissible match for
the linear rule without application conditions r′; consequently, the equivalence takes precisely the form of standard
equivalence of application conditions without a constraint of admissibility.
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5.3 SqPO-type concurrent composition of rules with conditions
The second central definition for our rewriting framework is the following notion of concurrent
composition, which is an extension of a construction first introduced in [8] to the setting of rules
with conditions.

Definition 19 (SqPO-type concurrent composition) Let C be an M-adhesive category satisfying
Assumption 2. Let Rj ≡ (rj , cIj

) ∈ Lin(C) be two linear rules with application conditions (j = 1, 2),
and let

µ21 ≡
(
I2

m2←−−M21
m1−−→ O1

)

be a span ofM-morphisms (i.e. m1,m2 ∈M). If the diagram below is constructible (if the pushout
complement marked POC exists),

O2 K2 I2

cI2

M21 O1 K1 I1

cI1

O21 K ′
2 N21 K ′

1 I21 cI21

K21

o2

FPC

i2

PO m′
2

m2

PO

m1

m′
1

o1

POC

i1

PO p1

PB
o21

=

i21

=

(98)

where (in close analogy to the DPO-type rewriting setting)

cI21 := Shift(p1, cI1)
∧

Trans (N21 ← K ′1 → I21,Shift(m′2, cI2)) , (99)

and if cI21 6= false, then we call µ21 an SqPO-admissible match for the rules with conditions R2
into R1, denoted

µ21 ∈ Msq
R2

(R1) .

In this case, we introduce the notation R2
µ21^ R1 to denote the composite,

R2
µ21^ R1 :=

((
O21

o21←−− K21
i21−−→ I21

)
, cI21

)
. (100)

As already noted in [8] for the case of SqPO-type rewriting for rules without conditions, it
might appear surprising at first sight that there is an asymmetry in the above definition (in that
the left part of the diagram consists of an FPC and a pushout, while the right part is formed by
a pushout complement and a pushout, respectively), but the precise reason for this definition will
become apparent when considering the concurrency theorem for SqPO-type rules with conditions
in the following subsection.

5.4 SqPO-type concurrency theorem for rules with conditions
To the best of our knowledge, the following key result is the first of its kind in the SqPO-rewriting
setting:

Theorem 9 (SqPO-type Concurrency Theorem, extended from [8], Thm. 2.9) Let C be an M-
adhesive category satisfying Assumption 2, let Rj ≡ (rj , cIj

) ∈ Lin(C) (j = 1, 2) be two linear rules
with application conditions, and let X0 ∈ ob(C) be an object.

• Synthesis: Given a two-step sequence of SqPO derivations

X2
SqPO⇐====
R2,M2

X1
SqPO⇐====
R1,M1

X0 ,

with X1 := r1M1
(X0) and X2 := r2M2

(X1), there exists a SqPO-composite rule R21 = R2
µ21^

R1 for a unique µ21 ∈Msq
R2

(R1) as well as an SqPO-admissible match n ∈ Msq
R (X) (that is

unique up to isomorphisms) such that

R21n(X0) SqPO⇐====
R21,n

X0 and R21n(X0) ∼= X2 .

Accepted in Compositionality on 2021-02-06. Click on the title to verify. 38



Volume 3 Issue 2 ISSN 2631-4444

• Analysis: Given an SqPO-admissible match µ21 ∈ Msq
R2

(R1) of R2 into R1 and an SqPO-

admissible match n ∈ Msq
R21

(X) of the SqPO-composite R21 = R2
µ21^ R1 into X0, there

exists a pair of SqPO-admissible matches m1 ∈ Msq
R1

(X0) and m2 ∈ Msq
R2

(X1) (with X1 :=
R1m1

(X0), and unique up to isomorphisms) such that

X2
SqPO⇐====
R2,m2

X1
SqPO⇐====
R1,m1

X0 and X2 ∼= R21n
(X0) .

Proof: For the part of the proof pertaining to the concurrency of SqPO-type rules without appli-
cation conditions, we will follow the strategy presented in [8] (where slightly stronger conditions
than the ones required according to Assumption 2 were made, i.e. in [8] C was assumed to be
adhesive, whence the re-derivation here in theM-adhesive setting).

“Synthesis” part of the proof: Suppose we are given rules with application conditionsR1, R2 ∈
Lin(C) and SqPO-admissible matches m1 ∈ Msq

R1
(X0) and m2 ∈ Msq

R2
(X1), with X1 = R1m1

(X0).
This data is encoded in the blue part of the diagram in (71). Let us begin by constructing
the orange parts of (71) as follows: take the pullback M21 = PB(I2→ X1 ←O1), and then the
pushout N21 = PO(I2←M21 →O1); by the universal property of pushouts, there exists a mor-
phism N21 → X1, which is in M since C is assumed to possess M-effective unions according
to Assumption 2. Next, form the pullbacks K ′i = PB(Ki → X1 ← N21) (for i = 1, 2), which
furnishes morphisms Ki→ K ′i (for i = 1, 2) that are in M due to the decomposition property of
M-morphism. By virtue of vertical FPC-pullback decomposition (Lemma 12(iii)g), the second
from the left bottom and top squares in the back of (71) are FPCs, while via pushout-pullback
decomposition (Lemma 12(iii)c) the second from the right top and bottom squares in the back
of (71) are pushouts. Let O21 = PO(O2 ← K2→ K ′2), which by the universal property of pushouts
furnishes a morphism O21 →X2; by pushout-pushout decomposition (Lemma 12(iii)b), the leftmost
bottom square in the back of (71) is a pushout, which also entails by stability of M-morphisms
under pushouts that (O21 →X2) ∈ M. Analogously, let I21 = PO(K ′1 ←K1 → I1), which fur-
nishes a morphism I21 →X0, and via vertical FPC-pushout decomposition (Lemma 12(iii)h) that
the rightmost bottom back square in (71) is an FPC and that (I21 →X0) ∈M.

At this point, note that the bottom row of squares in the back of (71) has the shape of
two consecutive SqPO rewriting steps. Since (m1 : I1 → X0) � cI1 and (m2 : I2 → X1) � cI2 by
assumption, we conclude that m21 = (I21 → X0) satisfies m21 � c21, with

c21 = Shift(I1→ I21, cI1)
∧

Trans(N21 ← K ′1 → I21,Shift(I2→ N21, cI2) . (101)

To complete this part of the proof, take the pullbacks

K21 = PB(K ′2 ← N21 → K ′1) and K21 = PB(K2 ← X1 → K1) ,

which also induces a morphismK21 → K21. By pullback-pullback decomposition (Lemma 12(iii)a),
the induced square �(K21,K21,K1,K

′
1) (i.e. the inner right “curvy” square) is a pullback, which

entails by stability ofM-morphisms under pullbacks that K21 → K21 is inM. Then by theM-van
Kampen property, the square �(K21,K21,K2,K

′
2) (i.e. the inner left “curvy” square) is a pushout.

The composition of the latter pushout (and thus an FPC) square and of the second bottom square
from the left in the back of (71) (an FPC) yields an FPC square, while the third from the left
bottom back square is a pushout (and thus an FPC), whence, by horizontal FPC decomposition
(Lemma 12(iii)e), we derive that the inner right “curvy” square is an FPC. Consequently, forming
the front left “curvy” square as a composition of pushout squares and the front right “curvy” square
as a composition of FPCs, we have in summary exhibited an SqPO rewriting step of X0 along the
rule (O21 ← K21 → I21) and admissible match m21.

“Analysis” part of the proof: Suppose that we are given an SqPO-composite R21 = R2
µ21^ R1

of linear rules with application conditions R2 with R1 along the SqPO-admissible match µ21 =
(I2←M21 →O1), and that moreover m21 = (I21 →X0) is an SqPO-admissible match of R21 into
X0. Forming a SqPO-rewrite step by applying R21 along m21 to X0 yields the orange parts of the
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diagram in (71). In order to prove the claim, we have to construct two SqPO-admissible matches
m1 ∈ Msq

R1
(X0) and m2 ∈ Msq

R1
(X1), with X1 = R1m1

(X0), and that X2 ∼= R2m2
(X1) under these

assumptions.
We begin by forming the FPC K1 = FPC(K ′1 → I21 →X0), which according to Assumption 2

is guaranteed to exist and to yield two M-morphisms K ′1 → K1 and K1 → X0. By the uni-
versal property of FPCs, there exists a morphism K21 → K1, which by the M-morphism de-
composition property is in M. Horizontal FPC decomposition (Lemma 12(iii)e) entails that the
square �(K21,K21,K1,K

′
1) (inner right “curvy” square) is an FPC. Next, we take the pushout

X1 = PO(M21 ← K ′1 →K1), followed by forming the FPC

K2 = FPC(K ′2 → N21 → X1) .

Since the inner right “curvy” square �(K21,K21,K1,K
′
1) is an FPC and the second from the right

bottom back square in (71) a pushout, the composition of these two squares is an FPC and thus
a pullback. Then by the universal property of FPCs, there exists a morphism K21 → K2, which
is by theM-morphism decomposition property inM, and by the horizontal FPC decomposition
property, the left inner “curvy” square is an FPC. Noting that the square �(K21,K

′
2, N21,K

′
1) is

by assumption a pullback, by pullback-pullback decomposition so is �(K21,K2, X1,K1); thus by
the M-van Kampen property, the left inner “curvy” square is an FPC, noting that the square
is in fact a pushout. The latter entails by the universal property of pushouts the existence of
a morphism K2 → X2, and then by pushout-pushout decomposition that the leftmost bottom
back square in (71) is a pushout (and thus by stability of M-morphisms under pushouts that
(K2 → X2) ∈M).

To complete the proof, note that the rightmost and second from right bottom back squares
in (71) are an FPC and a pushout, respectively, thus m21 � cI21 (with cI21 defined as in (101))
implies that theM-morphisms

m1 = (X0 ← I21) ◦ (I21 ← I1) and m2 = (X1 ← N21) ◦ (N21 ←I2)

satisfy m1 � cI1 and m2 � cI2 according to the properties of the Shift and Trans constructions. It
then remains to compose pushout squares and FPC squares in the top and bottom back of the
diagram (71) in order to form the two SqPO rewriting steps claimed to exist by the statement of
the theorem, which concludes the proof. �

5.5 Associativity of SqPO rewriting with conditions
Based upon the developments presented thus far and on the central result of [8] (the associativity
theorem for SqPO rewriting without rules), we may now state another original contribution of
this paper. Due to the structural similarities between the strategies of the associativity proof in
the DPO- and SqPO-type cases for rules without application conditions, the following statement
is almost verbatim equivalent to the corresponding DPO-type statement. More precisely, in both
cases, the part of the proof needed on top of the case without conditions consists of a “diagram
chase” involving the Shift and Trans constructions and their properties.

Theorem 10 (SqPO-type Associativity Theorem) Let C be anM-adhesive category satisfying As-
sumption 2. Let Rj ≡ (rj , cIj ) ∈ Lin(C) (j = 1, 2, 3) be three linear rules with application condi-
tions. Then there exists a bijection between the sets of pairs of admissible matches MA and MB

defined as
MA := {(µ21, µ3(21))|µ21 ∈ Msq

R2
(R1) , µ3(21) ∈ MR3(R21)}

MB := {(µ32, µ(32)1)|µ32 ∈ Msq
R3

(R2) , µ(32)1 ∈ MR32(R1)}
(102)

with Ri,j := (ri
µij^ rj , cIij ) (and cIij defined as in (62)) such that

∀(µ21, µ3(21)) ∈MA : ∃!(µ32, µ(32)1) ∈MB :

r3
µ3(21)
^

(
r2

µ21^ r1

)
∼=
(
r3

µ32^ r2

) µ(32)1
^ r1 (103a)

∧ cI3(21) ≡ cI(32)1 (103b)
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and vice versa. In this particular sense, the operation .
.^ . is associative.

Proof: Referring the interested readers to [8] for the precise details of the proof for the part
of the above statement pertaining to rules without application conditions, and to [12] for the
generalization of the requisite technical lemmas from the adhesive to the M-adhesive setting,
suffice it here to quote the following result: the diagram (where we have also indicated the relevant
conditions on rules for later convenience) is constructible starting from either of the sets of pairs
of SqPO-admissible matches in (102), and thereby proves the bijection for the sets of matches of
rules without conditions:

O3 K3 I3 M32 O2 K2 I2 M21 O1 K1 I1

O3 K3 I3 M3(21) O21 K ′
2 N21 K ′

1 I21

O32 K ′
3 N32 K ′′

2 I32 M(32)1 O1 K1 I1

O321 K3 N3(21) K2 N(32)1 K1 I321

cI1cI2cI3

cI32

cI21

cI321

(104)

In contrast to the analogous diagram (75) of the proof of the DPO-type associativity theorem, the
nature of the various squares in (104) differs at several positions. For the purpose of proving the
part of the SqPO-type associativity theorem pertaining to the conditions on rules, we thus quote
from [8] that

• the third and fourth squares in the front (counting from the left) are a pushout and an FPC,
respectively

• the second to right and rightmost bottom squares are pushouts.

Consequently, it suffices to replace the various applications of the DPO-type compatibility of Shift
and Trans (Lemma 9) in the proof of Theorem 6 with its SqPO-type variant (Theorem 8) in order to
obtain a proof of the statements of the present Theorem 10 pertaining to the conditions on rules. �

Example 6 (Ex. 5 continued) It is instructive to compare the associativity property in the SqPO-type
variant directly with its counterpart in the DPO-type setting by considering once more the triple rule
composition depicted in Figure 2. Note first that since pushout complements along M-morphisms
are also FPCs, the triple composition at the level of “plain” rules is a valid composition both in
DPO- and in SqPO-semantics. However, the two semantics differ at the level of the application
conditions. More precisely, since the SqPO-type Trans construction is in a sense “asymmetric” (in
that conditions can be transported from the output to the input of a rule, but not vice versa), the
“compression” as described in Definition 15 for the DPO-setting is not available in the SqPO-setting.
Indeed, the application condition

cI1 := ¬∃
(
↪→ , true

)

yields a non-trivial test on candidate matches of rule R1 in the SqPO-rewriting, since an application
of R1 at two vertices linked by an arbitrary number of vertices is possible for the “plain” rule r1
in SqPO-rewriting (leading to the implicit deletion of all edges incident to the deleted vertex).
Applying the SqPO-type Trans construction as well as Shift, one may compute that the application
conditions cI3(21) and cI(32)1 are again equivalent to each other, and are found to evaluate to cI1 .

Having scratched but the very surface of the intricate matter of causality in SqPO-type rewrit-
ing, and referring to [9, 10] for a more in-depth discussion, suffice it here to mention that it is
precisely this type of causality that is of key importance to the analysis of biochemical reaction
systems in the Kappa framework [20, 33, 56].
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6 Conclusion and Outlook
This paper provides a self-contained account of a class of rewriting theories that possess the spe-
cial property of compositionality. Based upon the rich theory of “traditional” Double-Pushout
(DPO) [25, 36–38, 40–42, 47, 63] and Sesqui-Pushout (SqPO) [26, 55] rewriting in the setting of
M-adhesive categories [22, 39, 53], we lift our earlier results on compositional concurrency and com-
positional associativity as developed in [8, 11–13] to the realm of rewriting systems with conditions
on objects and morphisms.

A key original contribution of the present paper is a derivation of the precise technical conditions
under which compositionality in the aforementioned sense is attainable for a given rewriting theory.
Concretely (cf. Section 2), it has proved essential to suitably adapt the requirements on the host
categories for both DPO- and SqPO-type rewriting with application conditions on objects and
morphisms [42, 45, 46, 51, 60], concluding that these categories should beM-adhesive and possess
certain additional properties such as the existence of epi-M-factorizations andM-effective unions
as described in Assumptions 1 (DPO-case) and 2 (SqPO-case).

Our second original contribution consists of a refinement of the theory of conditions in M-
adhesive categories as presented in Section 3. For categories satisfying either of the assumptions
mentioned earlier, it is possible to refine a central construction of the theory of conditions, the
so-called shift construction, into a form that leads to new results on the interplay of rewriting
rules and conditions. In particular, the transport construction is shown to possess a compatibility
property in interaction with the shift construction, which is required to ensure compositionality of
rewriting with conditions.

The main results of this paper are the compositional concurrency and associativity of rewrit-
ing with conditions in both the DPO (Section 4) and SqPO (Section 5) cases, demonstrated to
hold under the aforementioned assumptions. Our proof strategy and techniques rely heavily on
earlier developments in the setting of rewriting without conditions [8, 11] in conjunction with the
aforementioned results on the properties of the refined shift and transport constructions. While
admittedly a rather technical work, we believe that our results can serve as a starting point for
a new generation of developments in the field of rewriting, in particular in view of static anal-
ysis tasks. Indeed, in most applications of practical interest, idealized data structures such as
multigraphs must be restricted to more rigid structures (such as e.g. site graphs in the Kappa
framework [20, 30]) in order to obtain tractable algorithms of sufficient predictive power. First
results in the fields of stochastic mechanics of continuous-time Markov chains based upon stochas-
tic rewriting systems [8, 11, 13, 15] hint at a great potential of the framework of compositional
rewriting with conditions as presented here. We recently demonstrated that based upon the results
of the present paper, it is possible to develop a faithful encoding of both bio- and organo-chemical
reaction systems via typed undirected simple graphs with suitable sets of additional structure con-
straints [10]. Together with the respective SqPO- and DPO-type stochastic mechanics frameworks
introduced in [10], a direct and in-detail comparison of the sophisticated rule-based modeling frame-
works Kappa [20] and BioNetGen [50] (SqPO/biochemistry) as well as MØD [3] (DPO/organic
chemistry) with the general theory of categorical rewriting over M-adhesive categories has be-
come possible. As a first hint at the potential of such an approach in view of the development of
algorithmic implementations of rewriting-theoretical concepts, we have recently presented a first
prototype of an implementation of SqPO-type compositional rewriting systems for rules with con-
ditions based upon the present theory as well as on the Microsoft Z3 SMT-solver in [16]. Work in
progress further includes the theory of tracelets as introduced in [9], whereby the classical concept
of derivation traces (i.e. of sequences of applications of rewriting rules) is analyzed via exploiting
the associativity theorems in order to characterize a derivation trace of length n ≥ 1 in terms of a
minimal derivation trace of the same length (a so-called tracelet of length n). As briefly touched
upon in the discussion of Examples 5 and 6 (which consider the case of a “triple” composite of
rules, i.e. the case n = 3), compositional associativity of the operations of DPO- and SqPO-type
rule compositions (Theorems 6 and 10) opens the possibility to statically generate such minimal
derivation traces without the need to first obtain generic derivation traces (either from simulations
or from unfoldings), posing thus considerable potential in terms of analyzing pathways and their
dynamics in chemical reaction systems.
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Appendix

A Collection of technical lemmata forM-adhesive categories
In many practical computations in the framework ofM-adhesive categories, one may take advan-
tage of a number of technical results, some of which elementary, some of which rather specialized
(such as in particular the lemmata pertaining to final pullback complements (FPCs)). For the
readers’ convenience, we provide here the full list of results used in the framework of this paper.
The list is an adaptation of the list provided in [8] from the setting of adhesive toM-adhesive cat-
egories. Note also that while the category-theoretical constructions of objects and morphisms via
pullbacks, pushouts, pushout complements and FPCs are by definition unique only up to universal
isomorphisms, we follow standard practice in simplifying our notations by employing a convention
whereby e.g. the pushout of an isomorphism as in (105)(A) is denoted by “equality arrows” (rather
than keeping a notation with generic labels and ∼= decorations on arrows).

Lemma 12 Let C be a category.

(i) “Single-square” lemmas (see e.g. [12], Lem. 1.7): In any category, given commutative diagrams
of the form

A B

A B

f

(A)

f

A A

A B

(B) g

g

A B

A C

f

(C) g

g◦f

A C

B C

a

b (D)

c

, (105)

(a) (A) is a pushout for arbitrary morphisms f ,

(b) (B) is a pullback if and only if the morphism g is a monomorphism,

(c) (C) is a pullback for arbitrary morphisms f if g is a monomorphism,

(d) If a, c ∈ mono(C) and (D) is a pullback, then A ∼= B.

(ii) specialM-adhesivity corollaries (cf. e.g. [42], Lemma 2.6): in any adhesive category,

(a) pushouts alongM-morphisms are also pullbacks,

(b) (uniqueness of pushout complements) given an M-morphism A ↪→ C and a generic

morphism C → D, the respective pushout complement A → B
b
↪−→ D (if it exists) is

unique up to isomorphism, and with b ∈ M (due to stability of M-morphisms under
pushouts).

(iii) “Double-square lemmas”: given commutative diagrams of the shapes

A B C

A′ B′ C ′

a (1)

d

b (2)

e

c

d′ e′

Z Z ′

Y Y ′

X X ′

w (3) w′

z

v (4)
y

v′

x

(106)

then in any category C (cf. e.g. [53]):

(a) Pullback-pullback (de-)composition: If (1) is a pullback, then (1) + (2) is a pullback if
and only if (2) is a pullback.

(b) Pushout-pushout (de-)composition: If (2) is a pushout, then (1) + (2) is a pushout if
and only if (1) is a pushout.

If the category isM-adhesive:
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(c) pushout-pullback decomposition ([42], Lemma 2.6): If (1) + (2) is a pushout, (1) is a
pullback, and if d′ ∈ M and (c ∈ M or e ∈ M), then (1) and (2) are both pushouts
(and thus also pullbacks).

(d) pullback-pushout decomposition ([45], Lem. B.2): if (1) + (2) is a pullback, (2) a
pushout, (1) commutes and a ∈M, then (1) is a pullback.

(e) Horizontal FPC (de-)composition (cf. [26], Lem. 2 and Lem. 3, compare [55], Prop. 36):10

If (1) is an FPC (i.e. if (d′, b) is FPC of (a, d)), then (1) + (2) is an FPC if and only
if (2) is an FPC.

(f) Vertical FPC (de-)composition (ibid): if (3) is an FPC (i.e. if (v.w′) is FPC of (w, z)),
then

i. if (4) is an FPC (i.e. if (x, v′) is FPC of (v, y)), then (3) + (4) is an FPC (i.e.
(x, v′ ◦ w′) is FPC of (v ◦ w, z));

ii. if (3)+(4) is an FPC (i.e. if (x, v′◦w′) is FPC of (v◦w, z)), and if (4) is a pullback,
then (4) is an FPC (i.e. (x, v′) is FPC of (v, y)).

(g) Vertical FPC-pullback decomposition (compare [55], Lem. 38): If v ∈ M, if (4) is a
pullback and if (3) + (4) is an FPC (i.e. if (x, v′ ◦w′) is FPC of (v ◦w, z)), then (3) and
(4) are FPCs.

If the category is M-adhesive and in addition possesses an epi-M-factorization and M-
effective unions:

(h) Vertical FPC-pushout decomposition: If all morphisms of the squares (3) and (4) except
v are inM, if v◦w ∈M, if (3) is a pushout and if (3)+(4) is an FPC (i.e. if (x, v′◦w′)
is FPC of (v ◦ w, z)), then (4) is an FPC and v ∈M.

Proof: Proofs of all but the very last statement are found in the references quoted in each state-
ment. It thus remains to prove our novel vertical FPC-pushout decomposition result (in the
setting of M-adhesive categories). To this end, we first invoke pullback-pushout decomposition
(Lemma 12((iii)d)): since (3) + (4) is an FPC and thus in particular a pullback, since (3) is a
pushout, (4) commutes, and finally since x ∈M, we find that (4) is a pullback.

In order to demonstrate that v ∈M, construct the commutative cube below left:

Z Z ′

Y Y ′

Z Z ′

X X ′

z

w′w

v z

x

y

v′

Z Z ′

Y Y ′

X

w
v◦w (3)

z

w′

v
y

v◦y

(107)

Since the bottom square is the FPC (and thus pullback) (3) + (4), and since the right square is
a pullback via Lemma 12((i)c) (because v′ ∈ M ⊂ mono(C)), by pullback composition the square
�(Z ′, Z,X, Y ′) (the right plus the bottom square) is a pullback. Thus assembling the commutative
diagram as shown above right, since by assumption (3) is a pushout and all arrows except v are in
M, invoking the property ofM-effective unions (Definition 5) allows us to prove that also v ∈M.
Finally, by applying vertical FPC-pullback decomposition, we conclude that (4) is an FPC. �

10It is worthwhile emphasizing that in these FPC-related lemmas, the “orientation” of the diagrams plays an
important role. Moreover, the precise identity of the pair of morphisms that plays the role of the final pullback
complement in a given square can be inferred from the “orientation” specified in the condition part of each statement.
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B Closure ofM under isomorphisms
As mentioned in the main text, the definition ofM-adhesive categories as given in Definition 1 is
well known to be overcomplete. With theM-decomposition property derivable directly via stability
of M-morphisms under pullbacks, we present below a derivation of the fact that M contains all
isomorphisms.

(i) Given an arbitraryM-morphism (m : A ↪→ B) ∈M, sincem = m◦idA, by the decomposition
property ofM-morphisms (Definition 1(i)(a)), we find that idA ∈M, for every A ∈ obj(C).

(ii) Let (φ : A → B) ∈ iso(C) be an isomorphism, and take the pullback of the cospan (φ, idA),
resulting in a span (idA, φ−1). Then by stability of M-morphisms under pullback (Defini-
tion 1(iii)), we conclude that φ−1 ∈M (i.e. byM-decomposition also φ ∈M).

C Some useful consequences of epi-M-factorizations
Lemma 13 Let C be anM-adhesive category satisfying Assumption 1. Then given a commutative
diagram as below left where a, b ∈M and c is an arbitrary morphism,

A B

C B

c

a

b

A B

E D

C B

e

c

e′

a

m PB
d

m′

b

e e′

A B

A B

E D

C B

a

c d

m′

b

m

a

(108)

then if the epi-M-factorization of the morphism c reads c = m ◦ e, with (m : E ↪→ C) ∈ M and
(e : A → E) ∈ epi(C), and if we form the pullback D = PB(E ↪→ C ←↩ B) (thus inducing by the
universal property a morphism e′ : B → D), then B ∼= D.

Proof: Note first that by virtue of stability ofM-morphisms under pullbacks and by the decompo-
sition property ofM-morphisms, respectively, one may conclude that d,m′ ∈M and e′ ∈M (since
(idB : B → B) ∈ M). Next, form the commutative cube diagram as depicted in the right part
of (108). The left square is a pullback (Lemma 12(i)c), and so is the top square (Lemma 12(i)a).
Since by construction also the bottom square is a pullback, by virtue of pullback-pullback decom-
position (Lemma 12(iii)a), the right square is a pullback. Thus by stability of isomorphisms under
pullbacks (Lemma 12(i)d), we obtain that D ∼= B. �

D Some useful consequences of (strict)M-initiality
In the case that anM-adhesive category possesses a (strict)M-initial object, the following useful
properties can be derived.

Lemma 14 Let C be an M-adhesive category with M-initial object ∅. Then the commutative
diagram ofM-morphisms below is both a pushout and a pullback:

A B

A + C B + C

. (109)
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Proof: Consider the following commutative diagram:

∅ A B

C A + C B + C

(110)

Since the outer square and the left square are pushouts, according to the pushout-pushout decom-
position property stated in Lemma 12(iii)b, the right inner square is also a pushout (and thus a
pullback). �

Lemma 15 Let C be an M-adhesive category with a strict M-initial object ∅, and consider the
commutative diagrams ofM-morphisms below,

A + ∅ A + ∅

B + C A + D

(1)[a,∅] [a′,∅]

A + B A + C

E + F D + C

(2)[a,b] [a,c] . (111)

If (1) is a pullback, then A ∼= B, and if (2) is a pullback, then B ∼= F .

Proof: Consider the following auxiliary commutative diagrams:

A A

A A

B + C A + D

B A

A + B A + C

B C

E + F D + C

F C

. (112)

The left diagram is formed by taking a pullback to obtain the bottom square, followed by tak-
ing the appropriate pullbacks to form the left and right squares (which induces the dotted arrow
by the universal property of pullbacks). Since the left, back and right squares are pullbacks, by
pullback-pullback decomposition (see Lemma 12(iii)a) so is the front square. Then by stability of
isomorphisms under pullbacks (see Lemma 12(i)d), A ∼= B. The right diagram is constructed in
precisely the same fashion, thus proving that B ∼= F . �

The notion of strict M-initiality also plays an interesting role in our framework of conditions
on objects and rewriting rules studied in the main part of this paper due to the following result:

Lemma 16 (M-morphisms into binary coproducts) Let C be an M-adhesive category (for M a
class of monomorphisms) that possesses a strictM-initial object ∅ ∈ obj(C). Then for all objects

X,Y, Z ∈ obj(C), if there exists anM-morphism X + Y
f←−↩ Z, then Z ∼= V +W with

V = PB(X ↪→ X + Y
f←−↩ Z) and W = PB(Z

f
↪−→ X + Y ←↩ Y ) , (113)

and consequently (by the universal property of binary coproducts) f = [v, w] (with v : V ↪→ X and
w : W ↪→ Y both inM).
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Proof: Construct the following commutative cube, with the bottom square a pushout, and where
the front and left faces are formed by taking pullbacks as described in (113) in order to obtain V
and W , followed by forming Z ′ = PB(V ↪→ Z ←↩ W ), which provides an arrow Z ′ → ∅ by the
universal property of pushouts (since the bottom square is a PO):

v

V Z ′

Z W

X ∅

X + Y Y

f

w (114)

By virtue of strictM-initiality of ∅, the existence of the arrow Z ′ → ∅ entails that Z ′ ∼= ∅. Since
the bottom square is a pushout, all vertical squares are pullbacks and all vertical morphisms are in
M, by theM-van Kampen property the top square is a pushout. Thus Z ∼= V +W by uniqueness
of pushouts up to isomorphisms, and the claim follows. �
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