
Volume 3 Issue 3 ISSN 2631-4444

Homotopy theory of Moore flows (I)
Philippe Gaucher

Université Paris Cité, CNRS, IRIF, F-75013, Paris, France

Erratum, 11 July 2022: This is an updated version of the original paper [20] in
which the notion of reparametrization category was incorrectly axiomatized. Details on
the changes to the original paper are provided in the Appendix.

A reparametrization category is a small topologically enriched semimonoidal cat-
egory such that the semimonoidal structure induces a structure of a semigroup on
objects, such that all spaces of maps are contractible and such that each map can be
decomposed (not necessarily in a unique way) as a tensor product of two maps. A
Moore flow is a small semicategory enriched over the biclosed semimonoidal category
of enriched presheaves over a reparametrization category. We construct the q-model
category of Moore flows. It is proved that it is Quillen equivalent to the q-model cate-
gory of flows. This result is the first step to establish a zig-zag of Quillen equivalences
between the q-model structure of multipointed d-spaces and the q-model structure of
flows.
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1 Introduction
Presentation
The q-model category 1 of flows (i.e. small semicategories or small nonunital categories enriched
over topological spaces) Flow was introduced in [8]. The motivation is the study of concurrent

Philippe Gaucher: http://www.irif.fr/˜gaucher

1We use the terminology of [32]. The h-model structure and the m-model structure are introduced in [18].
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processes up to homotopy. The identities are removed from the structure to ensure the functoriality
of some constructions. There are many other topological models of concurrency [21–24, 30] (the
list does not pretend to be exhaustive). They are all of them based on the same kind of ideas.
They contain a set of states with a notion of execution path and of homotopy between them
to model concurrency. They are introduced for various purposes, some of them having a specific
mathematical behaviour. The notion of Grandis’ d-space [21] seems to be very successful, probably
because of its simplicity. A d-space is just a topological space equipped with a distinguished set of
continuous maps playing the role of the execution paths of a concurrent process. The distinguished
set of continuous maps playing the role of execution paths satisfies various natural axioms. On
the contrary, flows are difficult to use because they are roughly speaking d-spaces without an
underlying topological space. They just have an underlying homotopy type as defined in [12]. This
fact makes the category of flows quite unwieldy, although it has mathematical features not shared
by the other topological models of concurrency, like the possibility of defining functorial homology
theories for branching and merging areas of execution paths [9, 11].

An attempt to build a bridge between the d-spaces of [21] and the flows of [8] was made in [13]
by introducing the q-model category GdTop of multipointed d-spaces. The latter are a variant of
Grandis’ notion of d-space introduced in [21] which is as closed as possible to the notion of flow.
The most important feature of this notion is that multipointed d-spaces do have an underlying
topological space.

However, we had to face an unexpected problem which could be summarized as follows. There
exists a “categorization” functor cat : GdTop → Flow such that the total left derived functor
in the sense of [6] induces an equivalence of categories between the homotopy categories of the
q-model structure of GdTop and the q-model structure of Flow [13, Theorem 7.5]. This functor
was a plausible candidate for a Quillen equivalence. Unfortunately, it is neither a left adjoint nor a
right adjoint. The origin of the problem is that the composition of paths in multipointed d-spaces
is associative up to homotopy whereas the composition of paths in flows is strictly associative.

The solution proposed in this paper to overcome the above problem is to introduce the category
GFlow of G-flows, also called Moore flows in the title of the paper (cf. Definition 6.2 and Defini-
tion 4.9). Roughly speaking, G-flows are flows with morphisms having a length which is a strictly
positive real number. Such an object also contains the information about the way for execution
paths to be reparametrized. The main result of this paper can be summarized in the following
theorem:

Theorem 1.1 (Theorem 10.9) The q-model category of P-flows for any reparametrization category
P, and in particular the q-model category of Moore flows, and the q-model category of flows are
Quillen equivalent.

A companion paper [17] proves that the q-model category of G-flows and the q-model category
of multipointed d-spaces are Quillen equivalent. It also supplies a new and more conceptual proof
of [13, Theorem 7.5]. Note that unlike what I wrote in the motivation section of [15], the results
of this paper and of the companion paper [17] are independent of [10].

The notion of reparametrization category of Definition 4.3 seems to be a new method to deal
with Moore paths. The specific interest of this notion in directed homotopy theory is to have the
terminal category and the two categories G of Proposition 4.9 and M of Proposition 4.11 in the
same formalism. Indeed, Grandis’ d-spaces, besides being not multipointed and having identity
execution paths, have a set of execution paths invariant by the action of the monoid M(1, 1) of
nondecreasing surjective maps from [0, 1] to itself in their definition. On the contrary, the notion
of multipointed d-space used in the companion paper [17] has a set of execution paths invariant by
the action of the group G(1, 1) of nondecreasing homeomorphisms from [0, 1] to itself only, which
is sufficient for computer scientific formalization. The reason of the latter choice, which dates
back to [13], is that it makes the cellular objects of the q-model structure of multipointed d-spaces
much simpler to understand because their execution paths have no stop point. The presence of
stop points in execution paths creates technical complications indeed. This problem is studied in
[7] for the continuous paths of a Hausdorff topological space (the continuous paths without stop
point are called regular). The formalism of reparametrization category will enable us to treat the
case of M in subsequent papers. Note that unlike the classifying space BG(1, 1), the classifying
space BM(1, 1) is contractible by a result of Lawson [15, Theorem 8.1]. Therefore, in theory, it
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should be possible to drop somehow the enriched structure in the definition of aM-flow as given
in Definition 6.1.

The notion of P-flow of Definition 6.1 for a general reparametrization category P is primarily
designed to better understand the topology of the spaces of execution paths in a concurrent process.
This will become more apparent in the companion paper [17] in which a lot of new results about
the topology of the spaces of execution paths are expounded in the globular setting, i.e. for cellular
objects of the q-model structure of multipointed d-spaces. For the precubical setting, the reader
will refer to the works of Paliga, Raussen and Ziemiański [36–38, 40, 41].

The right Quillen functor MG from multipointed d-spaces to G-flows defined in the companion
paper consists of forgetting the underlying topological space. From a topological space X, on can
obtain a multipointed d-space X̃ = (X,X0,PX) with X0 = X and where PX is the set of all
continuous maps from [0, 1] to X. The G-flow MG(X̃) is then an object which contains the same
information as the so-called Moore path (semi)category of the topological space X. It means that
the notion of P-flow is an abstraction of the Moore path (semi)category of a topological space.
And for this reason, one of the anonymous referees noticed that there could be a connection with
the papers [34, 35] to be investigated, the first one introducing a new family of models of type
theory based on Moore paths, the second one abstracting the notion of Moore path to characterize
type-theoretic weak factorization systems.

Throughout the paper, a general reparametrization category P in the sense of Definition 4.3 is
used. The use of the category of reparametrization G of Proposition 4.9 will be required only in
the companion paper [17].

Outline of the paper
• Section 2 is a short reminder about ∆-generated spaces and their q-model structure.

• Section 3 is a short reminder about enriched presheaves of topological spaces. Some notations
are stated and some formulae are recalled and named for helping to explain the subsequent
calculations.

• Section 4 introduces the notion of reparametrization category. We give two examples of such a
category (Proposition 4.9 and Proposition 4.11). The notion of reparametrization category given
here is very general.

• Section 5 sketches the theory of enriched presheaves over a reparametrization category P, called
P-spaces. The main result of Section 5 is that it is possible to define a structure of biclosed
semimonoidal category. The word semi means that the monoidal structure does not necessarily
have a unit. This section contains also various calculations which will be used in the sequel.

• Section 6 introduces the notion of P-flow and proves various basic properties, like its local
presentability. It is also proved that the (execution) path P-space functor from P-flows to P-
spaces is a right adjoint.

• Section 7 recalls some results about Isaev’s work [27] about model categories of fibrant objects.
It also provides, as an easy consequence of Isaev’s paper, a characterization of the class of weak
equivalences as a small injectivity class with an explicit description of the generating set. The
latter result is a particular case of a more general result due to Bourke.

• Section 8 expounds and describes as completely as possible the q-model structure of P-flows. It
is very similar to the q-model structure of flows in many ways. In fact, we follow the method of
[16] step by step constructing the q-model structure of Flow by using [27].

• Section 9 proves that the path P-space functor from P-flows to P-spaces takes (trivial resp.)
q-cofibrations of P-flows between q-cofibrant P-flows to (trivial resp.) projective q-cofibrations
of P-spaces. In particular, the P-space of execution paths of a q-cofibrant P-flow is a projective
q-cofibrant P-space. The material expounded in [19] is used in a crucial way.

• Finally, Section 10, after a reminder about flows, establishes the Quillen equivalence between
the q-model structure of P-flows and the q-model structure of flows. The proof requires to use
the main theorem of [15] which is recalled in Theorem 10.8.
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Notations, conventions and prerequisites
We refer to [1] for locally presentable categories, to [39] for combinatorial model categories. We
refer to [25, 26] for more general model categories. We refer to [28] and to [3, Chapter 6] for enriched
categories. All enriched categories are topologically enriched categories: the word topologically is
therefore omitted. What follows is some notations and conventions.

• A := B means that B is the definition of A.

• Kop denotes the opposite category of K.

• Obj(K) is the class of objects of K, Mor(K) is the category of morphisms of K with the commu-
tative squares for the morphisms.

• KI is the category of functors and natural transformations from a small category I to K.

• ∅ is the initial object, 1 is the final object, IdX is the identity of X.

• K(X,Y ) is the set of maps in a set-enriched, i.e. locally small, category K.

• K(X,Y ) is the space of maps in an enriched category K. The underlying set of maps may be
denoted by K0(X,Y ) if it is necessary to specify that we are considering the underlying set.

• The composition of two maps f : A→ B and g : B → C is denoted by gf or, if it is helpful for
the reader, by g.f ; the composition of two functors is denoted in the same way.

History, informal comments and acknowledgments
The route which would lead to this work is long. After the redaction of [13], I thought that the
intermediate category to put between multipointed d-spaces and flows was a Moore version of
multipointed d-spaces (see e.g [14]). The latter idea seems to be a dead-end. In fall 2017, I had
the idea to use a Moore version of flows instead of multipointed d-spaces. It did not come to my
mind at first because the composition of paths is already strictly associative on flows. This led me
to a first attempt to define Moore flows in spring 2018. A new obstacle then arised. Due to the
non-contractibility of the classifying space of the group of nondecreasing homeomorphisms from
[0, 1] to itself, the behavior of the homotopy colimit of spaces (see the introduction of [15]) prevents
the left Quillen functor M! from Moore flows to flows of Proposition 10.6 from being homotopically
surjective. I had fruitful email discussions with Tim Porter during summer 2018, and I thank him
for that, from which a better idea emerged: I had to work in an enriched setting. The preceding
obstable is then overcome thanks to [15, Theorem 7.6] which is recalled in Theorem 10.8. It
was then necessary to prove that a q-cofibrant Moore flow has a projective q-cofibrant P-space
of execution paths. This fact is required also for the functor M! to be homotopically surjective.
The redaction of this proof (see Theorem 9.11) led me to the formulation of a Moore flow as a
semicategory enriched over the biclosed semimonoidal structure of P-spaces. Some explanations
about the axioms satisfied by a general reparametrization category are given after Definition 4.3.

I thank the two anonymous referees for their reports and suggestions. One of the two referees
suggested two terminologies P-space or P-trace for Definition 5.1. When P is the terminal category
1, the semimonoidal category ([Pop,Top]0,⊗) is the (semi)monoidal category (Top,×). It is the
reason why the first suggestion is chosen.

2 Reminder about topological spaces
The category Top is either the category of ∆-generated spaces or the full subcategory of ∆-
Hausdorff ∆-generated spaces (cf. [19, Section 2 and Appendix B]). We summarize some basic
properties of Top for the convenience of the reader:

• Top is locally presentable.
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• The inclusion functor from the full subcategory of ∆-generated spaces to the category of gen-
eral topological spaces together with the continuous maps has a right adjoint called the ∆-
kelleyfication functor. The latter functor does not change the underlying set.

• Let A ⊂ B be a subset of a space B of Top. Then A equipped with the ∆-kelleyfication of the
relative topology belongs to Top.

• The colimit in Top is given by the final topology in the following situations:

– A transfinite compositions of one-to-one maps.

– A pushout along a closed inclusion.

– A quotient by a closed subset or by an equivalence relation having a closed graph.

In these cases, the underlying set of the colimit is therefore the colimit of the underlying sets.
In particular, the CW-complexes, and more generally all cellular spaces are equipped with the
final topology. Note that cellular spaces are even Hausdorff (and paracompact, normal, etc...).

• Top is cartesian closed. The internal hom TOP(X,Y ) is given by taking the ∆-kelleyfication
of the compact-open topology on the set TOP(X,Y ) of all continuous maps from X to Y .

The q-model structure 2 is denoted by Topq. It is enriched over itself using the binary product.
The terminology of cartesian enrichment is used sometimes. We keep denoting the set of continuous
maps from X to Y by Top(X,Y ) and the space of maps from X to Y by TOP(X,Y ) like in our
previous papers (and not by Top0(X,Y ) and Top(X,Y ) respectively).

A topological space is connected if and only if it is path-connected and every topological space is
homeomorphic to the disjoint sum of its nonempty path-connected components [13, Proposition 2.8].
The space CC(Z) is the space of path-connected components of Z equipped with the final topology
with respect to the canonical map Z → CC(Z), which turns out to be the discrete topology by [19,
Lemma 5.8].

Note that the paper [15], which is used several times in this work, is written in the category of
∆-generated spaces; it is still valid in the category of ∆-Hausdorff ∆-generated spaces. This point
is left as an exercise for the idle mathematician: see [19, Section 2 and Appendix B] for any help
about the topology of ∆-generated spaces.

Notation 2.1 Let n > 1. Denote by

Dn = {b ∈ Rn, |b| 6 1}

the n-dimensional disk, and by
Sn−1 = {b ∈ Rn, |b| = 1}

the (n− 1)-dimensional sphere. By convention, let D0 = {0} and S−1 = ∅.

3 Reminder about enriched presheaves of topological spaces
Notation 3.1 P denotes an enriched small category in this section. The enriched category of en-
riched presheaves from Pop to Top is denoted by [Pop,Top]. The underlying set-enriched category
of enriched maps of enriched presheaves is denoted by [Pop,Top]0.

The enriched category [Pop,Top] is tensored and cotensored [33, Lemma 5.2]. For an enriched
presheaf F : Pop → Top, and a topological space U , the enriched presheaf F ⊗ U : Pop → Top
is defined by F ⊗ U = F (−) × U and the enriched presheaf FU : Pop → Top is defined by
FU = TOP(U,F (−)). By [3, Definition 6.2.4 and Diagram 6.13] (see [15, Section 5] for more
detailed explanations), the underlying category [Pop,Top]0 of [Pop,Top] can be identified with
the full subcategory of the category TopP

op

of functors F : Pop → Top such that the set map
P0(`1, `2) −→ Top(F (`2), F (`1)) induces a continuous map P(`1, `2) −→ TOP(F (`2), F (`1)) for

2We use the terminology of [32].
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all `1, `2 ∈ Obj(P). By [15, Proposition 5.1], the category [Pop,Top]0 is locally presentable.
The category [Pop,Top]0 is a full reflective and coreflective subcategory of TopP

op
0 (see e.g. [15,

Proposition 5.3]). The enriched structure of [Pop,Top] combined with the enriched Yoneda lemma
[3, Theorem 6.3.5] implies the natural homeomorphism

[Pop,Top](P(−, `)× U,D) ∼= TOP(U,D(`)) (En-Yo)

for all ` ∈ Obj(P), for all topological spaces U and all enriched presheaves D. For any pair of
enriched presheaves D,E ∈ [Pop,Top], by [28, Equation 2.10], there is the homeomorphism

[Pop,Top](D,E) ∼=
∫
`

TOP(D(`), E(`)) (En-Nat)

and consequently, together with the enriched Yoneda lemma, we obtain the homeomorphism

D =
∫ `

P(−, `)×D(`). (En-Rep)

Note that the coend
∫ `
F (`, `) of an enriched functor F : P × Pop → Top is defined as the

coequalizer of the two maps [28, dual of Equation 2.2]:⊔
(`1,`2)

P(`1, `2)× F (`1, `2)⇒
⊔
`

F (`, `). (Coend)

It implies that for any enriched functor F : P ×Pop → Top and any topological space U , there is
a homeomorphism (∫ `

F (`, `)
)
× U ∼=

∫ ` (
F (`, `)× U

)
(CC)

because Top is cartesian closed.

Notation 3.2 Let U be a topological space. The constant presheaf U is denoted by ∆PopU . It is
enriched since for all `1, `2 ∈ Obj(P) the map P(`1, `2) → (∆PopU)(`1, `2) is the constant map
which is therefore continuous. The enriched presheaf ∆Pop∅ is called the empty enriched presheaf.

Notation 3.3 lim−→ : [Pop,Top]0 → Top denotes the colimit functor: there is no reason to specify in
the notation the underlying category Pop.

Finally, by using the fact that the functor ∆Pop : Top → [Pop,Top]0 preserves cotensors, we
deduce using [3, Theorem 6.7.6] that for every enriched presheaf D and every topological space Z,
there is the natural homeomorphism

TOP(lim−→D,Z) ∼= [Pop,Top](D,∆PopZ). (En-Adj)

4 Reparametrization category
Definition 4.1 A semimonoidal category (K,⊗) is a category K equipped with a functor ⊗ : K×K →
K together with a natural isomorphism ax,y,z : (x⊗y)⊗z → x⊗(y⊗z) called the associator satisfying
the pentagon axiom [31, diagram (5) page 158].

According to the usual terminology used for similar situations, a semimonoidal category could
be called a non-unital monoidal category. Note that it is the monoidal structure which is non
unital, not the category. Non unital categories (a.k.a semicategories) appear on stage in Section 6
of this paper.

Definition 4.2 A semimonoidal category (K,⊗) is enriched 3 if the category K is enriched and if
the set map

K(a, b)×K(c, d) −→ K(a⊗ c, b⊗ d)
is continuous for all objects a, b, c, d ∈ Obj(K).

3Remember that in this paper, all enriched categories are enriched over Top.
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Definition 4.3 A reparametrization category (P,⊗) is a small enriched semimonoidal category
satisfying the following additional properties:

1. The semimonoidal structure is strict, i.e. the associator is the identity.

2. All spaces of maps P(`, `′) for all objects ` and `′ of P are contractible.

3. For all maps φ : ` → `′ of P, for all `′1, `′2 ∈ Obj(P) such that `′1 ⊗ `′2 = `′, there exist two
maps φ1 : `1 → `′1 and φ2 : `2 → `′2 of P such that φ = φ1 ⊗ φ2 : `1 ⊗ `2 → `′1 ⊗ `′2 (which
implies that `1 ⊗ `2 = `).

The semimonoidal structure enables us to have a semigroup structure on objects, to formulate
the third axiom and to define the enriched functors sL` and sR` of Proposition 5.8. The semigroup
structure on objects is important for Lemma 5.10. It plays a central role for the study of the biclosed
semimonoidal structure of P-spaces defined in Definition 5.7 (see Theorem 5.14). This biclosed
semimonoidal structure is required to formalize P-flows as enriched semicategories in Definition 6.1.
This point of view on P-flows, which is not the initial one I had chronologically, is used mainly for
the proof of the key fact that a q-cofibrant P-flow has a projective q-cofibrant P-space of execution
paths (Theorem 9.10 and Theorem 9.11). The latter proof relies on the calculations made in [19] in
the setting of semicategories enriched over topological spaces (a.k.a. flows). The reparametrization
category must be enriched to be able to take into account the contractibility of the spaces of maps.
All spaces of maps must be contractible to use Theorem 10.8. Otherwise the non-contractibility of
the classifying space of the group of nondecreasing homeomorphisms from [0, 1] to itself prevents
the left Quillen functor M! of Proposition 10.6 from P-flows to flows from being homotopically
surjective. The third axiom is used in the proof of Proposition 5.17. It enables us in Section 10 to
define the right Quillen functor M from flows to P-flows in Proposition 10.5.

Notation 4.4 To stick to the intuition, we set `+ `′ := `⊗ `′ for all `, `′ ∈ Obj(P). Indeed, morally
speaking, ` is the length of a path.

A reparametrization category P is an enriched category with contractible spaces of morphisms
such that the set Obj(P) of objects of P has a structure of a semigroup with a composition law
denoted by +, such that the set map

⊗ : P(`1, `′1)× P(`2, `′2)→ P(`1 + `2, `
′
1 + `′2)

is continuous for all `1, `′1, `2, `′2 ∈ Obj(P), and such that every map of P is of the form φ1 ⊗ φ2
(not necessarily in a unique way).

Example 4.5 The terminal category with one object 1 and one map Id1 is a reparametrization
category.

Definition 4.6 Let φi : [0, `i] → [0, `′i] for i = 1, 2 with `1, `′1, `2, `′2 > 0 be two continuous maps
preserving the extrema where a notation like [0, `] means a segment of the real line. Then the map

φ1 ⊗ φ2 : [0, `1 + `2]→ [0, `′1 + `′2]

denotes the continuous map defined by

(φ1 ⊗ φ2)(t) =
{
φ1(t) if 0 6 t 6 `1
φ2(t− `1) + `′1 if `1 6 t 6 `1 + `2

We have the obvious proposition:

Proposition 4.7 Let φi : [0, `i]→ [0, `′i] for 1 6 i 6 3 preserving the extrema. Then

(φ1 ⊗ φ2)⊗ φ3 = φ1 ⊗ (φ2 ⊗ φ3).

Notation 4.8 The notation [0, `1] ∼=+ [0, `2] for two real numbers `1, `2 > 0 means a nondecreasing
homeomorphism from [0, `1] to [0, `2]. It takes 0 to 0 and `1 to `2.
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Proposition 4.9 There exists a reparametrization category, denoted by G, such that the semigroup
of objects is the open interval ]0,+∞[ equipped with the addition and such that for every `1, `2 > 0,
there is the equality

G(`1, `2) = {[0, `1] ∼=+ [0, `2]}

where the topology is the ∆-kelleyfication of the relative topology induced by the set inclusion
G(`1, `2) ⊂ TOP([0, `1], [0, `2]) and such that for every `1, `2, `3 > 0, the composition map

G(`1, `2)× G(`2, `3)→ G(`1, `3)

is induced by the composition of continuous maps.

Proof: Let φi : [0, `i] ∼=+ [0, `′i] for i = 1, 2 be two continuous maps. Then the map φ1 ⊗ φ2 :
[0, `1 + `2]→ [0, `′1 + `′2] is a nondecreasing homeomorphism. The set map

⊗ : G(`1, `′1)× G(`2, `′2)→ G(`1 + `2, `
′
1 + `′2)

is continuous because the set map

[0, `1 + `2]× G(`1, `′1)× G(`2, `′2)→ [0, `′1 + `′2]

takes (t, φ1, φ2) to (φ1 ⊗ φ2)(t) which is continuous. The pentagon axiom is clearly satisfied. For
every `1, `2 > 0, the continuous mapping (t, φ, u) 7→ (1− t)φ(u) + t(u`2/`1) yields a homotopy from
IdG(`1,`2) to the constant map taking any map of G(`1, `2) to the homothetie u 7→ u`2/`1. Therefore
the space G(`1, `2) is contractible. Let φ : [0, `] ∼=+ [0, `′]. Let `′ = `′1 + `′2. Let `1 = φ−1(`′1) and
`2 = `− `1. Define {

φ1(t) = φ(t) for t ∈ [0, `1]
φ2(t) = φ(`1 + t)− `′1 for t ∈ [0, `2]

Then φ1 : [0, `1] ∼=+ [0, `′1], φ2 : [0, `2] ∼=+ [0, `′2] and φ = φ1 ⊗ φ2. �

Notation 4.10 The notation [0, `1]→+ [0, `2] for two real numbers `1, `2 > 0 means a nondecreasing
continuous from [0, `1] to [0, `2] preserving the extrema. It takes 0 to 0 and `1 to `2.

Proposition 4.11 There exists a reparametrization category, denoted byM, such that the semigroup
of objects is the open interval ]0,+∞[ equipped with the addition and such that for every `1, `2 > 0,
there is the equality

M(`1, `2) = {[0, `1] −→+ [0, `2]}

where the topology is the ∆-kelleyfication of the relative topology induced by the set inclusion
M(`1, `2) ⊂ TOP([0, `1], [0, `2]) and such that for every `1, `2, `3 > 0, the composition map

M(`1, `2)×M(`2, `3)→M(`1, `3)

is induced by the composition of continuous maps.

Proof: The proof is similar to the proof of Proposition 4.9. �

In the cases of (G,+) and (M,+), the functors (`, `′) 7→ `+ `′ and (`, `′) 7→ `′ + ` coincide on
objects, but not on morphisms. The terminal category is a symmetric reparametrization category.
We do not know if there exist symmetric reparametrization categories not equivalent to the terminal
category.

5 P-spaces
From now on, P denotes a reparametrization category.
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Definition and notation 5.1 An object of [Pop,Top]0 is called a P-space. Let D be a P-space. Let
φ : `→ `′ be a map of P. Let x ∈ D(`′). We will use the notation

x.φ := D(φ)(x).

The motivating example is if x is a path of length `′, then x.φ is a path of length ` which is the
reparametrization by φ of x.

Definition 5.2 A P-space D is path-connected if for every ` ∈ P, D(`) is path-connected.

Lemma 5.3 The connected component functor CC : Top→ Set, where Set is the category of sets,
preserves binary products.

Proof: Let X and Y be two topological spaces. There is a canonical set map

CC(X × Y ) −→ CC(X)× CC(Y )

induced by the universal property of the binary product. This set map is clearly onto. Let (x0, y0)
and (x1, y1) be two points of X × Y such that x0 and x1 (y0 and y1 resp.) are in the same con-
nected components. Then there exist continuous paths φ : [0, 1]→ X and ψ : [0, 1]→ Y such that
φ(i) = xi and ψ(i) = yi for i = 0, 1. Therefore (φ, ψ) is a continuous path from (x0, y0) to (x1, y1).
Thus (x0, y0) and (x1, y1) are in the same connected components. �

Notation 5.4 Let K be an enriched category. Denote by π0(K) the enriched category with the same
objects as K and with

π0(K)(`, `′) = CC(K(`, `′))
for all `, `′ ∈ Obj(K). The composition law is defined thanks to Lemma 5.3 by the composite map:

π0(K)(`, `′)× π0(K)(`′, `′′) ∼= CC(K(`, `′)×K(`′, `′′)) −→ π0(K)(`, `′′).

Proposition 5.5 Every P-space D can be decomposed as a coproduct

D =
⊔
c

Dc

with Dc 6= ∆P∅ and path-connected.

Proof: For every map `, `′ ∈ Obj(P) and every P-space D such that D 6= ∆P∅, the continuous
map

P(`, `′)×D(`′) −→ D(`)
induces by Lemma 5.3 a composite continuous map

P(`, `′)× CC(D(`′))→ CC(P(`, `′))× CC(D(`′)) ∼= CC(P(`, `′)×D(`′))→ CC(D(`)).

Since Top is cartesian closed, we obtain a continuous map

P(`, `′) −→ TOP(CC(D(`′)),CC(D(`)))

from the contractible space P(`, `′) to the discrete space TOP(CC(D(`′)),CC(D(`))) which is
therefore constant. Consequently, the set map

CC(D(φ)) : CC(D(`′)) −→ CC(D(`))

does not actually depend of φ ∈ P(`, `′). We obtain the commutative diagram of functors

Pop D //

��

Top

CC

��

π0(Pop) ∃! // Set
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It turns out that the category π0(Pop) is equivalent to the terminal category 1 with one object 1
and one map Id1. We obtain a commutative diagram of functors

Pop D //

��

Top

CC

��

1 ∃!D // Set

Each element of D(1) corresponds for every object ` of P to a path-connected component of D(`).
The above commutative diagram also tells that for every map φ : `→ `′ of P, the map

CC(D(φ)) : CC(D(`′)) −→ CC(D(`))

is the identity of D(1). Thus there exists a decomposition

D =
⊔

c∈D(1)

Dc

in [Pop,Top]0 such that for every ` ∈ Obj(P), the space Dc(`) is nonempty path-connected. �

Definition 5.6 The set
CC(D) := {Dc | c ∈ D(1)}

is called the set of (nonempty) path-connected components of D. By convention,

CC(∆Pop∅) = ∅.

By considering the particular case where the reparametrization category P is the terminal category,
we see that this generalizes the notion of path-connected component of a topological space.

Definition 5.7 Let D and E be two P-spaces. Let

D ⊗ E =
∫ (`1,`2)

P(−, `1 + `2)×D(`1)× E(`2).

Proposition 5.8 (The left shift functor and the right shift functor) The following data assemble to
an enriched functor sL` : P → P:{

sL` (`′) = `+ `′

sL` (φ) = Id`⊗φ for a map φ : `′ → `′′.

The following data assemble to an enriched functor sR` : P → P:{
sR` (`′) = `′ + `

sR` (φ) = φ⊗ Id` for a map φ : `′ → `′′.

Proof: The maps P(`′, `′′)→ P(`+ `′, `+ `′′) and P(`′, `′′)→ P(`′ + `, `′′ + `) are continuous for
all `′, `′′ ∈ Obj(P). �

Notation 5.9 With D ∈ [Pop,Top]0, set (sL` )∗(D) = D.sL` ∈ [Pop,Top]0 and (sR` )∗(D) = D.sR` ∈
[Pop,Top]0.

Lemma 5.10 For all `′, `′′ ∈ Obj(P), there are the isomorphisms of P-spaces (natural with respect
to `′ and `′′) ∫ `

P(−, `+ `′)× P(`, `′′) ∼= P(−, `′′ + `′),∫ `

P(−, `′ + `)× P(`, `′′) ∼= P(−, `′ + `′′).
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The first isomorphism takes the equivalence class of (ψ, φ) ∈ P(−, `+ `′)×P(`, `′′) to (sR`′)∗(φ)ψ =
(φ⊗ Id`′)ψ. The second isomorphism takes the equivalence class of (ψ, φ) ∈ P(−, `′ + `)×P(`, `′′)
to (sL`′)∗(φ)ψ = (Id`′ ⊗φ)ψ.

Proof: Pick a P-space D. Then there is the sequence of homeomorphisms

[Pop,Top]
(∫ `

P(−, `+ `′)× P(`, `′′), D
)
∼=
∫
`

[Pop,Top]
(
P(−, `+ `′)× P(`, `′′), D

)
∼=
∫
`

TOP(P(`, `′′), D(`+ `′))

∼= [Pop,Top](P(−, `′′), (sR`′)∗D)
∼= D(`′′ + `′)
∼= [Pop,Top](P(−, `′′ + `′), D),

the first homeomorphism since [Pop,Top] is enriched, the second the fourth and the fifth homeo-
morphisms by (En-Yo) and the third homeomorphism by (En-Nat). By composing with the functor
Top({0},−), we obtain the natural bijection of sets

[Pop,Top]0
(∫ `

P(−, `+ `′)× P(`, `′′), D
)
∼= [Pop,Top]0(P(−, `′′ + `′), D).

The proof of the first isomorphism is complete thanks to the Yoneda lemma. The proof of the
second isomorphism is similar and is left to the reader. �

Proposition 5.11 Let D1 and D2 be two P-spaces and L ∈ Obj(P). Then the mapping (x, y) 7→
(Id, x, y) yields a surjective continuous map⊔

(`1,`2)
`1+`2=L

D1(`1)×D2(`2) −→ (D1 ⊗D2)(L).

Moreover, the functor
⊗ : [Pop,Top]0 × [Pop,Top]0 → [Pop,Top]0

induces a semimonoidal structure on [Pop,Top]0.

Proof: Let (ψ, x1, x2) ∈ P(L, `1 + `2) × D1(`1) × D2(`2) be a representative of an element of
(D1 ⊗ D2)(L). Then there exist two maps ψi : `′i → `i for i = 1, 2 such that ψ = ψ1 ⊗ ψ2. By
definition of a coend (see Corollary 5.13 for a more detailed explanation), one has (ψ, x1, x2) ∼
(IdL, x1ψ1, x2ψ2) in (D1 ⊗D2)(L) and the proof of the first statement is complete.

Let D1, D2, D3 be three P-spaces. Let aD1,D2,D3 : (D1 ⊗D2)⊗D3 → D1 ⊗ (D2 ⊗D3) be the
composite of the isomorphisms (by using Lemma 5.10 twice)

(D1⊗D2)⊗D3

∼=
∫ (`1,`2,`3)(∫ `

P(−, `+ `3)× P(`, `1 + `2)
)
×D1(`1)×D2(`2)×D3(`3)

∼=
∫ (`1,`2,`3)

P(−, `1 + `2 + `3)×D1(`1)×D2(`2)×D3(`3)

∼=
∫ (`1,`2,`3)(∫ `

P(−, `1 + `)× P(`, `2 + `3)
)
×D1(`1)×D2(`2)×D3(`3)

∼= D1 ⊗ (D2 ⊗D3).

Let (ψ, (φ, x1, x2), x3) ∈ ((D ⊗ E)⊗ F )(L) with xi ∈ Di(`i) for i = 1, 2, 3 and L ∈ Obj(P). Write
φ = φ1 ⊗ φ2 with φi : `′i → `i for i = 1, 2 and ψ = ψ1 ⊗ ψ2 ⊗ ψ3 with ψi : `′′i → `′i for i = 1, 2, 3
with `′3 = `3. In particular, L = `′′1 + `′′2 + `′′3 . We obtain

(ψ, (φ, x1, x2), x3) ∼ (IdL, (Id`′′1 +`′′2 , x1φ1ψ1, x2φ2ψ2), x3ψ3)
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in ((D⊗E)⊗F )(L). The above sequence of isomorphisms takes the latter at first to the equivalence
class of

((Id`′′1 +`′′2 ⊗ Id`′′3 ) IdL, x1φ1ψ1, x2φ2ψ2, x3ψ3)
by Lemma 5.10, and, since (Id`′′1 +`′′2 ⊗ Id`′′3 ) IdL = (Id`′′1 ⊗ Id`′′2 +`′′3 ) IdL and by Lemma 5.10 again,
to the equivalence class of

(IdL, x1φ1ψ1, (Id`′′2 +`′′3 , x2φ2ψ2, x3ψ3)).

We deduce that the associator aD,E,F : (D ⊗E)⊗ F → D ⊗ (E ⊗ F ) satisfies the pentagon axiom
thanks to the first part of the proof. �

Proposition 5.12 Let D1, . . . , Dn be n P-spaces with n > 1. Then there is the natural isomorphism
of P-spaces

D1 ⊗ . . .⊗Dn
∼=
∫ (`1,...,`n)

P(−, `1 + · · ·+ `n)×D1(`1)× . . . Dn(`n).

Proof: Let us prove this isomorphism by induction for n > 1. The formula is satisfied for n = 1 by
(En-Rep). Suppose that it is proved for n > 1. Then there is the sequence of natural isomorphisms
of P-spaces

(D1 ⊗ . . .⊗Dn)⊗Dn+1

∼=
∫ (`,`n+1)

P(−, `+ `n+1)× (D1 ⊗ . . .⊗Dn)(`)×Dn+1(`n+1)

∼=
∫ (`1,...,`n+1)(∫ `

P(−, `+ `n+1)× P(`, `1 + · · ·+ `n)
)
×D1(`1)× . . .×Dn+1(`n+1)

∼=
∫ (`1,...,`n+1)

P(−, `1 + · · ·+ `n+1)×D1(`1)× . . .×Dn+1(`n+1),

the first and the second isomorphisms by definition of ⊗ by Fubini and by (CC), and the third
isomorphism by Lemma 5.10. The induction is complete. �

Corollary 5.13 Let D1, . . . , Dn be n P-spaces with n > 1. Then for all L ∈ Obj(P), the space
(D1 ⊗ . . .⊗Dn)(L) is the quotient of the space⊔

(`1,...,`n)

P(L, `1 + · · ·+ `n)×D1(`1)× . . . Dn(`n)

by the equivalence relation generated by the identifications

(ψ, x1.φ1, . . . , xn.φn) = ((φ1 ⊗ . . .⊗ φn).ψ, x1, . . . , xn)

for all ψ ∈ P(L, `1 + · · ·+ `n), all xi ∈ Di(`′i) and all φi ∈ P(`i, `′i), where

(ψ, x1.φ1, . . . , xn.φn) ∈ P(L, `1 + · · ·+ `n)×D1(`1)× . . . Dn(`n)

and
((φ1 ⊗ . . . φn).ψ, x1, . . . , xn) ∈ P(L, `′1 + · · ·+ `′n)×D1(`′1)× . . . Dn(`′n).

Proof: Using (Coend) and Proposition 5.12, we see that the space (D1 ⊗ . . . ⊗ Dn)(L) is the
coequalizer of the two maps⊔

(`1,...,`n)
(`′1,...,`

′
n)

P(L, `1 + · · ·+ `n)×
( ∏

16i6n
P(`i, `′i)×Di(`′i)

)

f1

��

f2

��⊔
(`1,...,`n)

P(L, `1 + · · ·+ `n)×
( ∏

16i6n
Di(`i)

)
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defined by
f1 : (ψ, x1, φ1, . . . , xn, φn) 7→ ((φ1 ⊗ . . .⊗ φn).ψ, x1, . . . , xn)

and
f2 : (ψ, x1, φ1, . . . , xn, φn) 7→ (ψ, x1.φ1, . . . , xn.φn).

Morally speaking, the x′is are execution paths. The map f1 composes the reparametrizations
φ1, . . . , φn with ψ before applying them to the Moore composition x1 ∗ · · · ∗ xn. The map f2
reparametrizes each xi by φi and then reparametrizes the Moore composition (x1.φ1)∗ · · · ∗ (xn.φn)
by ψ. �

When P is the terminal category with one object 1 and one map Id1, the tensor product (D⊗
E)(1) is the quotient of the space D(1)×E(1) by the discrete equivalence relation by Corollary 5.13.
In other terms, the tensor product coincides with the binary product and it has therefore a unit
in this case. When P is the reparametrization category of Proposition 4.9 or of Proposition 4.11,
it is unlikely that the corresponding tensor product of P-spaces over them has a unit but we are
unable to prove it.

Theorem 5.14 Let D, E and F be three P-spaces. Let

{E,F}L := ` 7→ [Pop,Top](E, (sL` )∗F ),
{E,F}R := ` 7→ [Pop,Top](E, (sR` )∗F ).

These yield two P-spaces and there are the natural homeomorphisms

[Pop,Top](D, {E,F}L) ∼= [Pop,Top](D ⊗ E,F ),
[Pop,Top](E, {D,F}R) ∼= [Pop,Top](D ⊗ E,F ).

Consequently, the functor

⊗ : [Pop,Top]0 × [Pop,Top]0 → [Pop,Top]0

induces a structure of biclosed semimonoidal structure on [Pop,Top]0.

Proof: We only treat the case of {E,F}L. The other case is similar. Since (sRL)∗F is an enriched
functor for every L ∈ Obj(P) by Proposition 5.8, the set map

P(`, `′) −→ TOP(F (`′ + L), F (`+ L))

is continuous for all `, `′ ∈ Obj(P). Using the cartesian closedness of Top, we obtain a continuous
map

P(`, `′)× F (`′ + L) −→ F (`+ L)

which is natural with respect to L ∈ Obj(P), i.e. an element f`,`′ of the space of natural transfor-
mations

[Pop,Top]
(
P(`, `′)× (sL`′)∗F, (sL` )∗F

)
.

The latter space is homeomorphic to

TOP
(
P(`, `′), [Pop,Top]((sL`′)∗F, (sL` )∗F )

)
because [Pop,Top] is enriched. We obtain, by composition, a continuous map

P(`, `′)× {E,F}L(`′)
(f`,`′ ,Id)

// [Pop,Top]((sL`′)∗F, (sL` )∗F )× {E,F}L(`′) // {E,F}L(`),

where the right-hand map is induced by the composition of natural transformations (which is
continuous). It means that the mapping ` 7→ [Pop,Top](E, (sL` )∗F ) yields a well-defined P-space.
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This proves the first part of the statement of the theorem. There is the sequence of natural
homeomorphisms

[Pop,Top](D, {E,F}L) ∼=
∫
`

TOP
(
D(`), [Pop,Top](E, (sL` )∗F )

)
∼=
∫

(`,`′)
TOP

(
D(`),TOP(E(`′), F (`+ `′))

)
∼=
∫

(`,`′)
TOP

(
D(`)× E(`′), F (`+ `′)

)
∼=
∫

(`,`′)
[Pop,Top]

(
P(−, `+ `′)×D(`)× E(`′), F

)
∼= [Pop,Top](D ⊗ E,F ),

the first and second homeomorphisms by (En-Nat), the third homeomorphism because Top is
enriched cartesian closed, the fourth homeomorphism by (En-Yo), and finally the last homeo-
morphism since [Pop,Top] is enriched and by definition of ⊗. By composing with the functor
Top({0},−), we obtain the desired adjunction. The proof is complete thanks to Proposition 5.11.
�

Notation 5.15 Let
FP

op

` U = P(−, `)× U ∈ [Pop,Top]0
where U is a topological space and where ` is an object of P.

Proposition 5.16 Let U,U ′ be two topological spaces. Let `, `′ ∈ Obj(P). There is the natural
isomorphism of P-spaces

FP
op

` U ⊗ FP
op

`′ U ′ ∼= FP
op

`+`′(U × U ′).

Proof: One has

FP
op

` U ⊗ FP
op

`′ U ′ =
∫ (`1,`2)

P(−, `1 + `2)× P(`1, `)× P(`2, `′)× U × U ′.

Using Lemma 5.10, we obtain

FP
op

` U ⊗ FP
op

`′ U ′ =
∫ `1

P(`1, `)× P(−, `1 + `′)× U × U ′.

Using Lemma 5.10 again, we obtain

FP
op

` U ⊗ FP
op

`′ U ′ = P(−, `+ `′)× U × U ′.

�

Proposition 5.17 Let U and U ′ be two topological spaces. There is the natural isomorphism of
P-spaces

∆PopU ⊗∆PopU ′ ∼= ∆Pop(U × U ′).

Proof: Since Top is cartesian closed, it suffices to consider the case where U = U ′ is a singleton.
In that case, by Corollary 5.13, the topological space (∆PopU ⊗∆PopU ′)(L) is the quotient of the
space ⊔

(`,`′)

P(L, `+ `′)

by the identifications (φ1 ⊗ φ2).φ ∼ φ. Let ψ ∈ P(L, `+ `′) for some `, `′ ∈ Obj(P). By definition
of a reparametrization category, write ψ = ψ1 ⊗ ψ2 with ψ1 : `1 → ` and ψ2 : `2 → `′. Then we
obtain ψ = (ψ1 ⊗ ψ2). IdL. We deduce that ψ ∼ IdL in (∆PopU ⊗∆PopU ′)(L). �
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Proposition 5.18 Let D and E be two P-spaces. Then there is a natural homeomorphism

lim−→(D ⊗ E) ∼= lim−→D × lim−→E.

Proof: Let Z be a topological space. There is the sequence of natural homeomorphisms

TOP
(

lim−→(D ⊗ E), Z
) ∼= [Pop,Top]

(
D ⊗ E,∆PopZ

)
∼= [Pop,Top]

(
D, ` 7→ [Pop,Top](E, (sL` )∗∆Pop(Z))

)
∼= [Pop,Top]

(
D,∆Pop

(
[Pop,Top](E,∆Pop(Z))

))
∼= TOP

(
lim−→D, [Pop,Top](E,∆Pop(Z))

)
∼= TOP

(
lim−→D,TOP(lim−→E,Z)

)
∼= TOP

(
(lim−→D)× (lim−→E), Z

)
,

the first fourth and fifth homeomorphisms by (En-Adj), the second homeomorphism by Theo-
rem 5.14, the third homeomorphism since (sL` )∗∆Pop(Z) = ∆Pop(Z) for all ` ∈ Obj(P) and
the last homeomorphism since Top is enriched cartesian closed. By composing with the functor
Top({0},−), we obtain the natural bijection of sets

Top
(

lim−→(D ⊗ E), Z
) ∼= Top

(
(lim−→D)× (lim−→E), Z

)
.

The proof is complete thanks to the Yoneda lemma. �

6 P-flows
A semicategory, also called nonunital category in the literature, is a category without identity maps
in the structure. It is enriched over a biclosed monoidal category (V,⊗, I) if it satisfies all axioms
of enriched category except the one involving the identity maps, i.e. the enriched composition is
associative and not necessarily unital. Since the existence of a unit I is not necessary anymore, it
makes sense to define the notion of semicategory enriched over a biclosed semimonoidal category.

This section starts on purpose with the following very concise definition which is going to be
explained right after.

Definition 6.1 Let P be a reparametrization category. A P-flow X is a small semicategory enriched
over the biclosed semimonoidal category ([Pop,Top]0,⊗). The category of P-flows is denoted by
PFlow.

The following definition is used only in the companion paper [17]. We give it for completeness.

Definition 6.2 A Moore flow is a G-flow where G is the reparametrization category of Proposi-
tion 4.9.

We now introduce some notations and definitions to provide more details. A P-flow X consists
of a set of states X0, for each pair (α, β) of states a P-space Pα,βX of [Pop,Top]0 and for each
triple (α, β, γ) of states an associative composition law

∗ : Pα,βX ⊗ Pβ,γX → Pα,γX,

i.e. for every triple of states (α, β, γ) ∈ X0 × X0 × X0, there is the commutative diagram of
P-spaces

Pα,βX ⊗ Pβ,γX ⊗ Pγ,δX

(Id,∗)

��

(∗,Id)
// Pα,γX ⊗ Pγ,δX

∗

��

Pα,βX ⊗ Pβ,δX
∗ // Pα,δX.
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A map of P-flows f from X to Y consists of a set map

f0 : X0 → Y 0

(often denoted by f as well if there is no possible confusion) together for each pair of states (α, β)
of X with a natural transformation

Pf : Pα,βX −→ Pf(α),f(β)Y

such that the following diagram of [Pop,Top]0

Pα,βX ⊗ Pβ,γX
∗ //

��

Pα,γX

��

Pf(α),f(β)Y ⊗ Pf(β),f(γ)Y
∗ // Pf(α),f(γ)Y

is commutative for all triples of states (α, β, γ) of X.
The topological space Pα,βX(`) is denoted by P`α,βX and is called the space of execution paths

of length `. There is the sequence of homeomorphisms

[Pop,Top](Pα,βX ⊗ Pβ,γX,Pα,γX)

∼=
∫

(`1,`2)
[Pop,Top](P(−, `1 + `2)× P`1

α,βX × P`2
β,γX,Pα,γX)

∼=
∫

(`1,`2)
TOP(P`1

α,βX × P`2
β,γX,P

`1+`2
α,γ X)

∼= [Pop × Pop,Top]
(
(`1, `2) 7→ P`1

α,βX × P`2
β,γX, (`1, `2) 7→ P`1+`2

α,γ X
)
,

the first homeomorphism by definition of ⊗ and since [Pop,Top] is enriched, the second homeo-
morphism by (En-Yo) and the third homeomorphism by (En-Nat).

Consequently, a P-flow consists of a set of states X0, for each pair (α, β) of states a P-space
Pα,βX of [Pop,Top]0 and for each triple (α, β, γ) of states an associative composition law ∗ :
P`1
α,βX × P`2

β,γX → P`1+`2
α,γ X which is natural with respect to (`1, `2). In other terms, for any map

φi : `′i → `i of P with i = 1, 2, there is the commutative diagram of topological spaces

P`1
α,βX × P`2

β,γX
∗ //

(Pα,β(φ1),Pβ,γ(φ2))

��

P`1+`2
α,γ X

Pα,γ(φ1⊗φ2)

��

P`
′
1
α,βX × P`

′
2
β,γX

∗ // P`
′
1+`′2
α,γ X

It means that for all (x, y) ∈ P`1
α,βX × P`2

β,γX, there is the equality

(x.φ1) ∗ (y.φ2) = (x ∗ y).(φ1 ⊗ φ2).

The associativity means that

∀(`1, `2, `3)∀(α, β, γ, δ)∀(x, y, z) ∈ P`1
α,βX × P`2

β,γX × P`3
γ,δX, (x ∗ y) ∗ z = x ∗ (y ∗ z).

Proposition 6.3 Every set S gives rise to a P-flow denoted by S[ with the set of states S and with
the P-space ∆P0∅ for each pair of states and to a P-flow denoted by S] with the set of states S
and with the P-space ∆P0{0} for each pair of states.

Proof: The constant functors ∆P0∅ and ∆P0{0} belong to [Pop,Top]0 since Id∅ and Id{0} are
continuous. �
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Proposition 6.4 The forgetful functor (−)0 : PFlow → Set which takes a P-flow X to its set of
state X0 is both a left adjoint and a right adjoint.

Proof: Let X be a P-flow. Let S be a set. Then there are the bijections of sets Set(X0, S) ∼=
PFlow(X,S]) and Set(S,X0) ∼= PFlow(S[, X). �

Definition 6.5 Let X be a P-flow. The P-space of execution paths PX of X is by definition the
P-space

PX :=
⊔

(α,β)∈X0×X0

Pα,βX.

It yields a well-defined functor P : PFlow→ [Pop,Top]0. The image of ` is denoted by P`U . We
therefore have the equality

P`X =
⊔

(α,β)∈X0×X0

P`α,βX.

Notation 6.6 Let X be a P-flow. Denote by #X the cardinal of X, i.e. the sum of the cardinal of
the set of states of X and of the cardinals of all topological spaces P`α,βX for α, β running over X0

and for ` running over the set of objects of P.

We want to emphasize the following elementary fact:

Lemma 6.7 Let C be a complete category. Let X : I → C and Y : I → C be two small diagrams of
C. Then the natural map lim←−(X × Y )→ lim←−X × lim←−Y is an isomorphism.

Proof: The functor lim←− : CI → C is a right adjoint, the left adjoint being the constant diagram
functor. Therefore, it preserves limits, and in particular binary product. �

Theorem 6.8 The category PFlow is bicomplete.

Proof: Let X : I −→ PFlow be a functor from a small category I to PFlow. Let Y be the P-flow
defined as follows:

• The set of states Y 0 of Y is defined as being the limit as sets lim←−X(i)0 (Proposition 6.4).

• Let α, β ∈ lim←−X(i)0 and let αi (βi resp.) be the image of α (β resp.) in X(i)0. Then let
Pα,βY := lim←−Pαi,βiX(i) where the limit is taken in the functor category [Pop,Top]0. There is
therefore the isomorphism P`α,βY ∼= lim←−P`αi,βiX(i) for all ` ∈ Obj(P) and for all pairs (α, β) ∈
X0 ×X0.

• For α, β, γ ∈ lim←−X(i)0, let αi (βi, γi resp.) be the image of α (β, γ resp.) in X(i)0. Then
the composition map ∗ : P`α,βY × P`′β,γY → P`+`′α,γ Y is taken as the limit of the ∗i : P`αi,βiX(i)×
P`′βi,γiX(i)→ P`+`′αi,γiX(i) (we implicitly use Lemma 6.7).

We obtain a well-defined P-flow Y . It is clearly the limit lim←−X in PFlow. The constant diagram
functor ∆I : PFlow → PFlowI commutes with limits since limits in PFlowI are calculated
objectwise. Every map of PFlowI f : X → ∆IY certainly factors as a composite

f : X −→ ∆IZ −→ ∆IY

with #Z < supi∈I #Xi. There is a set of such Z up to isomorphisms. We therefore have obtained
a set of solutions. By Freyd’s Adjoint Functor Theorem, the constant diagram functor ∆I from
PFlow to the category PFlowI has a left adjoint. �
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Notation 6.9 Let D be a P-space. We denote by Glob(D) the P-flow defined as follows:
Glob(D)0 = {0, 1}
P0,0Glob(D) = P1,1Glob(D) = P1,0Glob(D) = ∆P0∅
P0,1Glob(D) = D

There is no composition law. This construction yields a functor

Glob : [Pop,Top]0 → PFlow.

Proposition 6.10 Let D be a P-space. Let X be a P-flow. Then there is the natural bijection

PFlow(Glob(D), X) ∼=
⊔

(α,β)∈X0×X0

[Pop,Top]0(D,Pα,βX).

Proof: A map of P-flows from Glob(D) to X is determined by the choice of two states α and β of
X and by a map from D to Pα,βX because there is no composition law in Glob(D). �

Theorem 6.11 The category PFlow is locally presentable.

The category of small categories enriched over a closed monoidal category V is locally pre-
sentable as soon as V is locally presentable. It is [29, Theorem 4.5] whose proof can probably be
adapted to our situation: P-flows are small semicategories enriched over a biclosed semimonoidal
category which is locally presentable. It is shorter to proceed as follows.
Proof: The category [Pop,Top]0 is locally presentable. Consider a dense generator (Gi)i∈I of
λ-presentable P-spaces for some regular cardinal λ. Let f : X → Y be a map of P-flows. If
f induces a bijection from PFlow({0}[, X) = X0 to PFlow({0}[, Y ) = Y 0, then f induces a
bijection between the sets of states of X and Y . If f induces a bijection from PFlow(Glob(Gi), X)
to PFlow(Glob(Gi), Y ) for all i ∈ I, then by Proposition 6.10, f induces an isomorphism between
the P-spaces Pα,βX and Pf(α),f(β)Y for all states α and β of X since the family (Gi)i∈I is a dense
generator of [Pop,Top]0 by hypothesis. Thus the set of P-flows

{{0}[} ∪ {Glob(Gi) | i ∈ I}

is a strong generator of PFlow by [2, Corollary 4.5.11]. All P-flows of

{{0}[} ∪ {Glob(Gi) | i ∈ I}

are λ-presentable. Therefore by [1, Theorem 1.20] and by Theorem 6.8, the category PFlow is
locally λ-presentable. �

Proposition 6.12 Let D be a path-connected P-space with D 6= ∆P∅. Then for every P-flow U ,
there is a natural bijection

[Pop,Top]0(D,PU) ∼= PFlow(Glob(D), U).

Proof: Let f ∈ [Pop,Top]0(D,PU). We have

PU =
⊔

(α,β)∈U0×U0

Pα,βU.

For every ` ∈ Obj(P), there is a continuous map f` : D(`) → P`U which is natural with respect
to `. For every ` ∈ Obj(P), since D(`) is path-connected and nonempty, the continuous map f`
factors uniquely as a composite

f` : D(`) −→ P`α`,β`U −→ P`U.
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Consider a map φ : `′ → ` of P. It yields the commutative diagram of spaces

P`α`,β`U

⊂

##

D(`)

::

f` //

D(φ)

��

P`U

PU(φ)

��

D(`′)

##

f`′ // P`′U

P`′α`′ ,β`′U

⊂

;;

Since D(`) is nonempty, there exists x ∈ D(`). Then(
PU)(φ)

)
(f`(x)) = f`′(D(φ)(x)) ∈ P`

′

α`,β`
U ∩ P`

′

α`′ ,β`′
U.

We deduce that
(α`, β`) = (α`′ , β`′).

Since the space P(`′, `) is contractible for any `, `′ ∈ Obj(P), it is nonempty. The mapping
` 7→ (α`, β`) from Obj(P) to U0×U0 is therefore a constant which only depends on f . Consequently,
the map of P-spaces f : D → PU factors uniquely as a composite

f : D −→ Pα,βU −→ PU

for some (α, β) ∈ U0 × U0. This characterizes a map of P-flow f̂ : Glob(D) → U . We easily see
that the mapping f 7→ f̂ is bijective. �

Theorem 6.13 The path P-space functor P : PFlow→ [Pop,Top]0 is a right adjoint. In particular,
it is limit-preserving and accessible.

Proof: We mimick the construction made in [19, Theorem 5.9] of the left adjoint of the path functor
P : Flow→ Top. Using Proposition 5.5, write for a P-space D:

D =
⊔

Dc∈CC(D)

Dc.

The left adjoint G : [Pop,Top]0 → PFlow is defined on objects by the formula

G(D) :=
⊔

Dc∈CC(D)

Glob(Dc).

The definition of G : [Pop,Top]0 → PFlow on maps is clear. Choosing a map of flows from G(D)
to a P-flow U is equivalent to choosing a map of P-spaces from D to PU because the image of any
element of G(D)0 is forced by Proposition 6.12. �

The composite functor

PFlow P // [Pop,Top]0
⊂
// SetP0

is finitely accessible since colimits are generated by free finite compositions of execution paths.
On the contrary, it is unlikely that the functor P : PFlow → [Pop,Top]0 is finitely accessible.
However, in the case of a transfinite tower of objectwise relative-T1 inclusions of spaces, one has:

Accepted in Compositionality on 2022-07-11. Click on the title to verify. 19



Volume 3 Issue 3 ISSN 2631-4444

Theorem 6.14 Let λ be a limit ordinal. Let X : λ → PFlow be a colimit-preserving functor of
P-flows such that for all µ < λ, the map of P-spaces PXµ → PXµ+1 is an objectwise relative-T1
inclusion. Then the canonical map

lim−→(P.X) −→ P lim−→X

is an isomorphism of P-spaces. Moreover the topology of P` lim−→X is the final topology for all ` > 0.

Proof: The topology of P` lim−→X is the final topology for all ` > 0 because the relative-T1 inclusions
are one-to-one and because colimits are calculated objectwise in [Pop,Top]0. The rest of the proof
is similar to the proof of [19, Theorem 5.5]. The key point is to prove that the set map

P`1 lim−→X ×lim−→X0 P`2 lim−→X −→ P`1+`2 lim−→X

is continuous. It suffices to prove that every composite set map

[0, 1]→ P`1 lim−→X ×lim−→X0 P`2 lim−→X −→ P`1+`2 lim−→X

is continuous as soon as the left-hand map is continuous. Since [0, 1] is finite relative to relative-
T1-inclusions by [19, Proposition 2.5], there exists an ordinal ν < λ such that the diagram

[0, 1] // P`1Xν ×X0
ν
P`2Xν

∗ //

��

P`1+`2Xν

��

[0, 1] // P`1 lim−→X ×lim−→X0 P`2 lim−→X
∗ // P`1+`2 lim−→X

is commutative. The top arrow P`1Xν×X0
ν
P`2Xν → P`1+`2Xν is continuous because it is the compo-

sition law of a P-flow. We deduce that the bottom arrow P`1 lim−→X×lim−→X0P`2 lim−→X → P`1+`2 lim−→X

is continuous as well by equipping P` lim−→X with the final topology for all ` > 0. �

7 Reminder about model categories of fibrant objects
We start first by some notations:

• (−)cof denotes a cofibrant replacement functor.

• f � g means that f satisfies the left lifting property (LLP) with respect to g, or equivalently
when g satisfies the right lifting property (RLP) with respect to f .

• inj(C) = {g ∈ K,∀f ∈ C, f � g}.

• cof(C) = {f | ∀g ∈ inj(C), f � g}.

• cell(C) is the class of transfinite compositions of pushouts of elements of C.

All objects of all model categories of this paper are fibrant. We will be using the following
characterization of a Quillen equivalence. A Quillen adjunction F a G : C � D is a Quillen
equivalence if and only if for all objects X of D, the natural map F (G(X)cof ) → X is a weak
equivalence of D (the functor is then said homotopically surjective) and if for all cofibrant objects
Y of C, the unit of the adjunction Y → G(F (Y )) is a weak equivalence of C.

We summarize in the following theorem what we want to use from [27]. For short, Isaev’s paper
gives a systematic way to construct model categories of fibrant objects. We already used some
part of the following results in [16] to simplify the construction of the q-model category of flows.
Unlike in [16], we also want to add some comments about the class of weak equivalences of such
model categories.
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Theorem 7.1 [27, Theorem 4.3, Proposition 4.4, Proposition 4.5 and Corollary 4.6] Let K be a
locally presentable category. Let I be a set of maps of K such that the domains D of the maps
of I are I-cofibrant (i.e. such that ∅ → D belongs to cof(I)). Suppose that for every map
i : U → V ∈ I, there exists an object CU (V ) such that the relative codiagonal map V tU V → V
factors as a composite

V tU V
γ0tγ1−→ CU (V ) −→ V

such that the left-hand map belongs to cof(I). Let

JI = {γ0 : V → CU (V ) | U → V ∈ I}.

Suppose that there exists a path functor Path : K → K, i.e. an endofunctor of K equipped with two
natural transformations τ : Id ⇒ Path and π : Path ⇒ Id× Id such that the composite π.τ is the
diagonal. Moreover we suppose that the path functor satisfies the following hypotheses:

1. With π = (π0, π1), π0 : Path(X)→ X and π1 : Path(X)→ X have the RLP with respect to
I.

2. The map π : Path(X)→ X ×X has the RLP with respect to the maps of JI .

Then there exists a unique model category structure on K such that the set of generating cofibrations
is I and such that the set of generating trivial cofibrations is JI . Moreover, all objects are fibrant.

Isaev’s paper contains also an interesting characterization of the class of weak equivalences
which is recalled now:

Theorem 7.2 [27, Proposition 3.5] With the notations of Theorem 7.1. A map f : X → Y of K is
a weak equivalence if and only if it satisfies the RLP up to homotopy with respect to any map of I,
i.e for any commutative diagram of solid arrows of K (where i ∈ I)

U

i

��

u // X

f

��

V
v //

k

∼i

??

Y

there exists a lift k such that k.i = u and such that there exists a relative homotopy h : CU (V )→ Y
between f.k and v.

This characterization of the class of weak equivalences can be formulated in terms of injectivity
class in the category of morphisms of K as follows:

Theorem 7.3 With the notations of Theorem 7.1. A map f : X → Y of K satisfies the RLP up to
homotopy with respect to a map U → V of I if and only if it is injective in Mor(K) with respect to
the map of maps

U
↓
V
−→

V
↓

CU (V )

induced by the maps V tU V → CU (V ) of K.

Proof: By Theorem 7.2, a map f : X → Y of K is a weak equivalence if and only if it satisfies the
RLP up to homotopy with respect to any map of I. This definition can be reworded as follows.
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For any commutative diagram of solid arrows of K of the form

U
i //

u

''

i

��

V

��

k // X

f

��

V

v

77
// CU (V ) h // Y,

there exist h and k making the diagram commutative. It is exactly the injectivity condition when
we regard this diagram as a diagram of Mor(K). �

We can now reformulate Isaev’s characterization of the class of weak equivalences of K as
follows:

Corollary 7.4 With the notations of Theorem 7.1. A map f : X → Y of K is a weak equivalence
if and only if it is injective with respect to the maps of maps

U
↓
V
−→

V
↓

CU (V )

induced by the map V tU V → CU (V ) for U → V running over I. In particular, the class of weak
equivalences of K is closed under small products because it is a small injectivity class of a locally
presentable category.

The idea of Corollary 7.4 comes from a passing remark due to Jeff Smith and mentioned in [5].
[4, Theorem 14] contains interesting results of the same kind for more general combinatorial model
categories.

8 Homotopy theory of P-flows
We are going to construct a model structure on PFlow, called the q-model structure, by mimicking
the method used in [16] for the construction of the q-model structure of flows.

We equip the category [Pop,Top]0 with the projective q-model structure [15, Theorem 6.2].
It is denoted by [Pop,Topq]

proj
0 . The (trivial resp.) projective q-fibrations are the objectwise

(trivial resp.) q-fibrations of spaces. The weak equivalences are the objectwise weak homotopy
equivalences. The set of generating projective q-cofibrations is the set of maps

I = {FP
op

` Sn−1 → FP
op

` Dn | n > 0, ` ∈ Obj(P)}

induced by the inclusions Sn−1 ⊂ Dn. The set of generating trivial projective q-cofibrations is the
set of maps

J = {FP
op

` Dn → FP
op

` Dn+1 | n > 0, ` ∈ Obj(P)}
where the maps Dn ⊂ Dn+1 are induced by the mappings (x1, . . . , xn) 7→ (x1, . . . , xn, 0).

Proposition 8.1 [15, Proposition 5.5 and Proposition 6.7] For every P-space F : Pop → Top, every
` ∈ Obj(P) and every topological space X, we have the natural bijection of sets

[Pop,Top]0(FP
op

` X,F ) ∼= Top(X,F (`)).

In particular, the functor
FP

op

` : Top→ [Pop,Top]0
is colimit-preserving for all ` ∈ Obj(P). It induces a left Quillen functor Topq → [Pop,Topq]

proj
0 .
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Notation 8.2 Let

IP = {Glob(FP
op

` Sn−1) ⊂ Glob(FP
op

` Dn) | n > 0, ` ∈ Obj(P)},
IP+ = IP ∪ {C : ∅[ → {0}[, R : {0, 1}[ → {0}[},
JP = {Glob(FP

op

` Dn) ⊂ Glob(FP
op

` Dn+1) | n > 0, ` ∈ Obj(P)}.

Proposition 8.3 Let U → V be a continuous map. A morphism of P-flows f : X → Y satisfies
the RLP with respect to Glob(FPop` U) → Glob(FPop` V ) for all ` ∈ Obj(P) if and only if for any
α, β ∈ X0 and any ` ∈ Obj(P), the map of topological spaces P`α,βX → P`f(α),f(β)Y satisfies the
RLP with respect to the continuous map U → V .

Proof: A morphism of P-flows f : X → Y satisfies the RLP with respect to

Glob(FP
op

` U)→ Glob(FP
op

` V )

for all ` ∈ Obj(P) if and only if the set maps

PFlow(Glob(FP
op

` V ), X) −→
PFlow(Glob(FP

op

` U), X)×PFlow(Glob(FPop
`

U),Y ) PFlow(Glob(FP
op

` V ), Y )

are onto for all ` ∈ Obj(P). By Proposition 6.10, it is equivalent to saying that the set maps

[Pop,Top]0(FP
op

` V,Pα,βX) −→
[Pop,Top]0(FP

op

` U,Pα,βX)×[Pop,Top]0(FPop
`

U,Pf(α),f(β)Y ) [Pop,Top]0(FP
op

` V,Pf(α),f(β)Y )

are onto for all (α, β) ∈ X0×X0 and all ` ∈ Obj(P). By Proposition 8.1, it is equivalent to saying
that the set maps

Top(V,P`α,βX) −→ Top(U,P`α,βX)×Top(U,P`
f(α),f(β)Y ) Top(V,P`f(α),f(β)Y )

are onto for all (α, β) ∈ X0 × X0 and all ` ∈ Obj(P). It is equivalent to saying that for any
α, β ∈ X0 and any ` ∈ Obj(P), the map of topological spaces P`α,βX → P`f(α),f(β)Y satisfies the
RLP with respect to the continuous map U → V . �

Proposition 8.4 Let f be a morphism of P-flows. Then the following assertions are equivalent: 1) f
is bijective on states, 2) f satisfies the RLP with respect to R : {0, 1}[ −→ {0}[ and C : ∅[ ⊂ {0}[.

Proof: The map f is one-to-one on states if and only if it satisfies the RLP with respect to
R : {0, 1}[ −→ {0}[ and is onto on states if and only if it satisfies the RLP with respect to
C : ∅[ ⊂ {0}[. �

Proposition 8.5 The globe functor Glob : [Pop,Top]0 → PFlow preserves connected colimits.

Note that the connectedness hypothesis is necessary. Indeed, D and E being two P-spaces, the
P-flow Glob(D t E) has two states whereas the P-flow Glob(D) tGlob(E) has four states.
Proof: Let D : I → [Pop,Top]0 be a functor where I is a connected small category. We obtain the
sequence of natural bijections:

PFlow(Glob(lim−→Di), X)
∼=

⊔
(α,β)∈X0×X0

[Pop,Top]0(lim−→Di,Pα,βX) by Proposition 6.10

∼=
⊔

(α,β)∈X0×X0

lim←−[Pop,Top]0(Di,Pα,βX) by definition of a (co)limit

∼= lim←−
⊔

(α,β)∈X0×X0

[Pop,Top]0(Di,Pα,βX) by connectedness of I

∼= lim←−PFlow(Glob(Di), X) by Proposition 6.10
∼= PFlow(lim−→Glob(Di), X) by definition of a (co)limit.
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The proof is complete using the Yoneda lemma. �

There is the obvious proposition:

Proposition 8.6 Let X be a P-flow. Let U be a topological space. The following data assemble into
a P-flow denoted by {U,X}S:

• The set of states is X0.

• Pα,β{U,X}S(`) := TOP(U,P`α,βX) for all ` > 0 and for all (α, β) ∈ X0 ×X0.

• The composition maps are defined by the composite maps

TOP(U,P`α,βX)×TOP(U,P`
′

β,γX) ∼= TOP(U,P`α,βX × P`
′

β,γX)→ TOP(U,P`+`
′

α,γ X)

for all (α, β, γ) ∈ X0 ×X0 ×X0 and all `, `′ ∈ Obj(P).

Note that we stick to the notations of [8, Notation 7.6] and [16, Notation 3.8]. Indeed, like for
the case of flows, {U,X}S could be denoted by XU only if U is connected and nonempty. The
correct definition of XU in the non-connected case is as follows:

Definition 8.7 Let U be a topological space. Let

XU =
∏

V ∈CC(U)

{V,X}S

The mapping (U,X) 7→ XU induces a well-defined functor from Topop × PFlow to PFlow.

We could prove that the functor X 7→ XU has a left adjoint X 7→ X⊗U and that the axioms of
tensored and cotensored categories are satisfied. One of the ingredients of the proof is that every
∆-generated space is homeomorphic to the disjoint union of its nonempty connected components.

Theorem 8.8 There exists a unique model structure on PFlow such that IP+ is the set of generating
cofibrations and such that all objects are fibrant. The set of generating trivial cofibrations is JP .
It is called the q-model structure.

Proof: We are going to check all hypotheses of Theorem 7.1. The category PFlow is locally
presentable by Theorem 6.11. By Proposition 8.1, the map of P-spaces

∅ = FP
op

` ∅→ FP
op

` Sn−1

is a projective q-cofibration for all ` ∈ Obj(P) and all n > 0. Thus all domains of all maps of IP+
are cofibrant with respect to IP+ . We can factor the relative codiagonal map Dn tSn−1 Dn → Dn

as a composite
Dn tSn−1 Dn ⊂ Dn+1 −→ Dn

for all n > 0. We obtain for all ` ∈ Obj(P) a composite map of P-spaces

FPop` (Dn tSn−1 Dn) // FPop` Dn+1 // FPop` Dn

such that the left-hand map is a projective q-cofibration by Proposition 8.1. Thus for U → V
being one of the maps Glob(FPop` Sn−1) ⊂ Glob(FPop` Dn) for n > 0 and ` ∈ Obj(P), we set

CU (V ) = Glob(FP
op

` Dn+1).

For all n > 0, we have a pushout diagram of topological spaces

Sn
∼= //

��

Dn tSn−1 Dn

��

Dn+1 // Dn+1

Accepted in Compositionality on 2022-07-11. Click on the title to verify. 24



Volume 3 Issue 3 ISSN 2631-4444

which gives rise to the pushout diagram of P-spaces

FPop` Sn //

��

FPop` Dn tFPop
`

Sn−1 FPop` Dn

��

FPop` Dn+1 // FPop` Dn+1

for all ` ∈ Obj(P) by Proposition 8.1. The latter diagram gives rise to the pushout diagram of
P-flows

Glob(FPop` Sn)

��

// Glob(FPop` Dn) tGlob(FPop
`

Sn−1) Glob(FPop` Dn)

��

Glob(FPop` Dn+1) // Glob(FPop` Dn+1)

for all n > 0 and all ` ∈ Obj(P) by Proposition 8.5. This implies that for U → V being one of the
maps

Glob(FP
op

` Sn−1) ⊂ Glob(FP
op

` Dn)

for n > 0 and ` ∈ Obj(P), the map V tUV −→ CU (V ) belongs to cell(IP+ ). The map C : ∅[ → {0}[
gives rise to the relative codiagonal map {0}[ t {0}[ → {0}[. Thus we set

C∅[({0}[) = {0}[.

In this case, the map V tU V −→ CU (V ) is R : {0, 1}[ → {0}[ which belongs to cell(IP+ ). The
map R : {0, 1}[ → {0}[ gives rise to the relative codiagonal map Id{0}. Thus we set

C{0,1}[({0}[) = {0}[.

In this case, the map V tU V −→ CU (V ) is Id{0}[ which belongs to cell(IP+ ). The set of generating
trivial cofibrations will be therefore the set of maps

Glob(FP
op

` Dn) ⊂ Glob(FP
op

` Dn+1)

for n > 0 and ` ∈ Obj(P). The composite map {0, 1} ⊂ [0, 1] → {0} yields a natural composite
map of P-flows

X ∼= X{0}
τX // X [0,1] (π0,π1)

// X{0,1} ∼= X ×X

which gives rise to the composite continuous map

P`α,βX → TOP([0, 1],P`α,βX)→ P`α,βX × P`α,βX

on the spaces of paths for all (α, β) ∈ X0 × X0 and all ` ∈ Obj(P). We have obtained a path
object in the sense of Theorem 7.1. Since the maps π0 and π1 are bijective on states, they satisfy
the RLP with respect to

{C : ∅[ → {0}[, R : {0, 1}[ → {0}[}

by Proposition 8.4. By Proposition 8.3, the maps π0 and π1 satisfy the RLP with respect to the
maps of P-flows

Glob(FP
op

` Sn−1) ⊂ Glob(FP
op

` Dn)

for all n > 0 and for all ` ∈ Obj(P) if and only if the evaluation maps

TOP([0, 1],P`α,βX)⇒ P`α,βX

on 0 and 1 satisfy the RLP with respect to the inclusion Sn−1 ⊂ Dn for all n > 0, for all ` ∈ Obj(P)
and for all (α, β) ∈ X0 ×X0, i.e. if and only if the evaluation maps

TOP([0, 1],P`α,βX)⇒ P`α,βX
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are trivial q-fibrations for all (α, β) ∈ X0×X0 and all ` ∈ Obj(P). The latter fact is a consequence
of the fact that the q-model structure of Top is cartesian monoidal and from the fact that the
inclusions {0} ⊂ [0, 1] and {1} ⊂ [0, 1] are trivial q-cofibrations of Top. Finally, we have to check
that the map π : Path(X)→ X ×X satisfies the RLP with respect to the maps

Glob(FP
op

` Dn) ⊂ Glob(FP
op

` Dn+1)

for all n > 0 and for all ` ∈ Obj(P). By Proposition 8.3 again, it suffices to prove that the map

TOP([0, 1],P`α,βX)→ TOP({0, 1},P`α,βX) = P`α,βX × P`α,βX

is a q-fibration of topological spaces for all (α, β) ∈ X0×X0 and all ` ∈ Obj(P). Since the q-model
structure of Top is cartesian monoidal, this comes from the fact that the inclusion {0, 1} ⊂ [0, 1]
is a q-cofibration of Top. �

Theorem 8.9 A map of P-flows f : X → Y is a q-fibration if and only if for all (α, β) ∈ X0 ×X0,
the map of P-spaces Pα,βX → Pf(α),f(β)Y is a projective q-fibration of [Pop,Topq]

proj
0 .

Proof: A set of generating trivial cofibrations of the model category of P-flows is given by the set
{Glob(FPop` Dn) → Glob(FPop` Dn+1) | n > 0, ` ∈ Obj(P)}. By Proposition 8.3, a map of P-flows
f : X → Y is a q-fibration if and only if for any α, β ∈ X0 and any ` ∈ Obj(P) the map of
topological spaces P`α,βX → P`f(α),f(β)Y satisfies the RLP with respect to the continuous maps
Dn → Dn+1 for n > 0, i.e. if and only if the map of P-spaces Pα,βX → Pf(α),f(β)Y is a projective
q-fibration of [Pop,Topq]

proj
0 . �

Theorem 8.10 A map of P-flows f : X → Y is a trivial q-fibration if and only if f induces a
bijection between the set of states of X and Y and for all (α, β) ∈ X0 ×X0, the map of P-spaces
Pα,βX → Pf(α),f(β)Y is a trivial projective q-fibration of [Pop,Topq]

proj
0 .

Proof: A set of generating q-cofibrations of the model category of P-flows is given by the set
{Glob(FPop` Sn−1) ⊂ Glob(FPop` Dn) | n > 0, ` ∈ Obj(P)}∪{C : ∅[ → {0}[, R : {0, 1}[ → {0}[}. By
Proposition 8.3 and Proposition 8.4, a map of P-flows f : X → Y is a trivial q-fibration if and only
if it induces a bijection between the set of states and for any α, β ∈ X0 and any ` ∈ Obj(P) the
map of topological spaces P`α,βX → P`f(α),f(β)Y satisfies the RLP with respect to the continuous
maps Sn−1 → Dn for n > 0, i.e. if and only if the map of P-spaces Pα,βX → Pf(α),f(β)Y is a
trivial projective q-fibration of [Pop,Topq]

proj
0 . �

The following proposition is a generalization of Proposition 6.10.

Proposition 8.11 Let I be a small category having an initial object ∅. For all objects i ∈ I, let
fi : ∅→ i be the unique morphism of I. Let P be an object of the functor category ([Pop,Top]0)I
(i.e. P is a diagram of P-spaces). Let X be an object of the functor category PFlowI . The functor
Glob : [Pop,Top]0 → PFlow inducing a functor Glob : ([Pop,Top]0)I → PFlowI denoted in the
same way, there is the natural bijection of sets

PFlowI(Glob(P ), X) ∼=
⊔

(α,β)∈X0
∅×X

0
∅

([Pop,Top]0)I(P,P(X)),

where the notation P(X) means the diagram of P-spaces defined on objects by the mapping

i 7→ Pfi(α),fi(β)Xi

Proof: All maps of the diagram of P-flows Glob(P ) are bijective on states. Therefore, a map
Glob(P ) → X is determined by the image (α, β) ∈ X0

∅ ×X0
∅ of the states 0 and 1 of the P-flow

Glob(P∅) and, once this choice is done, by a map P → P.X. �
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Corollary 8.12 Let f : X → Y be a map of P-flows. Let P → Q be a map of [Pop,Top]0. Then
there is the natural bijection of sets

Mor(PFlow)

( Glob(P )
↓

Glob(Q)
,

X
↓
Y

)
∼=

⊔
(α,β)∈X0×X0

Mor ([Pop, Top]0)

(
P
↓
Q

,
Pα,βX
↓

Pf(α),f(β)Y

)

Proof: It is a corollary of Proposition 8.11 with the 2-object small category ∅→ 1. �

The following well-known proposition is an easy consequence of [31, page 219 (2)]. It is explicitly
stated for helping purpose.

Proposition 8.13 Let L a R : C � D be a categorical adjunction. Let I be a small category. Then

• The functor L : C → D induces a functor still denoted by L from the functor category CI to the
functor category DI which takes X to the functor L.X.

• The functor R : D → C induces a functor still denoted by R from the functor category DI to the
functor category CI which takes Y to the functor R.Y .

We obtain an adjunction L a R : CI � DI .

Proof: One has the natural bijections

DI(L(X), Y ) ∼=
∫
i∈I
D(L(X(i)), Y (i)) by [31, page 219 (2)]

∼=
∫
i∈I
C(X(i),R(Y (i))) by adjunction

∼= CI(X,R(Y )) by [31, page 219 (2)].

�

Proposition 8.14 Let n > 0. Let ` ∈ Obj(P). A morphism of P-flows f : X → Y satisfies the RLP
up to homotopy with respect to Glob(FPop` Sn−1)→ Glob(FPop` Dn) if and only if for all α, β ∈ X0,
the map of topological spaces P`α,βX → P`f(α),f(β)Y satisfies the RLP up to homotopy with respect
to the continuous map Sn−1 ⊂ Dn.

Proof: For U → V being one of the maps of{
Glob(FP

op

` Sn−1) ⊂ Glob(FP
op

` Dn) | n > 0, ` ∈ Obj(P)
}
,

we have (see the proof of Theorem 8.8)

CU (V ) = Glob(FP
op

` Dn+1).

Therefore, by Theorem 7.3, a morphism of P-flows f : X → Y satisfies the RLP up to homotopy
with respect to the map Glob(FPop` Sn−1)→ Glob(FPop` Dn) if and only if it injective with respect
to the map of maps

Glob(FPop` Sn−1)
↓

Glob(FPop` Dn)
−→

Glob(FPop` Dn)
↓

Glob(FPop` Dn+1)

in the category Mor(PFlow), in other terms if and only if the set map

Mor(PFlow)

 Glob(FPop` Dn)
↓

Glob(FPop` Dn+1)
,
X
↓
Y

→ Mor(PFlow)

 Glob(FPop` Sn−1)
↓

Glob(FPop` Dn)
,
X
↓
Y


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induced by the above map of maps is onto. However, we have the sequences of bijections

Mor(PFlow)

 Glob(FPop` Dn)
↓

Glob(FPop` Dn+1)
,
X
↓
Y


∼=

⊔
(α,β)∈X0×X0

Mor ([Pop,Top]0)

 FPop` Dn

↓
FPop` Dn+1

,
Pα,βX
↓

Pf(α),f(β)Y

 by Corollary 8.12

∼=
⊔

(α,β)∈X0×X0

Mor (Top)

 Dn

↓
Dn+1

,

P`α,βX
↓

P`f(α),f(β)Y

 by Proposition 8.13

and

Mor(PFlow)

 Glob(FPop` Sn−1)
↓

Glob(FPop` Dn)
,
X
↓
Y


∼=

⊔
(α,β)∈X0×X0

Mor ([Pop,Top]0)

 FPop` Sn−1

↓
FPop` Dn

,
Pα,βX
↓

Pf(α),f(β)Y

 by Corollary 8.12

∼=
⊔

(α,β)∈X0×X0

Mor (Top)

 Sn−1

↓
Dn

,

P`α,βX
↓

P`f(α),f(β)Y

 by Proposition 8.13.

Therefore a morphism of P-flows f : X → Y satisfies the RLP up to homotopy with respect to the
map Glob(FPop` Sn−1)→ Glob(FPop` Dn) if and only if the set map

Mor (Top)

 Dn

↓
Dn+1

,

P`α,βX
↓

P`f(α),f(β)Y

→ Mor (Top)

 Sn−1

↓
Dn

,

P`α,βX
↓

P`f(α),f(β)Y


induced by the map of Mor(Top)

Sn−1

↓
Dn

−→
Dn

↓
Dn+1

is onto. By Theorem 7.3, the latter condition is equivalent to saying that the map P`α,βX →
P`f(α),f(β)Y satisfies the RLP up to homotopy with respect to the continuous map Sn−1 ⊂ Dn. �

Proposition 8.15 A morphism of P-flows f : X → Y satisfies the RLP up to homotopy with respect
to C : ∅[ → {0}[ if and only if it is onto on states. A morphism of P-flows f : X → Y satisfies
the RLP up to homotopy with respect to R : {0, 1}[ → {0}[ if and only if it is one-to-one on states.

Proof: Obvious. �

Theorem 8.16 A map of P-flows f : X → Y is a weak equivalence if and only if f induces a
bijection between the set of states of X and Y and for all (α, β) ∈ X0 ×X0, the map of P-spaces
Pα,βX → Pf(α),f(β)Y is a weak equivalence.

Proof: By Theorem 7.2, a map of P-flows f : X → Y is a weak equivalence if and only if it satisfies
the RLP up to homotopy with respect to the maps of

IP+ = {Glob(FP
op

` Sn−1) ⊂ Glob(FP
op

` Dn) | n > 0, ` ∈ P}
∪ {C : ∅[ → {0}[, R : {0, 1}[ → {0}[}.
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By Proposition 8.15 and by Proposition 8.14, a map of P-flows f : X → Y is then a weak
equivalence if and only if f induces a bijection between the set of states of X and Y and for all
(α, β) ∈ X0×X0 and all ` ∈ Obj(P), the map P`α,βX → P`f(α),f(β)Y satisfies the RLP up to homo-
topy with respect to the maps Sn−1 ⊂ Dn for all n > 0. By Theorem 7.2 applied to the q-model
category Top, it implies that a map of P-flows f : X → Y is then a weak equivalence if and only
if f induces a bijection between the set of states of X and Y and for all (α, β) ∈ X0 ×X0 and all
` ∈ Obj(P), the map P`α,βX → P`f(α),f(β)Y is a weak homotopy equivalence of topological spaces. �

9 Q-cofibrant P-flows have a projective q-cofibrant P-space of execution
paths

Definition 9.1 Let f : D → E and g : F → G be two maps of P-spaces. Then the pushout product,
with respect to ⊗, denoted by f � g, of f and g is the map of P-spaces

f � g : (D ⊗G) tD⊗F (E ⊗ F ) −→ E ⊗G.

induced by the universal property of the pushout.

Notation 9.2 f�g denotes the pushout product with respect to the binary product of two maps f
and g of a bicomplete category.

Proposition 9.3 Let f : U → V and f ′ : U ′ → V ′ be two maps of Top. Let `, `′ ∈ Obj(P). Then
there is the isomorphism of P-spaces

FP
op

` (f)� FP
op

`′ (g) ∼= FP
op

`+`′(f�g).

Proof: The domain of FPop` (f)� FPop`′ (g) is the P-space(
FP

op

` (U)⊗ FP
op

`′ (V ′)
)
tFPop

`
(U)⊗FPop

`
(U ′)
(
FP

op

` (U ′)⊗ FP
op

`′ (V )
)

∼= FP
op

`+`′(U × V ′) tFPop
`+`′ (U×V ) F

Pop
`+`′(U ′ × V )

∼= FP
op

`+`′
(
(U × V ′) t(U×V ) (U ′ × V )

)
,

the first isomorphism by Proposition 5.16 and the second isomorphism by Proposition 8.1. By
Proposition 5.16 again, the codomain of FPop` (f)� FPop`′ (g) is

FP
op

` (U ′)⊗ FP
op

`′ (V ′) ∼= FP
op

`+`′(U ′ × V ′).

�

Theorem 9.4 Let f : D → E and g : F → G be two maps of P-spaces. Then

• If f and g are projective q-cofibrations, then f � g is a projective q-cofibration.

• If moreover f or g is a trivial projective q-cofibration, then f � g is a trivial projective q-
cofibration.

Proof: The projective q-cofibrations of P-spaces are generated by the set of maps

I = {FP
op

` Sn−1 → FP
op

` Dn | n > 0, ` ∈ Obj(P)}

induced by the inclusions Sn−1 ⊂ Dn. The set of generating trivial projective q-cofibrations is the
set of maps

J = {FP
op

` Dn → FP
op

` Dn+1 | n > 0, ` ∈ Obj(P)}
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where the maps Dn ⊂ Dn+1 are induced by the mappings (x1, . . . , xn) 7→ (x1, . . . , xn, 0). From
Proposition 9.3, Proposition 8.1 and from the fact that the q-model structure of Top is cartesian
monoidal, we deduce the inclusions

I� I ⊂ cof(I),
I� J ⊂ cof(J),
J� I ⊂ cof(J).

The proof is complete thanks to Theorem 5.14 and [26, Lemma 4.2.4]. �

Let S be a nonempty set. Let Pu,v(S) be the small category defined by generators and relations
as follows (see [19, Section 3]):

• u, v ∈ S (u and v may be equal).

• The objects are the tuples of the form

m = ((u0, ε1, u1), (u1, ε2, u2), . . . , (un−1, εn, un))

with n > 1, u0, . . . , un ∈ S and

∀i such that 1 6 i 6 n, εi = 1⇒ (ui−1, ui) = (u, v).

• There is an arrow
cn+1 : (m, (x, 0, y), (y, 0, z), n)→ (m, (x, 0, z), n)

for every tuple m = ((u0, ε1, u1), (u1, ε2, u2), . . . , (un−1, εn, un)) with n > 1 and every tuple
n = ((u′0, ε′1, u′1), (u′1, ε′2, u′2), . . . , (u′n′−1, ε

′
n′ , u

′
n′)) with n′ > 1. It is called a composition map.

• There is an arrow
In+1 : (m, (u, 0, v), n)→ (m, (u, 1, v), n)

for every tuple m = ((u0, ε1, u1), (u1, ε2, u2), . . . , (un−1, εn, un)) with n > 1 and every tuple
n = ((u′0, ε′1, u′1), (u′1, ε′2, u′2), . . . , (u′n′−1, ε

′
n′ , u

′
n′)) with n′ > 1. It is called an inclusion map.

• There are the relations (group A) ci.cj = cj−1.ci if i < j (which means since ci and cj may
correspond to several maps that if ci and cj are composable, then there exist cj−1 and ci
composable satisfying the equality).

• There are the relations (group B) Ii.Ij = Ij .Ii if i 6= j. By definition of these maps, Ii is never
composable with itself.

• There are the relations (group C)

ci.Ij =
{
Ij−1.ci if j > i+ 2
Ij .ci if j 6 i− 1.

By definition of these maps, ci and Ii are never composable as well as ci and Ii+1.

By [19, Proposition 3.7], there exists a structure of Reedy category on Pu,v(S) with the N-valued
degree map defined by

d((u0, ε1, u1), (u1, ε2, u2), . . . , (un−1, εn, un)) = n+
∑
i

εi.

The maps raising the degree are the inclusion maps in the above sense. The maps decreasing the
degree are the composition maps in the above sense.

Notation 9.5 The latching object at n of a diagram D over Pu,v(S) is denoted by LnD.

We recall the important theorem:
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Theorem 9.6 [19, Theorem 3.9] Let K be a model category. Let S be a nonempty set. Let u, v ∈ S.
Let CAT(Pu,v(S),K) be the category of functors and natural transformations from Pu,v(S) to K.
Then there exists a unique model structure on

CAT(Pu,v(S),K)

such that the weak equivalences are the objectwise weak equivalences and such that a map of di-
agrams f : D → E is a cofibration (called a Reedy cofibration) if for all objects n of Pu,v(S),
the canonical map LnE tLnD D(n) → E(n) is a cofibration of K. Moreover the colimit functor
lim−→ : CAT(Pu,v(S),K)→ K is a left Quillen adjoint.

Let ∂Z → Z be a map of P-spaces. Consider a pushout diagram of P-flows

Glob(∂Z)

��

g
// A

f

��

Glob(Z) ĝ
// X.

Let T be the P-space defined by the pushout diagram of [Pop,Top]0

∂Z

��

g
// Pg(0),g(1)A

f

��

Z
ĝ

// T.

Consider the diagram of P-spaces Df : Pg(0),g(1)(A0)→ [Pop,Top]0 defined as follows:

Df ((u0, ε1, u1), (u1, ε2, u2), . . . , (un−1, εn, un)) = Zu0,u1 ⊗ Zu1,u2 ⊗ . . .⊗ Zun−1,un

with

Zui−1,ui =
{
Pui−1,uiA if εi = 0
T if εi = 1

In the case εi = 1, (ui−1, ui) = (g(0), g(1)) by definition of Pg(0),g(1)(A0). The inclusion maps
I ′is are induced by the map f : Pg(0),g(1)A → T . The composition maps c′is are induced by the
composition law of A.

Theorem 9.7 We obtain a well-defined diagram of P-spaces

Df : Pg(0),g(1)(A0)→ [Pop,Top]0.

There is the isomorphism of P-spaces lim−→D
f ∼= PX.

Proof: A flow is a small semicategory enriched over the closed (semi)monoidal category (Top,×)
(cf. Definition 10.1). A P-flow is a small semicategory enriched over the biclosed semimonoidal
category ([Pop,Top]0,⊗). Therefore, the first assertion is proved like [19, Proposition 4.6] and the
second assertion like [19, Theorem 4.8]. �

We recall the explicit calculation of the pushout product of several morphisms, here in the
bicomplete biclosed semimonoidal category ([Pop,Top]0,⊗).

Proposition 9.8 Let fi : Ai −→ Bi for 0 6 i 6 p be p + 1 maps of P-spaces. Let S ⊂ {0, . . . , p}.
Let

Cp(S) := C0 ⊗ . . .⊗ Cp with

{
Ci = Ai if i /∈ S
Ci = Bi if i ∈ S.
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If S and T are two subsets of {0, . . . , p} such that S ⊂ T , let

Cp(iTS ) : Cp(S) −→ Cp(T )

be the morphism

g0 ⊗ . . .⊗ gp with


gi = IdBi if i ∈ S
gi = fi if i ∈ T\S
gi = IdAi if i /∈ T.

Then:

1. the mappings S 7→ Cp(S) and iTS 7→ Cp(iTS ) give rise to a functor from the order complex of
the poset {0 < · · · < p} to [Pop,Top]0

2. there exists a canonical morphism

lim−→
S${0,...,p}

Cp(S) −→ Cp({0, . . . , p}).

and it is equal to the morphism f0 � · · ·� fp.

Proof: The proof is similar to the proof of [11, Theorem B.3] for the case of (Top,×). It is still
valid here because the semimonoidal structure ⊗ is associative and biclosed by Theorem 5.14. The
statement has to be slightly modified since ⊗ is not assumed to be symmetric. �

Proposition 9.9 With the notations above. Let n ∈ Obj(Pg(0),g(1)(A0)) with

n = ((u0, ε1, u1), (u1, ε2, u2), . . . , (un−1, εn, un)).

Then the continuous map
LnDf −→ Df (n)

is the pushout product � of the maps ∅ → Pui−1,uiA for i running over {i ∈ [1, n]|εi = 0} and of
the maps Pg(0),g(1)A → T for i running over {i ∈ [1, n]|εi = 1}. Moreover, if for all i ∈ [1, n], we
have εi = 0, then LnDf = ∅.

Proof: It is a consequence of Proposition 9.8. �

Theorem 9.10 With the notations above. Assume that the map of P-spaces ∂Z → Z is a (trivial
resp.) projective q-cofibration. If PA is a projective q-cofibrant P-space, then Pf : PA → PX is a
(trivial resp.) projective q-cofibration of P-spaces.

Proof: The particular case ∂Z = Z, f = IdA and A = X yields the isomorphism of P-spaces

lim−→D
IdA ∼= PA.

We have a map of diagrams DIdA → Df which induces for all n ∈ Obj(Pg(0),g(1)(A0)) a map of
P-spaces

LnDf tLnDIdA DIdA(n) −→ Df (n).

Let
n = ((u0, ε1, u1), (u1, ε2, u2), . . . , (un−1, εn, un)).

There are two mutually exclusive cases:

(a) All εi for i = 1, . . . n are equal to zero.

(b) There exists i ∈ [1, n] such that εi = 1.
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In the case (a), we have

DIdA(n) = Df (n) = Pu0,u1A⊗ . . .⊗ Pun−1,unA.

Moreover, by Proposition 9.9, we have LnDIdA = LnDf = ∅. We deduce that the map

LnDf tLnDIdA DIdA(n) −→ Df (n)

is isomorphic to the identity of DIdA(n). In the case (b), The map

LnDIdA −→ DIdA(n)

is by Proposition 9.9 a pushout product of several maps such that one of them is the identity map
Id : Pg(0),g(1)A→ Pg(0),g(1)A because εi = 1 for some i. Therefore the map LnDIdA → DIdA(n) is
an isomorphism. We deduce that the map

LnDf tLnDIdA DIdA(n) −→ Df (n)

is isomorphic to the map LnDf → Df (n). By Proposition 9.9, the map LnDf → Df (n) is a
pushout product � of maps of the form ∅ → Pα,βA and of the form f : Pg(0),g(1)A → T for all
objects n ∈ Obj(Pg(0),g(1)(A0)). We conclude that the map

LnDf tLnDIdA DIdA(n) −→ Df (n)

is for all n either an isomorphism, or a pushout product of maps of the form ∅ → Pα,βA and of
the form f : Pg(0),g(1)A→ T , the latter appearing at least once in the pushout product and being
a pushout of the map of P-spaces ∂Z → Z. We are now ready to complete the proof.

Suppose now that PA is a projective q-cofibrant P-space. Therefore for all (α, β) ∈ A0 × A0,
the P-space Pα,βA is projective q-cofibrant. We deduce that the map LnDf → Df (n) is always
a projective q-cofibration of [Pop,Top]0 for all n by Theorem 9.4. We deduce that the map of
diagrams DIdA → Df is a Reedy projective q-cofibration. Therefore by passing to the colimit
which is a left Quillen adjoint by Theorem 9.6, we deduce that the map PA→ PX is a projective q-
cofibration of [Pop,Top]0. The case where ∂Z → Z is a trivial projective q-cofibration is similar. �

We need for the proof of Theorem 9.11 some elementary information about the m-model struc-
ture and the h-model structure of Top to complete the transfinite induction. We invite the reader
to look [19, Section 2] up.

Theorem 9.11 Let X be a P-flow. If X is q-cofibrant, then the path P-space functor PX is pro-
jective q-cofibrant. In particular, for every (α, β) ∈ X0 × X0, the P-space Pα,βX is projective
q-cofibrant if X is q-cofibrant.

Proof: By hypothesis, X is q-cofibrant. Consequently, the map of P-flows ∅[ → X is a retract
of a transfinite composition lim−→Aλ of pushouts of maps of the form Glob(∂Z) → Glob(Z) such
that ∂Z → Z is a projective q-cofibration of [Pop,Top]0 and of the maps C : ∅[ → {0}[ and
R : {0, 1}[ → {0}[. Since the set map ∅0 = ∅→ X0 is one-to-one, one can suppose that the map
R : {0, 1}[ → {0}[ does not appear in the cellular decomposition. Moreover we can suppose that
A0 = X0 and that for all λ > 0, Aλ → Aλ+1 is a pushout of a map of the form Glob(∂Z)→ Glob(Z)
where the map ∂Z → Z is a projective q-cofibration of P-spaces.

Consider the set of ordinals {λ | PAλ not q-cofibrant}. Note that this set does not contain
0. If this set is nonempty, then it contains a smallest element µ0 > 0. By Theorem 9.10, the
ordinal µ0 is a limit ordinal. By definition of the ordinal µ0 and by Theorem 9.10 again, for
all µ < ν 6 µ0, the maps of P-spaces PAµ → PAν are projective q-cofibrations of P-spaces.
By [15, Proposition 7.1], we deduce that for all µ < ν 6 µ0, the maps of P-spaces PAµ →
PAν are objectwise m-cofibrations of topological spaces, and therefore objectwise h-cofibrations of
topological spaces. By [19, Proposition 2.6], we obtain that all µ < ν 6 µ0, the maps of P-spaces
PAµ → PAν are objectwise relative-T1 inclusions. By Theorem 6.14, we obtain that the canonical
map

lim−→
µ<µ0

PAµ → P lim−→
µ<µ0

Aµ = PAµ0

is an objectwise homeomorphism. We deduce that PAµ0 is projective q-cofibrant: contradiction. �
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10 Comparison of flows and P-flows
Definition 10.1 [8, Definition 4.11] A flow is a 1-flow where 1 is the terminal category (see Exam-
ple 4.5)). The corresponding category is denoted by Flow.

In other terms, a flow is a small semicategory enriched over the closed (semi)monoidal category
(Top,×). Let us expand the definition above. A flow X consists of a topological space PX of
execution paths, a discrete space X0 of states, two continuous maps s and t from PX to X0 called
the source and target map respectively, and a continuous and associative map

∗ : {(x, y) ∈ PX × PX; t(x) = s(y)} −→ PX

such that s(x ∗ y) = s(x) and t(x ∗ y) = t(y). A morphism of flows f : X −→ Y consists of a set
map f0 : X0 −→ Y 0 together with a continuous map Pf : PX −→ PY such that

f0(s(x)) = s(Pf(x))
f0(t(x)) = t(Pf(x))
Pf(x ∗ y) = Pf(x) ∗ Pf(y).

Let
Pα,βX = {x ∈ PX | s(x) = α and t(x) = β}.

Notation 10.2 The map Pf : PX −→ PY can be denoted by f : PX → PY if there if no ambiguity.
The set map f0 : X0 −→ Y 0 can be denoted by f : X0 −→ Y 0 if there if no ambiguity.

The category Flow is locally presentable. Every set can be viewed as a flow with an empty path
space. The obvious functor Set ⊂ Flow is limit-preserving and colimit-preserving. The following
example of flow is important for the sequel:

Example 10.3 For a topological space Z, let Glob(Z) be the flow defined by

Glob(Z)0 = {0, 1},
PGlob(Z) = P0,1Glob(Z) = Z,

s = 0, t = 1.

This flow has no composition law.

Notation 10.4
Igl = {Glob(Sn−1) ⊂ Glob(Dn) | n > 0}
Jgl = {Glob(Dn × {0}) ⊂ Glob(Dn+1) | n > 0}
C : ∅→ {0}
R : {0, 1} → {0}
−→
I = Glob({0})

where the maps of Igl are induced by the inclusions Sn−1 ⊂ Dn and the maps of Jgl are induced
by the mapping (x1, . . . , xn) 7→ (x1, . . . , xn, 0).

The q-model structure of flows (Flow)q is the unique combinatorial model structure such that
Igl ∪{C,R} is the set of generating q-cofibrations and such that Jgl is the set of generating trivial
q-cofibrations (e.g. [18, Theorem 7.6] or [16, Theorem 3.11]). The weak equivalences are the
maps of flows f : X → Y inducing a bijection f0 : X0 ∼= Y 0 and a weak homotopy equivalence
Pf : PX → PY . The q-fibrations are the maps of flows f : X → Y inducing a q-fibration
Pf : PX → PY of topological spaces.

Let X be a flow. The P-flow M(X) is the enriched semicategory defined as follows:

• The set of states is X0.

• The P-space Pα,βM(X) is the P-space ∆Pop(Pα,βX).
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• The composition law is defined, using Proposition 5.17 as the composite map

∆Pop(Pα,βX)⊗∆Pop(Pβ,γX) ∼= ∆Pop(Pα,βX × Pβ,γX)
∆Pop (∗)

// ∆Pop(Pα,γX).

We obtain the

Proposition 10.5 The construction above yields a well-defined functor

M : Flow→ PFlow.

Consider a P-flow Y . For all α, β ∈ Y 0, let Yα,β = lim−→Pα,βY . Let (α, β, γ) be a triple of states
of Y . By Proposition 5.18, the composition law of the P-flow Y induces a continuous map

Yα,β × Yβ,γ ∼= lim−→(Pα,βY ⊗ Pβ,γY ) −→ lim−→Pα,γY ∼= Yα,γ

which is associative. We obtain the

Proposition 10.6 For any P-flow Y , the data

• The set of states is Y 0

• For all α, β ∈ Y 0, let Yα,β = lim−→Pα,βY

• For all α, β, γ ∈ Y 0, the composition law Yα,β × Yβ,γ → Yα,γ

assemble to a flow denoted by M!(Y ). It yields a well-defined functor

M! : PFlow→ Flow.

Theorem 10.7 There is an adjunction M! aM.

Proof: We have to prove that there is a natural bijection

PFlow(Y,M(X)) ∼= Flow(M!(Y ), X)

for all P-flows Y and all flows X. Since the functors M! : PFlow→ Flow and M : Flow→ PFlow
preserve the set of states, the only problem is to verify that everything is well-behaved with the
path spaces, and more specifically with the composition laws.

Let f : M!(Y )→ X be a map of flows. It induces for each pair of states (α, β) of Y 0 a map of
topological spaces Pα,βM!(Y )→ Pf(α),f(β)X such that for all triples (α, β, γ) of Y 0, the following
diagram is commutative (the horizontal maps being the composition laws):

Pα,βM!(Y )× Pβ,γM!(Y ) ∗ //

��

Pα,γM!(Y )

��

Pf(α),f(β)X × Pf(β),f(γ)X
∗ // Pf(α),f(γ)X.

By adjunction, this means that the map of P-spaces

Pα,βX −→ ∆Pop(Pf(α),f(β)X)

is compatible with the composition laws, and then that we have a well-defined map of P-flows from
Y to M(X).

Let f : Y → M(X) be a map of P-flows. It induces for each pair of states (α, β) of Y 0 a
map of P-spaces Pα,βY → ∆Pop(Pf(α),f(β)X). We obtain by adjunction a map of topological
spaces Pα,βM!(Y ) → Pf(α),f(β)X and by naturality of the adjunction the commutative diagram
(the horizontal maps being the composition laws):

Pα,βM!(Y )× Pβ,γM!(Y ) ∗ //

��

Pα,γM!(Y )

��

Pf(α),f(β)X × Pf(β),f(γ)X
∗ // Pf(α),f(γ)X.
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�

Before ending the paper, we need to recall the

Theorem 10.8 ([15, Theorem 7.6]) The Quillen adjunction

lim−→ a ∆Pop : [Pop,Topq]
proj
0 � Topq

is a Quillen equivalence.

We can now conclude the first part of the proof of the existence of a zig-zag of Quillen equiva-
lences between the q-model structure of multipointed d-spaces and the q-model structure of flows:

Theorem 10.9 The adjunction M! a M of Theorem 10.7 is a Quillen equivalence between the q-
model structure of PFlow and the q-model structure of Flow.

Proof: We already know that M : Flow → PFlow is a right adjoint by Theorem 10.7. It takes
(trivial) q-fibrations of Flow to (trivial) q-fibrations of PFlow by Theorem 8.9 and Theorem 8.10.
Therefore it is a right Quillen adjoint.

Let X be a flow (it is necessarily fibrant). The map of flows

M!(M(X)cof ) −→ X

is bijective on states since the functors M and M! preserves the set of states. For every pair
(α, β) ∈ X0 ×X0, it induces the continuous map

lim−→Pα,β
(
M(X)cof

)
−→ Pα,βX.

By adjunction, we obtain the map of P-spaces

Pα,β
(
M(X)cof

)
−→ ∆Pop(Pα,βX) = Pα,β(M(X)).

The latter is a weak equivalence of the projective q-model structure of [Pop,Top]0 since the map
M(X)cof → M(X) is a weak equivalence of the q-model structure of PFlow. By Theorem 9.11,
the P-space Pα,β

(
M(X)cof

)
is projective q-cofibrant. It means that Pα,β

(
M(X)cof

)
is a cofibrant

replacement of ∆Pop(Pα,βX) for the projective q-model structure of [Pop,Top]0. By Theorem 10.8,
we deduce that the continuous map

lim−→Pα,β
(
M(X)cof

)
−→ Pα,βX.

is a weak homotopy equivalence. In other terms, the left Quillen adjoint M! : PFlow → Flow is
homotopically surjective.

Let Y be a q-cofibrant P-flow. The map of P-flows

Y −→M(M!Y )

is bijective on states since the functors M and M! preserves the set of states. For every pair
(α, β) ∈ X0 ×X0, the map Y →M(M!Y ) induces the map of P-spaces

Pα,βY −→ ∆Pop(lim−→Pα,βY ).

The P-space Pα,βY is projective q-cofibrant by Theorem 9.11. The above map is therefore an
objectwise weak homotopy equivalence by Theorem 10.8. In other terms, the left Quillen adjoint
M! : PFlow→ Flow is a left Quillen equivalence. �
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Appendix

A Changes made to the original paper [20]
Here we provide details about the changes made to the original paper [20] in this erratum. We
note that the numbering of the theorems of the paper are unchanged.

1. The abstract is slightly changed: the word “symmetric” and “commutative” are removed.

2. Definition 4.1, Definition 4.2, Definition 4.3 are adapted.

3. The following paragraph is added at the end of Section 4:

In the cases of (G,+) and (M,+), the functors (`, `′) 7→ `+ `′ and (`, `′) 7→ `′+ ` coincide on
objects, but not on morphisms. The terminal category is a symmetric reparametrization cat-
egory. We do not know if there exist symmetric reparametrization categories not equivalent
to the terminal category.

4. Proposition 5.8, Lemma 5.10, Proposition 5.11, Theorem 5.14 are adapted: only half of the
proofs is written, the proof of the “symmetric” statement is left to the reader; Notation 5.9
and Proposition 5.17 are adapted as well.

5. In the proof of Proposition 5.16 and 5.18, some parameters ` are relocated because a reparame-
trization category is not supposed to be symmetric anymore.

6. “Commutative semigroup” is replaced by “semigroup” (for the set of objects of a reparametriza-
tion category) everywhere in the paper.

7. “(Closed) symmetric semimonoidal structure” is replaced by “(biclosed) semimonoidal struc-
ture” everywhere in the paper.

8. First paragraph of Section 6: the word “symmetric” is removed.

9. In the remark after Definition 8.7, “the axioms of enriched categories are satisfied”‘ is replaced
by “the axioms of tensored and cotensored categories are satisfied”.

10. The statement of Proposition 9.8 is changed: it is adapted from the statement for the closed
symmetric monoidal category (Top,×); we have to modify the definition of Cp(S) and of the
map Cp(iTS ) to not change the order of the factors.
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