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Urn models play an important role to express various basic ideas in probability
theory. Here we extend this urn model with tubes. An urn contains coloured balls,
which can be drawn with probabilities proportional to the numbers of balls of each
colour. For each colour a tube is assumed. These tubes have different sizes (lengths).
The idea is that after drawing a ball from the urn it is dropped in the tube of the
corresponding colour. We consider two associated probability distributions. The first-
full distribution on colours gives for each colour the probability that the corresponding
tube is full first, before any of the other tubes. The negative distribution on natural
numbers captures for a number k the probability that all tubes are full for the first
time after k draws.

This paper uses multisets to systematically describe these first-full and negative dis-
tributions in the urns & tubes setting, in fully multivariate form, for all three standard
drawing modes (multinomial, hypergeometric, and Polya).

1 Introduction

Consider the situation sketched below (1), with an urn filled with coloured balls (on the left) and
tubes of different lengths (on the right), with one tube for each colour. Below there are three
colours: red (R), blue (B), and green (G), but in general there can be N > 2 many colours —
and then also NV tubes. We consider the following action: when a ball is drawn from the urn, it is
dropped in the tube of the corresponding colour. This action is repeated.

draws from the urn
—_—
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In this paper we consider this urns & tubes setting in two scenarios, involving either some tube
or all tubes being full for the first time. They both start from empty tubes.

elclele)

1. The first scenario looks at the probability that some tube is completely full first, before any
of the other tubes is full. As will be shown, this yields a distribution on colours, which we
call the first-full distribution.

2. In the second scenario we consider a distribution on natural numbers, where the probability
assigned to number k is the probability that all tubes are full for the first time after k& draws.
This means that there is some tube getting full at stage k, while all other tubes are already
full — possibly with overflows. Such distributions are known in the literature as negative
distributions. More on this at the end of this section.
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One can translate this abstract urns & tubes setting to more practical scenarios where the filling of
the tubes may represent something good or bad, like hospital beds of various types becoming fully
used up. Both the first-full and the negative scenarios may be relevant in risk modeling, where the
fullness probabilities of tubes correspond to risks of reaching thresholds.

Intuitively, the first-full probability for a colour C' decreases with the length of the C-coloured
tube, and increases with the proportion of C-coloured balls in the urn. It thus involves complex
dependencies. The main technical challenge is to prove that first-full is actually a distribution, with
first-full probabilities for each colour adding up to one. For this purpose we reason compositionally,
via certain probabilistic automata, namely Markov models with output (MOO), which terminate
at some stage, after some number of compositions, producing the relevant first-full distribution.
The same type of automaton can be used for negative distributions. The categorical details behind
this composition are explained in the appendix

Commonly three modes of drawing balls from an urn are distinguished, see e.g. [14, 19, 22, 24],
called multinomial, hypergeometric and Polya; the last mode is also called Polya—FEggenberg or
Dirichlet-multinomial, see [15]. We use “0”, “-1” and “+1” as short-hand descriptions for these
different modes. Explicitly, we use:

“0” for the multinomial mode, in which the drawn ball is returned to the urn;

“-1” for the hypergeometric mode, where the drawn ball is not returned to the urn — so that the
urn is diminishing;

“+1” for the Polya mode, where the drawn ball is returned to the urn, together with an additional
copy, of the same colour (called a reinforcement).

The distinction between multinomial and hypergeometric modes is most familiar and is often
expressed in terms of: with or without replacement. The Pélya mode is less well known. The
additional ball that is added to the urn after drawing has a strengthening effect that can capture
situations with a cluster dynamics, like in the spread of contagious diseases [4] or the flow of
tourists [17].

In a physical explanation of the first-full distributions we need for the multinomial and Poélya
modes an auxiliary box of balls on the side (with sufficiently many balls). In multinomial (resp.
Polya) mode, the ball drawn from the urn is dropped in the right tube, but one (resp. two) ball(s)
of the same colour are taken from the box and added to the urn, before the next draw. In the
Polya case the urn grows in size with each draw. In the multinomial case the urn remains the same
and is best described as a probability distribution (over the set of colours). In the hypergeometric
mode the urn decreases in size; we thus have to assume that initially the urn contains sufficiently
many balls of each colour: more than the length of each tube.

The urn & tubes set-up as introduced here generalises the famous ‘problem of points’, studied
in the 17th century by Pierre Fermat and Blaise Pascal, that played an important role in the
development of modern probability theory — in particular for the notion of expectation. See [3]
for a historical and [18] for a popular account. The problem of points involves a game between two
players that is terminated prematurely and where the stakes so far have to be divided between the
two. The solution there is to look at the remaining number of steps for winning (and associated
probabilities) for each of the players. These remaining steps translate directly into lengths of two
tubes, one for each player, with multinomial draws, see Subsection 5.1 below for further details.

The current urn & tubes set-up ‘inverts’ the problem of points, and also generalises it in two
ways: (1) urns & tubes are analysed is in fully multivariate form, and (2) the analysis covers the
three drawing modes described above.

Although the same urn & tubes setting is used both for first-full and for negative distributions,
these distributions are really different. First of all, negative distributions have the natural numbers
N as sample space, with infinite support — in multinomial and Pélya mode. To k& € N the
probability is assigned that all tubes are full, for the first time, after k£ draws — where some
tubes may overflow, while others are not full yet. Such negative distributions are studied in the
literature, see e.g. [21, 25, 26] and the textbooks [13, 15], but typically with one tube only. Still,
these negative distributions are not mainstream, and are even called ‘forgotten’, see [20]. Here we
describe negative distributions, in the general urn & tubes setting, in fully multivariate form, for
all three drawing modes (“07, “-17, “+17).
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In this paper we make extensive use of multisets, like in other recent publications [5, 7, 9, 11]. A
multiset is like a subset, except that elements may occur multiple times. For instance, an urn is a
multiset, over the set of colours. A draw of multiple balls from such an urn is a multiset. Also, the
tubes of different colours are represented as a multiset. Multisets form the proper formalism for
multivariate probabilities, see Section 3 below. Sending an arbitrary set X to the set of multisets
over X has the structure of a monad. Similarly, taking distributions over a set forms a monad.
These monad structures play an important role in the various ways that the multinomial and
hypergeometric (and Polya) operations, as Kleisli maps, can be composed, see 7] and [8]. In
this paper the underlying categorical structure is kept in the background. This is a deliberate
choice, in order not to limit the potential audience. For instance, in the beginning of Section 6
the composition steps for Markov models with output are spelled-out concretely; their abstract
categorical form as Kleisli composition is elaborated in the appendix.

This paper is organised as follows. It starts with a concrete description of first-full distributions,
for all three modes (“0”, “-17, “4+17), in Section 2. Subsequently, Section 3 introduces relevant
notation and terminology for multisets and distributions, and Section 4 formulates multivariate
versions of the multinomial, hypergeometric and Polya distributions, as distributions on multisets
of a fixed size. For snappy formulation of the hypergeometric and Poély distributions we use
binomial coefficients with multisets instead of numbers, both for ordinary binomial coefficients and
for the multichoose version. We introduce suitable generalisations of Vandermonde’s formula, for
multisets, also in multichoose form.

The next two sections are devoted to first-full distributions. They are defined in Section 5
in a pointwise manner, as sums over multisets. These probabilities are illustrated in several bar
plots. Next, Section 6 introduces three probabilistic automata, in the form of Markov models with
output, which are used to show that we actually get three distributions, with probabilities adding
up to one. The heart of the argument is that composition (iteration) of the steps of these automata
preserves distributions.

Section 7 introduces and illustrates negative distributions in the urns & tubes setting. We
pay special attention to the bivariate case, with one tube only, which is the form in which they
occur in the literature. We illustrate how the probabilities add up to one, and thus yield actual
distributions, vie the same compositional argument, by sketching the relevant Markov models with
output.

These descriptions of the first-full distributions set the scene for two additional topics. It is
known that the hypergeometric and Polya distributions can be obtained via conditioning from
binomial and from negative binomial distributions. Section 8 recalls these results in the current
setting, in uniform descriptions. Finally, Section 9 concentrates on the bivariate first-full and
negative distributions, with two tubes. It translates the fact that probabilities in these distributions
add up to one into number-theoretic corollaries. These results seem to be new. It is left as a
challenge to prove them directly.

Acknowledgments

The urn & tubes set-up in this paper was developed without awareness of the problem of points.
Thanks are due to Onno Boxma for pointing out the connection.

2 Examples of first-full distributions

This section illustrates how first-full distributions come about, in the three drawing modes. We
keep things simple at this stage and use only two colours, written R for red and B for blue. We
assume length 2 for the red tube, and length 3 for the blue tube. We briefly describe the draw
probabilities in the three modes, in this illustration.

e In the multinomial mode “0”, we assume that there are three balls in the urn, one red and
two blue. The probability of drawing red is thus % and for blue it is % These probabilities

remain the same, since drawn balls are returned to the urn. This “0” case is elaborated in
Example 1 below.
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e In the hypergeometric “-1” mode we assume that the urn initially has three red and six blue

balls. The initial probability of drawing red from this urn is thus % = % It leaves an urn
with two red and six blue balls. So the probability of drawing a second red ball from the
resulting urn is 2 = %. Example 2 gives the first-full details in this mode.

e In our illustration of the Pélya “41” mode we assume initially just one red and one blue ball
in the urn. The probability of drawing red is thus initially % Upon drawing red, not only the
drawn red ball, but also an additional red ball, is added to the urn, so that it subsequently
contains three balls, two red and one blue. The probability of drawing red is then % The
resulting dynamics is described in Example 3 below.

These three modes are elaborated below, in three separate examples.

Example 1 As described above, in the multinomial case we assume a % probability for R = red, and

% for B = blue. What are the possible draws for getting one tube filled first? We list the possible
draws to fill the red tube (of length 2) first, on the left below, with corresponding (multinomial)

probabilities, and the draws to fill the blue tube (of length 8) first on the right.

11 1
R,R 3°37 9

2 1.1 _ 2 2.2,2 _ 8

B,R,R 3°3°3 = o7 B7B7B 3 3 3 7 27

1.2, 1 _ 2 1.2, 2 2 _ 8

R,B,R 3°3°3 = 37 R,B,B,B 3°3°'3°3 ~ 81

2.2, 1.1 _ 4 2.1.2 2 __ 8

B,B,R,R 3°3°3°3 — §1 B7R7B7B 3 3 3 3 81

2.1.,2. 1 _ 4 2,21 2 _ 8

B,R,B,R 2.i.2.1_- 4 B,B.R,B 5-5-3°3= g

1 2 2 1 _ 4 -

R,B,B,R 3°'3°'3°3 = 81 total for B = 18

_ 5 3 5 5 27"
totalforRz%

We see on the left that the two required R-draws can be mized with at most two B-draws, but the
last draw must of course be R, in order to completely fill the red tube first. Similarly, on the right,
the three required B-draws can be mized with at most one R-draw.

The probability that the blue tube is full first is the highest one. The blue tube is longer than
the red one (3 versus 2), but the probability of drawing blue is higher (2 versus 1).

Example 2 We turn to the hypergeometric mode and start with an urn with three red and siz blue
balls. Now each drawn ball is removed from the urn, which affects subsequent probabilities. This
gives different probabilities for the same draws as in the previous example.

I
BRR4ded BB 5343
R,B,R s.8.2 - L R,B,B,B 3.8.3.4_ 5

B,B,R,R $-3.2.2=2 B,R,B,B §.3.3.4_ 35
B,R,B,R 5.%2.2.2 =2 B,B,R,B §8.2.3.4_ 5
REBBR 3833 il o B

‘ =
3

total for R = 45
In this hypergeometric mode the two first-full probabilities are different from the ones in Example 1,

but they still add up to one. Again, blue ‘wins’.

Example 3 Finally we consider first-full in Pélya mode, with (initial) urn containing one red and
one blue ball. The probabilities for the various draws are then as follows.
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RE . beiod
BRR  bbi-d BBB  }ide)
R, B, R i.4.2- L R,B,B,B 1.1.2.3_ L
B,B,R,R §-2.-1-2=4 B,R,B,B 1.1.2.3_ L
B,R,B,R -%-2.2 =1 B,B,R,B 1.2.1.3_ L
kBB R 4%%%% - % total for B = %
totalforR:%

We obtain a third first-full distribution, now with higher probability for red.

3 Preliminaries, on multisets and distributions

We briefly describe the notation and terminology for multisets and distributions, in two separate
subsections.

3.1 Multisets

As mentioned in the introduction, a multiset (or bag) is a finite ‘subset’ in which elements may occur
multiple times. We use a ‘ket’ notation | — ) borrowed from quantum theory, as convenient way of
writing such multisets. For instance, the initial urn with tree red and six blue balls in Example 2
forms a multiset 3| R) + 6| B). And the three tubes in (1) form a multiset 3| R) +6|B) +5|G). In
general, a multiset over a set X is a finite formal combination ), n;|z;) with n; € N and z; € X.
Alternatively, a multiset is a function ¢: X — N with finite support supp(¢) = {z € X | p(z) > 0}.
The number ¢(z) € N tells how many times the element x occurs in the multiset ¢. We freely
switch between the formal sum and the function notation.

We shall write M(X) for the set of multisets over X. Notice that each multiset is finite, in our
description, but the underlying set X itself need not be finite. Via pointwise addition, multisets
form a commutative monoid, and in fact, M(X) is the free commutative monoid on X, via the
unit map n: X — M(X), given by n(x) = 1|z). We shall write 0 € M(X) for the empty multiset,
with 0(z) =0 for all z € X.

We associate several numbers with a multiset.

Definition 1 For a multiset ¢ € M(X), write:
1. |l¢|l =3, w(x) for the size of @, taking multiplicities into account;

2. ol =11, e(x)! for the multiset factorial;

|
3. (p) = @ for the multinomial coefficient.
14

o

We are often interested in multisets of a particular size K € N, so we define a subset:
MIK](X) = {p € M(X) | || = K}.

This M[K] is a functor, but not a monad.

Sequences can be turned into multisets, via ‘accumulator’ functions acc: X¥ — M[K](X),
given by acc(z1,...,2k) = 1lx1) + -+ + 1|xk ). Thus, for instance, acc(a,a,b,a) = 3|a) + 1|b).
The multinomial coefficient (¢) is used in this paper in the following two ways.

Fact 1 1. For a multiset ¢ there are () lists that accumulate to ¢, that is, | acc™ ()| = ().

2. For real numbers a1, ..., an, the multinomial theorem says:

(a1+...+an)K - Z (@),Hiaf(i)_ 0
)

PEMIK]({1,...n}
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Multisets can be ordered pointwise, giving rise to some subtle distinctions.

Definition 2 Let ¢, € M(X) be given. We write:

1. o <Y if o(x) < P(x) for all x € X; in that case we define the multiset difference b — ¢ via
pointwise subtraction, as: (V¥ — ¢)(x) = (x) — o(x);

2. ¢ <k ¥ if ol = K and ¢ < ¢;
3o <y if o<y but o F;
4. o <Y if p(x) < Y(x) for alz € X.
The relation < will be called fully below. It is different from <, e.g. in:
2|a) +3|b) < 3|a) + 3|b) and 2|a) +2[b) < 3|a) + 3|b).
For multisets ¢, € M(X) with ¢ <1, we define the multiset binomial as:

() — I1, ()
o) T =91 (TLe@) - (ILGE - @)

- ¥(z)!
=l corwe —won 2)

reX

I (o)

reX

Intuitively, this is the number of ways ¢ can sit inside ).
The next result guarantees that hypergeometric draws form a distribution. It is well known,
but not in this form given below, with binomials for multisets.

Proposition 1 For a multiset ip € M(X) of size L = ||¢|| and for a number K < L,

> () - ()
P<kV ¢ K
The binary case, when the set X has two elements, is known as Vandermonde’s formula, see (4)

below. The above generalisation can be obtained from it by induction on the number of elements
in the support of ¢. For completeness, we include the proof. It uses Pascal’s rule, which says:

() () = () ®

Proof. We use induction on the number of elements in the support supp(y) of the multiset .
We go through some initial values explicitly. If the number of elements is 0, then v» = 0 and so
L =0=K and ¢ <k ¥ means ¢ = 0, so that the result holds. Similarly, if supp(¢) is a singleton,
say {z}, then L = ¢(z). For K < L and ¢ <k 1 we get supp(¢) = {2} and K = ¢(x). The result
then obviously holds.

The case where supp(¢) = {z,y} captures the ordinary form of Vandermonde’s formula. We
reformulate it for numbers B,G € N and K < B+ G. Then:

<B;G> B b<B,g§’w_K (f) ' @ (4)

Intuitively: if you select K children out of B boys and G girls, the number of options is given by
the sum over the options for b < B boys times the options for g < G girls, with b4+ g = K. The
equation (4) is standard, so a proof (e.g. by induction on G) is skipped.
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For the induction step, let supp(v) = {z1,...,2n,y}, for n > 2. Writing ¢ = ¢(y), L' = L — ¢
and ¢ = ¢ — Ll|y) € M[L'|(X) gives:

2 @) -2 1L (Zg;) > @H (iéoff)))

P<Kp P<K n<l p<g-—nt’

(1m) 0N (L—t\ (L
S OB 0 ) A )
n<t, K—n<L—¢

We recall that for n > 0 and m > 0 there is the multichoose coefficient, defined for n > 1 and

m > 0 as:
)= ) ==

Interestingly, where (:1) is the number of subsets of size m of an n-element set, ((::l)) is the number
of multisets of size m over an n-element set. It is easy to see that:

)=o)+ () 8

We extend multichoose from numbers to multisets, in line with (2):
(09 o ()
v zEsupp () ()

There is the following multichoose analogue of Proposition 1.
Proposition 2 For a multiset v € M(X) of size L = ||3|| > 0 and for any number K > 0,
> () -
@ K))
PEM[K](supp(¢))

Proof. We start with a double-bracket analogue of (4). Fix B > 1 and G > 1. For all K one has:

(&) =2, G)- () 0

We first prove this equation by induction on B >1. In both the base case B = 1 and the induction
step we shall use induction on K. We shall try to keep the structure clear by using nested bullets.

e We first prove Equation (6) for B = 1, by induction on K.

— When K = 0 both sides in (6) are equal to 1.
— Assume Equation (6) holds for K (and B = 1).

) () = 2 (i)

A

T a

IE
R? |
+ @

—_
= = =
' - -
QA

=X+ X

—
PN

N———

- T
N
T
@R
N
N—

—~
ot

Nt
+
—

Q@
t

=

e Now assume Equation (6) holds for B (for all G,
for B + 1 we use induction on K.

). In order to show that it then also holds
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— When K = 0 both sides in (6) are equal to 1.
— Now assume that Equation (6) holds for K, and for B. Then:

ZC (5
() £ (2)
S BACONCYITEN
L) 2D () 20 (2)
w0 2 () () - ()
= (59 (")
(52)

This completes the proof of (6). We proceed with the equation in the proposition, via induction on
the number of elements in the support of ). By assumption the support cannot be empty, so the
induction starts when the support is a singleton, say supp(y) = {z}. But then ¢(z) = ||¢|| = L
and ¢(z) = ||¢|| = K, so the result obviously holds.

Now let supp(v) = S U {y} where y ¢ S and S is not empty. Write:

—_

_|_

L= €= >0 ¢ =v¢—Lly) L =L-{>0.

By construction S = supp(¢’) and L' = ||¢|. Now:

v\ P(x
weM[f%su{yn <<“0>) - vEM[K]Z(SU{y} ) 2€S0{y} g‘ﬁ) x >>
0<;K WGM[%:I@] << ky )) s (( (2) ))
=0z, C)

# 2 () (S D)) -

3.2 Probability distributions

In this paper we concentrate on finite, discrete probability distributions. Such a distribution, over
a set X, is a finite formal convex combination >, r;|x;) with r; € [0,1] satisfying >, 7; = 1 and
with z; € X. Alternatively, it may be described as a function w: X — [0,1] with finite support
supp(w) == {z € X | w(z) > 0} and with }° w(z) = 1. We shall write D(X) for the set of
distributions on a set X. This D forms a monad, just like M.

Distributions on a product set X x Y are often called joint distributions. One way to obtains
such distributions is to put w € D(X) and p € D(Y) in parallel as w ® p € D(X x Y'), where:
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We then write w® =w ® - ®w € D(XX), for numbers K > 1.
Each non-empty multiset can be turned into a distribution, via normalisation. We shall call this
operation frequentist learning, written as Flrn, since it involves learning by counting. Explicitly:

Flrn (ZZ n7|9:l>) = ZZ %|ojl> where  n =3, n,.

p(z)
lleoll

Multisets and distributions as defined above have finite support. We shall also need (discrete)
distributions with infinite support. Therefore we define, for an arbitrary set X,

Doo(X) = {w: X = [0,1] | >, w(z) =1}.

It can be shown that the support of w € Dy (X) is necessarily countable or finite. In practice one
typically encounters X = N. For instance, the Poisson distribution can be described as an element
of Do (N). Later on we shall describe negative distributions that also live in Dy (N).

Alternatively, Flrn(y)(x) =

1
or simply, Flrn(p) = ol Q.

4 Multinomial, hypergeometric, and Pdlya distributions

This section introduces the multinomial, hypergeometric and Polya distributions, in multivariate
form. This is most conveniently done via (binomial / multichoose) coefficients for multisets, which
is non-standard. The formulations that are used below can be derived in a compositional manner
via iterated drawing of single elements, using a suitable form of Kleisli composition, see |9, 10] for
details.

4.1 Multinomial distributions

Since the urn remains unchanged for multinomial draws, it is most appropriate to describe it as
a distribution w € D(X), for a set of colours X. The multinomial distribution mn[K](w) is a
distribution on draws of size K, and thus an element of the set D(M[K](X)). Explicitly,

m[K|w) = 3 (w) [T w@)?® Je). (7)
PEM[K|(X zeX

The probabilities in this multinomial distribution add up to one by the Multinomial Theorem, see
Fact 1 (2). For instance,

mn[3)(3la) + 316) + §le)) = & [3la)) + 3| 20a) + 118) ) + & |1a) +210)) + & [3[0) )
[ 20a) + 11e)) + 3| Ua) + 1Ub) +11e)) + & [218) + 1))
+%‘1|a>+2|c>>+i’1|b>+2|c>>+f16‘3|c>>

Notice that the right-hand-side is a distribution over multisets. The multisets are written inside
the ‘big’ kets ’ - > using ‘small’ ket | — ) for the individual colours a,b,c. The probabilities of
these multisets, as draws, are written before the big kets. This may require some parsing if you
see this notation style for the first time.

The next result expresses multinomial probabilities in terms of sequences (of drawn balls).

Lemma 3 For w € D(X) and ¢ € M|K](X) one has:

mu[K|w)(p) = Y W@ = > ][ w) O

Zeacc1(p) Zeacc™ ()
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The bivariate (or binary) form of these multinomial distributions involves a map D(2) — D(M[K](2)),
where 2 = {0,1}. Via the isomorphisms D(2) = [0,1] and M[K](2) = {0,1,2,..., K} this map is
often described as a binomial bn[K]: [0,1] — D({0,1,...,K}), given on r € [0,1] as:

bn[K](r) = Y (Iz).rk.(1r)f<k|k>

0<k<K
k= 8

= 3 mnlK](r[0) + (1) 1)) (k10) + (K —k)[1)) [ )

0<k<K

4.2 Hypergeometric distributions

Proposition 1 guarantees that the probabilities add up to one in the following multivariate definition
of the hypergeometric distribution, again on multisets of size K. It assumes an urn v of size
L= > K.

hgK](v) = ) %) ). (9)
For instance,
hg[3](4]a) + 6]b)) = %‘3|a>>+f’—0‘2|a>+1|b>>+%’1|a>+2|b>>+%‘3|b>>.
Lemma 4 For an urn u € M(X) and a draw ¢ <x v,

hg[K](v)(p) = Z H Flrn (U —acc(xy, ... ,xz)) (Tig1)- 0
Feacc—1(p) 0<i<K
4.3 Pdlya distributions

The Polya distribution can be described in a similar way, using the multichoose binomial coeffi-
cients. It yields a distribution on multisets of size K, for a non-empty urn v, via:

ikl =y )

L
peM[K](supp(v)) ((K))

@) (10)

This is well-defined by Proposition 2. A subtle point is that the draws ¢ must be restricted to
elements that occur in the urn v. That’s achieved by summing over ¢ € M[K](supp(v)), so that
supp(g) C supp(v).

The Polya distribution is known [19], sometimes as Dirichlet-multinomial. Its formulation in
terms of multichoose multinomial coefficients of multisets (10), in analogy with the multinomial
coefficients of multisets in the hypergeometric distribution (9), seems new. Formulation that come
close are [26, Eqn. (A.1)] or [15, Eqn. (40.7)]. The details that this captures the Pélya urn — where
a drawn ball is returned together with an additional copy of the same colour — are elaborated
in [10].

Here is an example of a Polya distribution, for the same urn as above, in the hypergeometric
illustration.

pl[3](4]a) + 6]b)) = ﬁ‘?;\a)>+%’2\a>+l|b)>+% 1|a>+2|b>>+%‘3|b)>.
Lemma 5 For an wrn v € M(X) and a draw ¢ € M[K](X) with supp(p) C supp(v),

pl[K](v)(p) = Z H F]rn(v + acc(xy,. .. ,xz)) (Tit1)- 0

Teacc™(p) 0<i<K
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5 First-full definitions

From the illustrations in Section 2 we can extract the general formulations for the first-full proba-
bilities. They use the fully-below relation < between multisets from Definition 2, given by ¢ <
iff p(z) < ¢(z) for all x. At this stage we only give the probabilities pointwise. Proving that they
add up to one, and thus form a probability distribution, is achieved later, in Theorems 7, 9 and 11.

We write 1 =3 1|z) for the multiset of singletons on a finite set X of colours. The tubes
in our urns & tubes setting are represented as a multiset 7 € M(X). We require 7 > 1, so that
each tube has at least length 1. Empty tubes are irrelevant and can be ignored.

The definitions below involve draws ¢ < 7, so that none of the tubes is full yet. For colour z we
take those draws ¢ with ¢(x) = 7(x) —1, so that only one ball is missing in tube . The probability
of this last ball is included in the three formulations below, resp. as w(z), as Flrn(y — ¢)(x) and

as Flrn(y + ¢)(z).

Definition 3 Let X be a finite set of colours with a multiset of tubes T > 1 over X, and let x € X
be an arbitrary element.

1. Let w € D(X) be a distribution with full support. The multinomial first-full probabilities are
given via the function mnff (w,7): X — [0, 1] determined by:

mnff (w, 7)(z) = Z mn(w)(p) - w(z).
o) r ()1

2. Let v € M(X) be an urn / multiset with v > 7. The hypergeometric first-full probabilities
hgff (v, 7): X — [0,1] are defined as:

hgff (v, 7)(7) = Z hg(v)(¢) - Flrn(v — ¢)(z).
() r (1)1

3. Let v € M(X) be an urn with v > 1. The Polya first-full probabilities plff (v, 7): X — [0,1]
are:
pliff(v,7)(x) = > plw)(y)- Flrn(v + ¢)(x).

o=,
p(x)=(x)-1

Earlier we have written multinomial, hypergeometric and Polya distributions as mn[K], hg[K]
and pl[K], with explicit parameter K € N for the size of the draw. For convenience we have
omitted this K in the above formulations. It may be added as K = |¢]||, but that makes the
notation unnecessarily heavy.

In the above definition we require full support of the urn/distribution w, for convenience. We
could have been more relaxed and required only supp(w) C supp(7) and supp(v) C supp(7). When
these are proper inclusions, there are tubes that will never receive any balls. Then we might as
well exclude them altogether.

Figure 1 presents illustrations of these different first-full probabilities, for two different multisets
of tubes, at the top of the second and third column. In the second column the three tubes have
the same length; the corresponding first-full plots then resemble the urns. In the third column
the tubes differ; the highest first-full probabilities are determined not only by the lowest tubes,
but also by the highest numbers in the urns. The bar plots are based on distributions that are
computed via the formulations in Definition 3.

5.1 The problem of points

We briefly elaborate the connection between (multinomial) first-full distributions and the ancient
problem of points, as discussed in the introduction. We do so via an example in [18], with two
players, called A and B, playing a game that ends when one of the players has won 4 times. The

winner then gets 64 coins. Each time, the probability of winning for A is 16—0 and is % for B.
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\tubes I I
urns - : : .

2|a) +2|b) + 2|c) a) +3|b) +4|c)
multinomial
first-full ) .
17 11 7 331 5443 2989
3|a 6|b sila) + 15510) + 13l¢) 1374 >+34992|b>+3888 ¢)
hypergeometric
first-full

79 313 193 38843 1952813 88875
+4|b +12| 35310) + 35551 0) + 3321¢) | osres >+17160990|b +104006 ¢)

Polya first-full

11111 .1

La) +1[b) +1le) || 3la)+510) + 5lc) i0s/a) + 57310) + 535 le)

Figure 1: First-full distributions on space of colours {a, b, ¢} arising from the two tube configurations in the top
row, and from the three urns in the left column. The inner distributions are the results, for the multinomial,
hypergeometric and Pélya modes.

A particular game is terminated abruptly at a stage where A has won a < 4 times and B has
won b < 4 times. The question that has occupied Fermat and Pascal is how to fairly divide the
stake of 64 coins at such an unfinished stage. Their solution is to look at the chances of A and
B to win, if they were to continue from where the game was terminated. One then looks at the
number of times 4 —a and 4 — b that A and B still need to win. This can be reformulated in terms
of tubes to be filled.

Thus, the distribution capturing the chances for A and B to still win in this (aborted) situation
of the game — if the game would be continued — is a multinomial first-full:

pla,b) = muff (] A) + 5| B), (4 - a)| A) + (4 b)| B)). (11)
For instance, p(1,2) = 2I|A) + 228| B). The division of stakes from the problem of points can
now be formulated in terms of such first-full distributions. Figure 3 in [18], reconstructed here in
Figure 2, contains, for a = 1 and b = 2, as fair share for A:

p(1,2)(A) - 64 = 237 - 64 ~ 30.4128 coins.

In this way all numbers in Figure 3 of [18] can be reconstructed, for all numbers 0 < a < 4 and
0 < b < 4, see Figure 3.
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#points | #points
remaining | already
for B |won by B

0 4 0 0 0 0

1 3 8.2944 13.824 23.04 38.4 64

2 2 21.56544 30.4128 41.472 53.76 64

3 1 34.83648 | 43.68384 | 52.5312 59.904 | 64

4 0 45.453312 | 52.5312 | 58.42944 | 62.3616 | 64
0 1 2 3 #points already won by A
4 3 2 1 #points remaining for A

Figure 2: The stakes for player A in the problem of points illustration copied from [18], see Subsection 5.1.

b
Sl A) B | SR+ SRIB) | R4+ 1EHB) BA) + 28 B)
3 = 8.2044|A) = 13.824|A) = 23.04/ A) = 38.4|A)
+ 55.7056| B) + 50.176| B) + 40.96| B) + 25.6| B)
SHEIA) + SEEB) | I RIS BB [ B+ BB)
2 = 21.56544| A) = 30.4128| A) = 41.472| A) = 53.76| A)
+ 42.43456| B) + 33.5872| B) + 22.528| B) +10.24| B)
951 4) + SE|B) | BE2A) + $E1B)| R4+ TZE(B) | FEI4)+EIB)
1 = 34.83648| A) = 43.68384| A) = 52.5312| 4) = 59.904| A)
+ 29.16352| B) + 20.31616| B) + 11.4688| B) + 4.096| B)
T A) T BEIB) | REIA) T GRIB) | BEEIA) - SIB) | REEA) - B B)
0| = 45453312/ A) = 52.5312| A) = 58.42944| A) = 62.3616] A)
+ 18.546688| B) + 11.4688| B) + 5.57056| B) + 1.6384| B)
0 1 2 3 a

Figure 3: The stakes for both players A and B in the problem of points illustration from [18], reconstructed as
64 - p(a, b) via first-full multinomials (11), where a = #points already won by A and b = #points already won
by B. This table corresponds to the numbers in the central 4 x 4 part of Figure 2.

Fermat and Pascal solved the problem of points in binary form, for two players. Our multivariate
formulation of the first-full multinomial distribution in Definition 3 (1) can be used when there are
multiple (finitely many) players.

6 First-full yields distributions

Our goal in this section is to prove that the probabilities in the three pointwise first-full formulations
in Definition 3 all add up to one, and thus form proper probability distributions. The trick is to
use the multiset of tubes as a position in a probabilistic automaton that changes with every draw-
and-drop action. The automaton precisely records the relevant probabilities and terminates after
a finite number of iterations, with a first-full distribution on colours as result. This works because
in each composition step distributions are preserved. Hence, if we start with a distribution, we
will also end up with a distribution, namely a first-full one.

We use Markov models with output (MOOs) as probabilistic automata. They can be described
as functions (coalgebras) of the form:

Y —=D(Y + X) (12)

where Y is a set of positions and X is a set of outputs. The + is a coproduct (disjoint union).

13

(\ﬂ; Accepted in Compositionality on 2022-03-14. Click on the title to verify.



Volume 4 Issue 4 ISSN 2631-4444

We will not use separate ‘coprojection’ functions for these coproducts; the types of the elements
will make it clear whether they live in the left or right component of a coproduct Y + X. What’s
important is that a function ¢ as above can be composed with itself, giving the required iterations
(or transitions) of the automaton: with a successor position in Y the automaton can continue, and
with an output in X, the automaton halts.

A compositional argument underlying the next iterations (13) of an automaton (12) is provided
in the appendix. At this stage we use such iterations ¢”: Y — D(Y +X), for n € N, via the concrete
formulations given below, where y € Y is a start position.

Ay) = 1ly)
)= Y (S cw)W) - @)E) ) + 3 cw)@)]e). (13)
zeY+X rzeX

The first sum defines the transitions and the second sum the outputs. Notice that these are defined
as proper distributions. Hence via iterated composition only distributions arise. This fact will be
crucial.

In the next three subsections we define three appropriate Markov models with output (12) with
transitions that incorporate the first-full steps.

6.1 Multinomial first-full distributions

In multinomial mode an urn is represented as a distribution w € D(X), with full support. We shall
write as set of tubes:

M>1(X) ={reMX)|7>1} where 1= Z 1]x).

zeX

Associated with urn/distribution w we define the following multinomial Markov model with output
MN (w), with tubes in M>1(X) as positions.

MN (w)

M>1(X)

T Z w(x)‘r—l\x>>—|— Z w(x)|m>

z, 7(x)>1 z,7(x)=1

D(M21(X) +X)

The aim is to iterate this Markov model with output MN(w), using composition for such models,
as described in (13). We illustrate the resulting dynamics by redoing Example 1, with state
w = %|a) + 2|b) and tubes 7 = 2|a) + 3|b). Then:

MN(w)(r) = %‘1|a>+3|b)>+%’2\a>+2|b)>

MN(w)2(r) = %~%|a>+%-%‘1|a>+2|b>>+%-%‘1|a>+2|b)>+%~%‘2|a)+1\b>>
= Ha)+ & [1la) +20) ) + &]20a) +118) )

MN(@)¥(r) = 4la)+ & &[a) + - 2[1la) + 10b)) +4- 4| 1]a) +1]b) ) + § - 2]b)

— Zla)+ B 1la)+ 118)) + £[1)
MN@) () = Fla)+ 2 3a) + 22 2[0) + £]1)
= Ba) + B]p).

This is precisely the outcome that we obtained in Example 1 by manually checking all options.
We formulate at a more general level what’s happening via iteration.

Lemma 6 Consider the above Markov model with output MN(w) for a distribution w € D(X).
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MN@)"(r)(p) = 3 {wn(e) ‘e: (z1,...,20) € X" with <p=7‘—1|x1>—-~-—1|xn>}
>~ { mnfnl@)() | x < 71 with x| =0 and ¢ == }.
2. For an element z € X,
MN (@) (7)) = 3 { mlK]@)(0) - w(@) | K <n and x <7 -1
with |[xl| = K and (r=x)(z) =1 }.

Proof. 1. We first prove the first equation, by induction on n. The case n = 0 is trivial since
we have on the left-hand-side MN(w)%(7) = 1|7), and on the right-hand-side a sum over the
empty sequence £ = () for which by definition w®(¢) = 1. Next,

MN(@)" ™ (1)(p) = Y wlx)  MN(w)"(r—1]z)))(¢)

rzeX
DN @Y {ww) \e: (x1,...,2,) € X"
e with ¢ = 7~ 1]z) 1]z )~ -+ ~1]z) }
- {w”“(e) ‘E: (@1, .., Ty Tnp1) € X
with p =7—1|z1)— - =12 ) —1|Zpy1) }

The second equation in point (1) follows from Lemma 3.

2. Using the previous point:
MN (@)™ 1(7)(2) = >~ { MN(@)¥(7)() - MN(@)(¢)(@) | K <0 and ¢ € M31(X) }
1

= Z {MN(W)K(T)(QO) w(a:)‘K <n, ¢ € M>1(X) with p(z)= }

= Z {mn[K](w)(x) w(z) ‘ K<nand x<7-1
with ||x| = K and (T_X)(a;):1}. O
We now show that after suitably many iterations of the Markov model with output MN(w) a
multinomial first-full distribution remains, see Definition 3.

Theorem 7 Let set X have N elements and let tubes 7 € M>1(X) have size (combined length)
L=|r|| > N. Forw e D(X) one has:

supp(MN(w)L_N+1(T)) C X, and then MN (w)E=N+1(7) = mnff (w, 7).

In particular, this shows that multinomial first-full mnff (w, ) is a probability distribution, with
probabilities adding up to one.

Proof. Since 7 > 1, we have L = ||7|| > ||1|| = N. With each transition of the Markov model
MN (w), say going from multiset ¢ to ¢’, one has ||¢'|| = ||¢||— 1. Hence after L — N steps, starting
from 7, at most a multiset of singletons remains. It transitions to single elements in one step.
Hence after at most L — N + 1 steps, MN(w)(7) stabilises as distribution over elements z € X, in
the X-component of M>1(X) + X. By Lemma 6 (2) we then get:

MN (w)E=N+1(7)(2) = Z {mn[K](w)(X) - w(z) ‘ K <L-— N and x € M[K|(X)
with y <7—1 and (T—X)(m)zl}
= Z {mn(w)(x) - w(z) ’ X < 7 with x(z) =7(z) — 1 }
= muff (w, 7)(z), see Definition 3 (1).

We use that x <7 — 1 iff x < 7, where, recall, < is the fully-below order. ]
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6.2 Hypergeometric first-full distributions

Recall that for a hypergeometric first-full distribution we use an urn as a multiset v, from which
each drawn ball is actually removed, and then dropped in the right tube. Thus, the probability of
drawing a particularly coloured ball changes throughout the filling of the tubes. Hence, if we wish
to turn the situation into a Markov model with output, we have to carry the urn along. This leads
to the following set-up.

Let’s use the ad-hoc notation:

Ms>1(X) = {(v,7) € M(X) x M(X) |v>T>1}.

It is the set of positions in the following hypergeometric MMO.

HG

M>>1(X)
(v,7)—— > Flm(v)(z)|v—1|z), 7=1]z)) + > Flm(v)(z)|z).

z, 7(x)>1 z, 7(x)=1

D(Mzzl(X) + X)

We now redo Example 2, with urn v = 3|a) + 6|b) and tubes 7 = 2|a) + 3|b). Then:

HG(v,7) = %‘2|a>+6|b),1|a>+3\b>> +g‘3|a> +5[b),2]a) +2/b) )
HG*(v,7) = L. 2|a)+ 1.8 2\a>+5|b>,1|a)+2|b>>

§-2la)+4-3|20a)+4[b),1]a) +11b))
+ 5 2]2la)+41b), 1) +118) ) + 5 - 4]b)
1

1
HG4(U,T) = g’(w
)

HG3(’U,T) = 1—12’a> +
5

FR 2oy B 1)+ A1)
= —|a + 22
The next lemma makes explicit what’s going on.

Lemma 8 Let v,7 € M(X) be multisets with v > 7 > 1.
1. Forv', 7" € M(X) withov' > 7' > 1,

HG"(v,7)(v',7") = Z { H Flrn(v— acc(xl,...,xi))(miﬂ) ’6 = (T1,...,2Tp) € X"

0<i<n
with v = v — acc(f) and 7" = T — acc({) }

- Z {hg[n](v)(x) ‘ X <7=1 with ||x|| =n, vV'=v—x, 7'= T—X}.
2. For an element x € X,

HG™" (v, 7)(z) = Z {hg[K](v)(X) - FIrn(v—x)(z) ‘ K<nandyx<7-1
with x| = K and (r—x)(z) = 1 }

Proof. 1. We first prove the first equation by induction on n. The case n = 0 is trivial, so we
proceed with the induction step:

HG™ ™ (v, 1) (v, 7) (14)
= Z FIrn(v)(z) - HG" (v — 1|z ), 7 — 1]z)) (v, )

zeX
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=3 Fm)e) - 30 {1 Fim(o - 1) - ace(an, o)) |

zeX 0<i<n
0= {(x1,...,2,) € X" with v'=v — 1|z) — acc(¢)

and 7'=71 — 1|z) — acc(¢) }

= Z { H Flrn(v — aCC(xl,...,Ii))($i+l)) ‘

0<i<n+1

C={x1,...,Tp, 2pi1) € X" with v'= v — acc(¥)

and 7'= 7 — acc(() }

The second equation follows from Lemma 4.
2. Via the previous point:
HG" (v, 7)(z) = Z {HGK(’U7T)(’UI,T/) . HG(U' ) (x) ‘ K<nand7'(z)=1 }
= >~ {BelKI0) (0 - Firn(v)) (@) | K <, 1]l = K, 7/(@) = 1,
x<7—1land v '=v—xand 7’ —T—X}
—Z{ (x) - Flrn(v—x)( )‘KSnandeT—l
with [[x|| = K and (r—x)(2) =1 }. O

We now obtain that the hypergeometric first-full probabilities form a distribution, in the same
way as in Theorem 7 for the multinomial mode.

Theorem 9 Let set X have N elements and let tubes T € Mx>1(X) have size L = ||7||. For urn
v > T one has:

Supp(HGL7N+1(U,T)) cX and HGE Nty 7) = hgff (v, 7).

As a result, hypergeometric first-full hgff (v, 7) is a probability distribution. a

6.3 Podlya first-full distributions

The Polya first-full mode is very similar to the hypergeometric first-full mode, except that the
drawn ball is not removed from the urn (“-1”), but it is returned together with another ball of the
same colour (“+17). In this case the urn is a multiset v with as only requirement v > 1 so that at
least one ball of each colour is present. We thus use a Pélya MMO of the following form.

M1 (X) x Msy(X) PL D(le(X) X M1 (X) + X)
(v, 7)) —— Z FlIrn(v ’v—|—1| ), T=1]z)) + Z Flrn(v)(z)| ).
z, 7(x)>1 z, 7(z)=1

We recalculate the outcome of Example 3 as illustration, with urn v = 1|a) + 1]b) and tubes
T =2|a) + 3|b). Then:

PL(U,T):%‘2|G>+1|I)> 1|a>+3\b>>+%‘1|a>+2|b>,2|a>+2|b)>
PLQ(U,T)zééy )+ 3 ( ) +2|b), 1\a>+2|b>>
+% 3’ ) +2[b), 1\a>+2|b>>+%-%’1|a>+3\b>,2\a>+1|b)>
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PL*(v,7) = %|a>+%-%|a>+%-%’2|a>+3|b>,1|a)+1|b)>
oo [2a) #3000, 11a) +108)) + 5 - 2])
PLYw,7) = gla)+ 1 Sla)+ - o]b) + 1 1b)
= ZJa)+2]0),

We proceed with a pattern that is by now familiar. That’s why we only state the results and
leave the proofs to the interested reader.

Lemma 10 Let v,7 € M(X) be multisets with v > 7 > 1.

1. Forv' 7" € M(X) with o', 7" > 1,

PL"(v,7)(v',7") = Z { H Flrn((v—l—acc(xh...,xi))(xiﬂ) ‘E =(x1,...,Tp) € X"

0<i<n
with v = v + acc(l) and 7" = T — acc({) }

= 3 {pllnl@)() | x < 71 with x| = . o' = vy, =7y .
2. For an element x € X,

PL" (v, 7)(z) = Z {p][K](U)(X) - FIrn(v+x)(z) ‘ K<nandx<7-1
with ||x|| = K and (r—x)(z) = 1 } O

Theorem 11 Let set X have N elements and let tubes 7 € M>1(X) have size L = ||7|| > N. For
urn v > 1 one gets:

Supp(PLL7N+1(U,T)) cX and PLENTY(y, 1) = plff (v, 7).
In particular, Pdlya first-full plff (v, 7) is a probability distribution. O

Remark 1 In the end we have two (equivalent) ways to compute first-full distributions, namely via
their pointwise formulations (in Definition 3) and via their three MMO’s, as described above. The
latter can easily be turned into recursive definitions. Experiments with both implementations show
that the recursive approach is slower than the one based on the definitions. This is not surprising
since the recursive approach computes probabilities for sequences, with much duplication, instead
of for multisets (as accumulations of those sequences). In contrast, reasoning with sequences is
easier than with multisets. In the end that is the whole reason why we use the MMO-approach —
for proving that combined first-full probabilities form a distribution.

7 Negative distributions

The urns & tubes set-up that we have used to introduce first-full distributions can also be used
to describe ‘negative’ distributions. The latter are known from the literature, in bivariate form,
with one tube only. Here we use our multiset-based approach to describe them systematically, in
multivariate form, for all three modes (multinomial, hypergeometric and Poélya). We concentrate
on the definitions and on illustrations. The fact that these definitions lead to actual probability
distributions is addressed, by giving the corresponding Markov models with output, but without
all the mathematical details. After all, these distributions are not new.

We start with an example. Consider a group of people consisting of five males (M) and four
females (F'). From this group we like to form a committee with two male and two female members.
Iteratively we choose members from the group, at random, until the committee is formed. How
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many choices are needed? More precisely, what is the probability — that the committee is first
formed — for each number of choices. We might be done after four choices, if they immediately
involve two males and two females. But we may also first pick three men, and then two females,
which involves five choices. What is the highest possible number of choices? It is seven, when all
five men are chosen, before the two females. Hence this situation involves a distribution on the set
{4,5,6,7}. It is:

2t4) + &[5) + §[6) + 3|7)

How does it come about? We can see the group of people as an urn v = 5| M) + 4| F') from which
we ‘draw’ candidate committee members, in hypergeometric mode: after drawing a member from
the urn/group, this person is either put in the committee, or is skipped, when there are already
two committee members with this person’s gender in the committee.

e The probability of being done in four steps is given by the hypergeometric distribution at
multiset 2| M) 4+ 2| F'). Indeed,

hg4](v) (21M) + 2/ F)) = %0,

e We may need five steps in two cases: (1) when we first choose three men and one woman, in
any order, and finally a woman, or (2) when we first choose three women and one man, in
any order, and finally a man. This leads to the probability:

hgl4](v) (31M) + 1| F)) - § + hg[4](v) (1M} +3]F)) - 4 = 2.2+ 184 = 20,

e We need six steps when we first choose four men and one woman, and then one woman, or
when we first choose one man and four women. In the latter case we are done at the next
selection, because we can only choose a male. The associated probability is thus obtained as:

hgl3](v) (4M) + 1| F)) - § + hg[3](0) (M) + 4| F)) = 18- 3+ 55 = &2,

e Finally, there is only one possibility that requires the maximum number of seven steps,
namely when we first choose five men and one woman. The associated probability is simply:

he[6)(v) (51M) +11F)) = 4.

In this example we may consider the committee that needs to be filled with two males and two
females as a pair of tubes, both of length two. Thus, the urns & tubes model can be used here as
well, but with a different question, namely what is the probability of filling all tubes in a certain
number of steps.

Thus, abstractly, our starting point is the same as in the previous section, see Picture 1: we
have an urn filled with coloured balls, together with coloured tubes. The question that we now
look at is as follows.

Suppose we draw k balls from the urn, to fill the tubes, for k € N. What is the
probability that all tubes are full for the first time after drawing these k balls? This
means that there is one tube that becomes full with the k-th ball, while sufficiently
many balls — typically more than needed — have already been drawn to fill all other
tubes.
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The filling of all tubes can be seen as a desired condition, or as a risk. The probability distribution
that we are after gives for each k € N the probability of reaching this threshold condition for the
first time.

e Historically the distributions that arise in this manner are called negative. They are not very
well known, and are even called ‘forgotten’ in [20]. These negative distributions may occur in
different forms, depending on the mode of drawing (“-17, “0”, or “+17). Accordingly, we shall
speak of negative hypergeometric, negative multinomial, and negative Pdlya distributions.
Below we cover all three modes.

e The negative hypergeometric distribution has finite support, since at some stage the urn is
empty. In multinomial mode the urn does not change, and in Pélya mode the urn grows
in size. Hence in these last two cases the support of the negative distributions are infinite
subsets of the natural numbers. Recall that we write D, (N) for set of discrete distributions
on N with (possibly) infinite support.

e In the literature (see e.g. [13, 20, 21, 25, 26]) negative distributions are studied only for the
(simple) case with a single tube and usually with only two colours. Here we deal with the
general, multivariate and multi-tube, scenario, where there are multiple colours and as many
tubes as colours. Like before, we shall write 7 for the tubes and L := ||7|| for the sum of
the lengths of all tubes. We assume that L > 0 so that there is at least one non-empty tube
that can be filled. We shall write M, (X) < M(X) for the subset of non-empty multisets;
we thus require 7 € M, (X). The negative distributions on N that we are after will ‘start at
L’: they are zero at k < L, since one needs to draw at least L balls to fill all tubes.

e As in the first-fill case, in Section 5, there is a challenge to show that negative probabilities
add up to one, and thus form a proper distribution. Again we use Markov models with
output, like in the previous section, but without elaborating all details. Previously, we only
had finitely many possible transitions. Here, in the negative setting, there may be infinitely
many transitions, leading to infinite supports.

Definition 4 Let X be a finite set (of colours) with | X| > 2 and let 7 € My (X) be an X-indezed
collection of tubes.

1. For w € D(X), we define at k > 0 the negative multinomial probability as:
nmn(w, 7)(k) = Z Z mnlk—1](w)(p) - w(z).

x€supp(t) peEM[E-1](X),
T—1z) <, p(z)=7(x)-1

2. For an uwrn v € M(X) with v > 7, we define the negative hypergeometric probability at
k>0 as:

nhg(v,7)(k) :

) > hglk—1](v)(¢) - Flrn(v — ¢)(x).

xEsupp(T) ®<k-1v,
T—1|z) <@, p(z)=7(z)-1

3. Finally, for an urn v € M(X) with v > 1, and for k > 0 we define the negative Polya
probability as:

npl(v, 7)(k) = > > pllk—1]}(v)(¢) - FIrn(v + ¢)(z).
z€supp(T) peEMk—1](X),
T—1|z) < ¢, p(z)=7(z)-1

These distributions may be extended to k = 0 by setting them to zero there.

In each of the above three cases we sum over draws ¢ satisfying 7—1|z) < ¢ and p(x) = 7(z)—1.
The inequality < implies that 7(y) < ¢(y) for all y # z, so that all tubes are full (possibly with
overflow) after drawing ¢, except for colour x. The equality ¢(x) = 7(x) — 1 says that there
is precisely one ball of colour z missing to ensure that all tubes are full. The probability of
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additionally drawing this missing ball of colour z is multiplied in each of the above three cases
with the probability of the draw ¢, as w(z) in item (1), as Flrn(v — ¢)(z) in item (2), and as
FlIrn(v + ¢)(z) in item (3). In the first-fill probabilities in Definition 3 this is done analogously.

Computing negative distributions by hand is laborious because it involves summing over all
colours and over all draws, of a certain size. However, this can be automated without too much
effort.

Example 4 Take X = {a,b,c} with tubes T = 2|a) + 4|b) 4+ 3|c), having total length L = ||7|| = 9.
For a state w = t|a) + 3|b) + %|c). A first part of the resulting negative multinomial distribution
nmn(w,7) on N looks as follows.

T T
0 5 10 15 20 25

The sum of the probabilities in this picture is approrimately 0.92. The remaining 0.08 is in the
long tail. An exact description of the first four probabilities is:

nmn(w,T) = %|9) + 787—7756|10> + 331610054|11> + 111264634|12> + .. (15)

With urn v = 10]a) + 6|b) + 8| ¢) the negative hypergeometric distribution nhg(v,T) runs from
L=|7]| =9 to ||v|| = 1 = 23 and looks in its entirety as follows.

0 5 10 15 20 25

Using wrn v = 3la) + 2|b) + 1|¢) the negative Pdlya distribution npl(v,7) on N starts as
described below.

0.030 4

0.025 4

0.020 1

0.015 4

0.010 4

0.005 4

0.000

0 5 10 15 20 25

This pictures only contains about 0.42 of all probabilities. This negative Pdlya is thus heavy-tailed
and its probabilities are less concentrated at the beginning than in the negative multinomial.

7.1 The common one-tube situation

In the introduction to this section we mentioned that the negative distributions that are commonly
considered in the literature involve one tube only. We describe what happens then, as special case
of the above formulations in Definition 4, and recover familiar formulations. It turns out, in all
three drawing modes, that the relevant probabilities can also be described via the ‘non-negative’
bivariate distribution.

/ﬂ; Accepted in Compositionality on 2022-03-14. Click on the title to verify. 21



Volume 4 Issue 4 ISSN 2631-4444

Theorem 12 Let X be a set of colours, with a special fized element y € X, and with single-tube
multiset T =m|y) for m > 0.

1. Let w € D(X) satisfy 0 < w(y) < 1. For k >0,

- mnlm k) (w()[0) + (1-w()] 1)) (m]0) + k1))

nbn[m](w(y)) (m+k).

nmn(w, m|y))(m+k)

The latter expression involves the negative binomial distribution, of the form.:

nbnfm](s) =y ((m)) 8™ (1=5)" [m+i) € Doo(N). (16)

iz0 W
2. Similarly, for an uwrn v € M[L](X) with v(y) > m, one has, for k >0,

nhg (v, m|y))(m+k) = —— - hglm+k](v(y)|0) + (L—v(y))| 1)) (m|0) + k|1))

m+k
I 0 B G )

3. Also negative Pdlya with one tube reduces to bivariate mon-negative form. For an urn v €
MIK](X) with v(y) > 0 one has:

npl(v, m|y)) (m+k) = —— - pllm+k] (v(y)]0) + (L—v(y))| 1)) (m]0) + k[ 1))

m+k
m_ (W) (™)
mtk ((s0)
Proof. 1. In presence of a single tube the negative multinomial becomes a single sum over
multisets:
nmn(w,m|y))(m+k) = > mn[m+k—1](w)(¢) - w(y)

peEMIm+k—1](X), p(y)=m—1
= Y mnfmk—1w)(m=Dly) +¢) - w(y)
PeEMIE|(X—y)

(m+k—1)!

= Z ()™ - H w(z)?®)

1) ol
pemibom(x—y) (MDA oy
m+k—1 m k! N

o MR EULTED S 8 | O
m—1 ©l
peEMIM(X—y) T° oy

- ((7:)) (@)™ (Dapy @) by Fact 1 (2)

= (1) et @ -

= nbn[m](w(y)) (m-+k).

At the same time we can write:

((2)) o aewr = - (") w1 -y

m+k
m

= el (w@)10) + 1=w@)I ) (ml0) + K1)).
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2. We write v' = v —v(y)|y) for the urn from which all balls of colour y have been removed.

nhg (v, mly))(m+k)

= > hg[m-+k—1}(v)(¢) - Flrn(v — ¢) (y)

P<mtr—10, p(y)=m—1

= 3 glmtk=1@)((m=Dly) +) - Flrn(v — (m=1)]y) = ¢) (1)

Pp<kv’

_ Z (’::L(i/)l) Tlany (ZEB) S u(y) —(m—1)

where L = ||v]|

ot (m+Lk_1) L—(m+k-1)
me (PO Y
Sl Eenn G e () ey - e (1)

(m+k) : (mi—k)

_om (vx})) . (L*v(y)) N
Ttk (mik)k by Proposition 1
= L hglme+ K ((9)]0) + (L—v(y))[1) (m|0) + K|1)).

3. In the Pélya case we proceed in a similar manner, for v € M[L](X).

npl(v,m|y))(m-+k)

= > plim~+k—1](v)(¢) - Flrn(v + ¢)(y)
peEM[m+Ek—1](X), p(y)=m—1

Y. plmtk=1@)((m=1)]y) +¢)

PEM[K](X —y)

- Fim(v+ (1)) + ) )

() Ty (62 w(w) + (m—1)

(S L+ (m+k—1)

PEM[K](X —y)

m: ((Uv(f))) 'theM[k](Xfy) ((1:0))

= where v = v —v(y)|y)

(m+8) - (1))

m_ () (XY

= : by Proposition 2

motk (')
- mLJrk - pllm~+k](v()]0) + (L—v(y))|1)) (m|0) + k[ 1)).

7.2 Negatives yield distributions

We will illustrate that the probabilities in the ‘negative’ formulations in Definition 4 yield actual
distributions. We shall proceed as in Section 6 and introduce appropriate Markov models with
output (MMO). The positions in these MMOs are tuples involving a ‘stage’ number ¢ € N. Each
step involves one of the following three options.

1. For colour = with already full tube, so 7(x) = 0, one can draw another ball of colour = and
move to a next position in the MMO. We then have an overflow situation for colour x so this
next position has the same tubes 7 and an incremented stage, which change from i to ¢ + 1.

2. In case colour z is the last one whose tube needs to be filled, we have 7(x) > 0 and ||7|| = 1,
or equivalently 7(x) = 1 and 7(y) = 0 for all y # z. Then we can draw this last ball and
move to the output ¢ + 1, from which no further transitions are possible.
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3. When colour «’s tube is not full yet, and there are other non-full tubes as well — so when
7(z) > 0 and ||7|| > 1 — we can draw a ball of colour x and drop it in the tube of colour
2. The next position then involves new tubes 7 — 1|z ), where the number of missing balls of
colour z is reduced by 1, with incremented stage ¢ + 1.

Negative multinomial distributions

The MMO for negative multinomials has pairs (7, ) as positions, with tubes 7 € M, (X) and stage
t € N. The above three options are captured as follows.

Mo (X) x N — M) D(M.(X) x N + N)
(1,8) ———— Z w(z)| T, i+1) + Z w(z)|i+1) (17)
x, 7(x)=0 xz, 7(x)>0, ||T]|=1

+ Z w(sr:)|7'—|x>,i+1>.

z, 7(x)>0,||7]|>1

Starting from initial position (7,0) one eventually ends up with an output in N. We reason
informally from the contrapositive: an infinite sequences (p, k) — (p,k +1) — (p,k+2) — ---
exists only if the colours = € supp(p) are never drawn when the size of the draws goes to infinity.
This is impossible.

Negative hypergeometric distributions

In the hypergeometric (and Pélya) mode the urn changes with every draw, so we have to incorporate
not only the tubes 7 but also the urn v in the positions of our MMO. For convenience, we introduce
the following special notation.

M. (X) = {(v,7) € M (X) X M (X) |v>T}

The inequality v > 7 expresses that the urn contains sufficiently many balls of each colour to fill
the tubes. This inequality acts as an invariant for the following negative hypergeometric MMO.

M, (X) x N NHG D(MZ*(X) x N+N)

(v,7,1) —— Z Flrn(v)(a:)‘v—1|x>,7',z’—|—l>
2, 7(x)=0, v(z)>0
+ Z Flrn(v)(x)]i+1)
z, 7(x)>0, ||7||=1
+ Z Flrn(v)(z)|v—1|z), 7—|z),i+1).
x, 7(2)>0, ||7||>1

It is obvious that there are no infinite transitions starting from (v, 7,0) since in each non-output
step the urn v decreases in size.

Negative Pélya

We now require that initially, the urn v contains for all colours of the tubes 7 at least one ball.
This can expressed as inclusion of supports. Hence we define:

M. (X) = {(v,7) € M. (X) x Ms(X) | supp(v) 2 supp(7)}.

This is used in the following negative Pélya MMO. It looks very much like the hypergeometric one
n (18), with removal of balls from the urn replaced by addition.
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Mo, (X) x N NPL D(M;*(X) xN+N)

(v, 7,4) —— Z Flrn(v)(z)|v+1|z),7,i+1)
z, 7(z)=0
+ Z Flrn(v)(z)]i+1)
x, 7(x)>0, ||7||=1
+ Z Flrn(v)(z)|v+1]z), 7—|z),i+1).
z, 7(2)>0, [|7]|>1

(19)

Also in this case there are no infinite transitions from an initial position (v,7,0), because the
probability that certain colours do not occur in Poélya draws becomes zero as the size of draws goes
to infinity.

8 Hypergeometric and Pdlya distributions via (negative) binomials

In Section 4 we have have introduced the (ordinary, non-negative) hypergeometric and Polya
distributions hg[K](v) and pl[K](v), for an urn v. It is known that these distributions can also
be obtained via conditioning, namely of parallel binomials in the hypergeometric case, and of
parallel negative binomials in the Polya case (see e.g. [20], for the bivariate, and also [12] for the
multivariate case). These conditionings build on Propositions 1, 2 and fit very well in the current
account, and are therefore included here, in fully multivariate form. In order to do so we need to
recall the basics of probabilistic conditioning, see e.g. [5, 6, 10, 7, 9] for more information.

Let w € D(X) be distribution and p: X — [0, 1] be a (fuzzy) predicate. We write w = p =
> o w(x)-p(x) for the validity (expected value) of p in w. If this validity is non-zero, we can define
the updated distribution w|, € D(X) as the normalised product:

_ w(x)-plx)
wlp(z) = oEp

See e.g. [5, 6, 9] for more information.
The two propositions below describe the two conditioning results for hypergeometric and Polya
distributions. They both use the following sum predicate sumpg : N¢ — [0, 1], for K € N.

sumpg(nq, ... (20)

1 ifnmg+---4+np=K
M) = .
0 otherwise.

Proposition 13 Conditioning parallel binomials with this sum predicate (20) yields the hypergeo-
metric distribution: for K <3 . k;,

(bn[k:l](r) X ® bn[k:g](r)) ’sumK = hg[K}(Zi kl|z>)
This works for any number r € [0,1].

Proof. We first compute the validity:

bn[k1](r) @ - - - @ bnlk(r) & sumg (21)
= Z (bn[ky](r) @ - -+ @ bnlk](r)) (nq,...,ng) - sumg (nq, ..., ng)
n; <k;

= > bn[ki](r)(n1) - ... - balke(r)(n)

nlgk,, Zlnl =K

> (f&) S (L) (:Z) e (1—p)ke=ne

n;<ki, Zlm =K
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> (%:Jﬁi) K (1) kK

n; <k;, Zlnl =K
K o -
= <Z[Z( > i (177")(21:]“) K by Proposition 1
= bn[y" k] (r)(K).
Now we can move on to the conditioning itself. We see that the probability r € [0, 1] drops out of

the calculation.

(bI][k‘l](T') ®--® bn[k[](r)) |sumK

_ Z (bn[ky](r) @ - -+ & bnlk](r))(7) - sumg (7
bnlk](r) ® - -- ® bnlk,](r) = sumg

) |77,1,...,ng>

n;<k;
B T i U IGLTITE ) L Ui WA
mﬁszini=K (Z[l(kl) -k (l_r)(ziki)_K

) . 'rK . (1_7:)(21 ki)—K
)
)

In the last line we implicitly identify the sequence nq,...,n, with the multiset ny|1) + -« +ng|£).
|

There is a similar result for Pélya distributions, using negative binomials. It requires some care
since it involves a shift of arguments, since negative distributions (on N) start only after a certain
number of steps.

Proposition 14 The multivariate Pélya distribution can be described as conditioning of negative
binomials: for K > 3. k;,

(nbn[k:](r) ® - - - @ nbnlke|(r)) |SumK(
_ {pl[K—zi ki (0 kal i) (S, mald))  if S kitny = K

0 otherwise.

ki+nq,.. .,k4+ng)

The number r € [0,1] is arbitrary, and the predicate sump is from (20).

Proof. We start with the validity:

(nbnlk:1](r) ® - - - @ nbnlk](r)) = sumg (22)
= Z (nbnlk:](r) ® - - - @ nbnlk] (r)) (n1, ..., ng) - sumg (nq, ..., ng)

Ny,...,Nyg

= Z bnlk1](r)(k14+n1) - ... - bn[kd](r)(ke+ne)
nmzikH“ni:K

ooy L ((z)) R (L)

i, Zlkﬁ_"l =K

o D E) s
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Sk S ks K-S ki o
= ? . it . — A 2
(( K=Yk r (1-r) by Proposition

= nbn[ziki](r)(K).

Conditioning yields, when ). kij+n; = K,

(nbn[k:](r) ® - - - @ nbnlk](r)) ’SHmK (k1+n1,..., ke+ng)
(balkr](r) @ -+ @ bulke () (s +7, ., )
nbnlk;](r) ® - - - ® nbnlk,|(r) = sumg
I () 0
R RSN
I ()

>k
(=50

) PIK =5, k(i) (52, mil ) -

9 Number-theoretic corollaries

In this final section we extract several number-theoretic equations from the fact that first-full and
negative probabilities form distributions and thus add up to one. These equations are obtained
from the bivariate case, with two tubes. Recall, that the bivariate situation studied in the literature
involves one tube only. As far as we know, the equations given below are new (or at least, not very
familiar). For some of them — like Corollaries 15 (1) and 16 (1) — the author has direct proofs,
but not for the others.

We first look at what follows from the bivariate first-full distributions.

Corollary 15 Fiz numbers n > 0 and m > 0.
1. Forr,s € [0,1] with r + s =1 one has:
2 G) 2 ()
Jj<m J i<n v
2. For N > n and M > m one has:
n N—-n+M-—j m N—i+M-m\ (N+M
> (G)-Cn) 2 () ) - (3
j<m <n
3. For N >0 and M > 0,
M N
N)) (§2) ((M)) (@)
n- DY m P = N4 M.
C) Zay G Eciy
Proof. Take a binary space X = {a, b} with tubes 7 = n|a) + m|b).

1. The numbers r, s form a state w = r|a) + s|b). Since mnff (w,7) is a distribution on X we
get mnff (w, 7)(a) + mnff (w, 7)(b) = 1. According to Definition 3 (1) this means:

1= mn(w)((n=1)|a) + j|b)) - w(a)

j<m
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+ Y mn(w)(ila) + (m=1)|b)) - w(b)

i<n
B Z <n 1+]) U Z (iJrni”Ll) i gm=l g
j<m <n
G2 ()

2. For urn v = N|a) + M|b) we have a hypergeometric first-fill distribution hgff (v, 7), so that
by Definition 3 (2):

1 = hgff (v, T)(a) + hgff (v, 7)(b)

= Z hg(v Dla)+jlb)) - Flrn(v — (n—1)|a) — j|b))(a)
s Z hg(v)(ila) + (m—1)|b)) - Flrn(v — ila) — (m—1)|b))(b)
() () N-nt1

:j;n (i“lffj) "NAM—nti—j

M ) M—-—m+1
* Z N+M) " N+M—i—m+1

<n z+m 1

72 NU- M- (n—1+5)!- (N+an+1—j) N-—n+1

_j< (n—l)!~(N—n+1) I (M—j)!- (N+M)! N+M-n+1—j

+Z N' H—m 1) (N+M—i—m+1)! M—-—m+1
il - (m=1)!- (M—m+1)!- (N+M)! N+M—i—m+1

<n

T\ ((?)) (8720

Jj<m i<n

3. By rewriting the equation plff (v, 7)(a) + plff (v, 7)(b) = 1 in a similar manner. d
Next we look at the consequences of having (bivariate) negative distributions.

Corollary 16 Let arbitrary numbers n > 0 and m > 0 be given.

1. For probabilities r,s € (0,1) with r + s = 1 one has:

SN () R () R

2. For N >n and M > m,

Z << n >> (N—TH—M—m—j)
vl m+j N-—n
n+1 M—m N
i<N—n
8. For N >0 and M > 0 we have:

() 5~ () iy o

j>m \\N+M i>n \N+M
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Proof. We only do the first and third item and leave the second one to the interested reader. Like
in the proof of Corollary 15 we fix a space X = {a,b} with tubes 7 = n|a) + m|b). For state
w =r|a)+ s|b) we use that the negative multinomial nmn(w, 7) is a distribution on N and unpack
its description from Definition 4 (1).

>0
= 3 mn@)((n—1)]a) + (m+i)|B)) (@) + mn()((ntd)a) +(m-1)[5))- w(b)
_ : nitm=lN g g nitm=lN g me1
—Z( ) ()

e () ()

For item (3) we use:

1—§:m ((n—=1)|a) + (m+34)|b)) - Frn(v 4+ (n—1)|a) + (m+3)|b))(a)
B +M(XM+Ma%Hm—DM»J%MU+M+Ma%Hm—DM»@

_ n 1 ((m—&-z)). N4+n—1
1>0 (n J\{i%Jrz)) N+M+n_1+m+7/
N () - GE)  Mtm-1
(i) N+Mntitm—1
B n- (M) - () - (n=14m+i)! - (N+M—1)! 1
- ; (N+M+n—2+m+i)! " N+M+n—1+m+i
(G e () (im0t (VM) i
(N+M+n+i+m—2)! N4+M+n+i+m—1

O e G 2dy) o

jzm

10 Conclusions

This paper extends the familiar urn model to an urn & tubes model. It raises several research
questions, with possible applications in risk modeling. The extension is first used to introduce first-
full distributions, which have a historical basis in the ‘problem of points’ of Pascal and Fermat.
Next, the urn & tubes models is used for negative distributions. The contribution of this paper lies
in systematisation, via a clear model, formalised via multisets (for urns, draws, tubes), covering
the three main drawing modes (multinomial, hypergeometric, Pélya).

This paper concentrates on the conceptual basis, formalisation, and illustration of first-full and
negative distributions. There is more to say, for instance about associated statistical properties
like mean and (co)variance. They exist in the literature for the single tube case. Extension to
general tubes is a challenge that is left open here.

The urn & tubes model may be generalised, for instance to multiple urns, where there is a
choice from which urn one wishes to draw a ball. When the contents of the urns are known,
one can consider different strategies for such choices, in different drawing modes, via Markov
decision processes (see e.g. [1, 23]). When the contents are unknown, the setting may be used for
reinforcement learning [16, 27]: jointly learning these contents and developing a strategy.
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Appendix

Section 6 and Subsection 7.2 use a compositional approach for showing that first-full and negative
probabilities add up to one, and thus form proper distributions. The distributions appear after
iteratively self-composing a Markov model with output, in the form of a coalgebra c: Y — D(Y +
X), see (12). There is a little bit of category theory underlying this composition, which we make
explicit in this appedix.

It is well known that the mapping A — D(A), sending a set A to the set of (discrete, finite)
probability distributions on A is a monad, on the category Sets of sets and functions. The unit n
and multiplication p of this monad D are:

A—"5D(A) D(D(A)) - D(A)
a}—>1|a> Ziri|wi>l—>z(Ziri-wi(a))’a>.
a€cA

We write A + B for the coproduct (disjoint union) of two sets A, B, with coprojections A %
A+ B & B, and cotuple [f,g]: A+ B — C, for f: A = C, g: B — C. For a fixed set
X, the mapping A — A + X is also a monad with unit x;: A — A + X and multiplication
lid,ko]: A+ X)+X - A+ X.

These two monads D and (—) + X are connected via a distributive law, of the form:

D(A)+X 2= DA+X) namely A= [D(s1), o rsl.

A general categorical result, see e.g. [2], now says that the composite D((f) + X ) is then also a
monad. In particular, if we have maps ¢: A — D(B + X) and d: B — D(C + X) we can form a
composition d e ¢: A — D(C’ + X) as:

dec = (4-5D(B+X) 2% D(D(C+X) +X)

D(/\)l

D(D((C+X)+x)) 22D

D(D(C+X)) 5 D(C+X))

Now assume that we have a Markov model with output (MMO) c: Y — D(Y + X). We can
form self-composites ¢": Y — D(Y + X ), for n € N, in the following manner:

A =nor and "l =c"ec

By elaborating the details we get the self-composition formulas (13) used for MMOs.
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