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The aim of this paper (which is a sequel to Operadic categories as a natural environ-
ment for Koszul duality) is to set up the cornerstones of Koszul duality and Koszulity
in the context of operads over a large class of operadic categories. In particular, for
these operadic categories we will study concrete examples of binary quadratic operads,
describe their Koszul duals and prove that they are Koszul. This includes operads
(for operadic categories) whose algebras are the most important operad- and PROP-
like structures such as the classical operads, their variants such as cyclic or modular
operads, and also diverse versions of PROPs such as wheeled properads, dioperads,
1
2PROPs, and still more exotic objects such as permutads and pre-permutads.
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Introduction

Koszul duality is an important ingredient in the theory of algebraic operads. The classical Koszul
duality theory for associative algebras goes a long way back to Priddy [23], but a milestone was the
1994 paper Koszul duality for operads by Ginzburg and Kapranov [10], where they generalize it to
operads. The key examples are the operads Lie and Com for Lie, resp. commutative associative
algebras that are Koszul dual to each other, whereas the operad Ass for associative algebras is
self-dual. While many aspects of operad theory can be formulated in general symmetric monoidal
categories, such as the category of sets or the category of spaces, Koszul duality theory is really
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a feature specific to algebraic operads, meaning operads in the category Vect of graded vector
spaces.

By [10, Definition 4.1.3], a symmetric quadratic operad P is Koszul if the dual dg (abbreviating
differential graded) operad D(P!) of its Koszul dual resolves P. The operad D(P!) then provides, us-
ing a construction of [16], a canonical explicit L∞-algebra capturing deformations of P-algebras via
its moduli space of Maurer–Cartan elements. Moreover, algebras for D(P !) are strongly homotopy
P-algebras, whose salient feature is the transfer property over weak homotopy equivalences. The
operad D(P!) also leads to the canonical (co)homology theory of P-algebras, cf. [21, Section II.3.8].
This explains the prominent position of quadratic Koszul operads in the traditional operad theory.

The aim of the present article is to implant the theory of quadratic operads and their Koszulity
into the context of operadic categories. Operadic categories, introduced by the authors in [2] is a
general abstract framework to accommodate operad-like structures. Just as algebraic structures of
different kinds can fruitfully be interpreted as algebras over operads, there are also various kinds
of operads, which in this theory are interpreted as operads over operadic categories: each operadic
category has its attending notion of operad. By carrying out the theory at this level of generality,
we get unified proofs of the main theorems of Koszul duality theory for various flavors of operads.
Not all operadic categories admit this theory. In order for the theory to work it is necessary to
impose several further axioms on top of the general axioms of operadic categories. This requires a
considerable amount of groundwork which we have carried out in the companion article Operadic
categories as a natural environment for Koszul duality [3], whose results are really a prerequisite for
the present article. Although the additional axioms are briefly recollected below, we have to refer
the reader to [3] for more detailed background, also on the general theory of operadic categories,
which it is not practical to reproduce here.

As in the classical case, free operads over operadic categories will play the central rôle in our
generalized Koszul duality theory. Following the approach of [17], we use a version of operads
whose composition laws are binary. Operad-like structures based on these “partial compositions”
were later called Markl operads. The theory of these operads in the context of operadic categories
was developed in [3]; we recall their definition including the necessary auxiliary material in Sub-
section 1.2. In the rest of this introduction, by an operad we will mean a Markl operad, typically
denoted by M in contrast to the generic notation P for the standard operads [2, Definition 1.1]
with the compositions along all fibers performed simultaneously.

After describing free operads, we introduce quadratic operads as those isomorphic to free oper-
ads quotiented by quadratic relations. As in the classical setup, each quadratic operad M possesses
a Koszul dual M!. Given an operad M, we define its dual dg operad D(M) and, for M quadratic,
construct the canonical morphism canM : D(M!)→M. A quadratic operad M will be called Koszul
if canM induces a component-wise isomorphism of homology. We finally prove that the operads
whose algebras are the most relevant operad- and PROP-like structures are Koszul. Our method
is to show that the dual dg operads of their Koszul duals are isomorphic to their minimal mod-
els described in [4]. Here, as in the classical case [17, Proposition 2.6], this characterizes their
Koszulity.

Throughout this article, we will be working with operads in the category of dg vector spaces,
although the operadic categories themselves are completely combinatorial and do not depend on
any linear structure. The reason is that even to write down the algebraic presentations it is
necessary to have a linear structure, and that linear duality is a key ingredient, as are the notions
of homology and resolutions.

Koszulity of the semi-classical colored operad whose algebras are modular operads was estab-
lished, in the setup of groupoid-colored operads, in [25]. We believe that the advantage of our
approach is that, after some heavy preparatory work has been done, everything is stripped to bare
bones, conveniently hiding details that only complicate the picture, such as the groupoid actions
and explicit indices, in the way explained in Remark 5.7.

Plan of the paper

In Section 1 we recall from [3] some additional axioms of operadic categories required in the
present paper, and Markl operads in the context of operadic categories. While the underlying
structure of a classical operad is a collection of spaces equipped with actions of symmetric groups,
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for general operadic categories the situation is subtler. The rôle of underlying collections is played
by presheaves on the category QOvrt(e) of virtual isomorphisms constructed in the first part of
Section 2. The second part of that section describes the precise relation of Markl operads to the
category QOvrt(e). Free Markl operads are explicitly described in Section 3. With the notion of
free operads available, we introduce quadratic operads and their Koszul duals in Section 4.

The remaining sections are devoted to explicit calculations. In Section 5 we study the constant
operad 1ggGrc whose algebras are modular operads. We show that this operad is binary quadratic
and that algebras over its Koszul dual are odd (aka twisted) modular operads. In Section 6 we make
a similar analysis for operads whose algebras are ordinary and cyclic operads, and pre-permutads.
In Section 7 we continue the analysis for wheeled properads, dioperads, 1

2PROPs and permutads.
With the exception of the operads KggGrc, resp. pp, whose algebras are odd modular operads,
resp. pre-permutads, all these operads are terminal operads over an appropriate operadic category.

Section 8 describes the cobar construction and Section 9 the dual dg operad of a Markl operad,
needed for the definition of Koszulity. Theorem 9.6 then establishes Koszulity of the operads whose
algebras are modular, cyclic and ordinary operads, and wheeled PROPs.

In Section 5 we need to refer to concrete axioms of modular and odd modular operads. Since
the only source we are aware of where these axioms are listed in a concise and itemized form is
the recent monograph [6], we decided to recall them in the Appendix. For the same reasons we
also included itemized axioms of the classical Markl operads so that the reader need not consult
the ancient paper [17]. To help the reader navigate through the paper, we included an index of
terminology and notation.

Conventions. Operadic categories and related notions were introduced in [2]; some basic concepts
of that paper are recalled in [3, Section 1]. We will freely use the terminology and notation from
there and, when necessary, refer to concrete definitions, diagrams, results or formulas in those
sources. If not stated otherwise, φ∗ will denote the image of a morphism φ under some presheaf.
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1 Recollections

In the first part of this section we recall from [3] some additional requirements on the base operadic
category O, formulated in the form of axioms, guaranteeing that free operads admit a nice explicit
description. In the second part we recall Markl operads. The material is taken from [3] almost
verbatim.

1.1 The Axioms

Intuitively, the axioms below express that an operadic category O is of combinatorial nature, close
to various categories of graphs. The first axiom involves the subcategory Oqb ⊂ O of quasibijections,
i.e. morphisms in O all of whose fibers are the chosen local terminal objects; in [2] we called them
“trivial.”

Invertibility of quasibijections - QBI. All quasibijections in O are invertible.
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In the next axiom, Oord will denote the subcategory of O with the objects of O, and morphisms
f : S → T of O such that |f | : |S| → |T | is order preserving.

Weak blow-up axiom - WBU. For any f ′ : S′ → T in Oord and morphisms πi : f ′−1
(i) → F ′′

i

in O, i ∈ |T |, there exists a unique factorization of f ′

S′ ω //

f ′ ##❍
❍❍

❍❍
❍ S′′

f ′′zz✈✈✈
✈✈
✈

T

such that f ′′ ∈ Oord and the maps ωi between the fibers induced by ω satisfy ωi = πi for all i ∈ |T |.

Before we recall the strong version of the above axiom, we need to remind the reader of the
notation introduced in a lemma of [3]:

Lemma 1.1 (Lemma 2.4 of [3]). Consider the commutative diagram in an operadic category

S′

f ′

��

f

%%▲▲
▲▲

▲▲
▲▲

▲▲
π // S′′

f ′′

��
T ′ σ // T ′′ .

(1)

Let j ∈ |T ′′| and |σ|−1(j) = {i} for some i ∈ |T ′|. Diagram (1) determines:

(i) the map f ′
j : f−1(j)→ σ−1(j) whose unique fiber equals f ′−1

(i), and

(ii) the induced map πj : f−1(j)→ f ′′−1
(j).

If σ−1(j) is trivial, in particular if σ is a quasibijection, then π induces a map

π(i,j) : f ′−1
(i)→ f ′′−1

(j) (2)

which is a quasibijection if π is.

In the situation of Lemma 1.1 with σ a quasibijection, the derived sequence is the sequence of
morphisms {

π(i,j) : f ′−1
(i)→ f ′′−1

(j), j = |σ|(i)
}
i∈|T ′|

(3)

consisting of quasibijections if π is a quasibijection. The derived sequence is featured in the
following axiom.

Blow-up axiom - BU. Consider a corner in the operadic category O

S′

f ′

��
T ′ σ

∼
// T ′′

(4)

in which σ is a quasibijection and f ′ ∈ Oord. Assume we are given objects F ′′
j , j ∈ |T ′′| together

with a collection of maps
{
π(i,j) : f ′−1

(i)→ F ′′
j , j = |σ|(i)

}
i∈|T ′|

. (5)

Then the corner (4) can be completed uniquely into the commutative square

S′

f ′

��

π // S′′

f ′′

��
T ′ σ

∼
// T ′′

(6)

in which f ′′ ∈ Oord, f ′′−1(j) = F ′′
j for j ∈ |T ′′|, and such that derived sequence (3) induced by f ′′

coincides with (5).
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One of the axioms of operadic categories says that the fiber of the unique morphism T → U to a
chosen local terminal object U is T . The following axiom requires that this property characterizes
the chosen local terminal objects.

Unique fiber condition - UFib. If the fiber of the unique morphism ! : T → t to a local terminal
object is T , then t is a chosen local terminal object.

The following axiom refers to the categories Oord and Oqb recalled above.

Factorizability - Fac. An operadic category O is factorizable if each morphism f ∈ O decomposes,
not necessarily uniquely, as φσ for some φ ∈ Oord and σ ∈ Oqb or, symbolically, O = Oord Oqb.

Rigidity - Rig. An operadic category O is rigid if for each φ ∈ Oord the only isomorphism σ that
makes

S

φ

��

S

φ

��
T

σ

∼=
// T

(7)

commutative is the identity 11T : T → T .

The last axiom recalled here involves a grading, defined as a map e : Objects(O)→ N with the
property that

e(T ) + e(F1) + · · ·+ e(Fk) = e(S)

for each f : S → T with fibers F1, . . . , Fk. In this situation, the grade e(f) of f is the difference
e(f) := e(S)− e(T ).

Strict grading - SGrad. A graded operadic category O is strictly graded if a morphism f ∈ O is
an isomorphism if and only if e(f) = 0.

Finally, all operadic categories are assumed to be constant-free, which by [3, Definition 2.18]
requires that |f | : |T | → |S| is surjective for each morphism f : T → S. With Fin the operadic
category of finite ordinals n̄ = {1, . . . , n}, n ∈ N, and their set-theoretic maps, this means that
the cardinality functor |-| : O→ Fin factorizes through the operadic category Finsemi of nonempty
finite sets and their surjections.

The above axioms will be imposed at many places of the paper including the rest of this section.
The operadic category O will therefore fulfill the following assumptions:

Assumptions 1.2. The operadic category O is a strictly graded and factorizable, all quasibijections
are invertible, the blow-up axiom and unique fiber condition are fulfilled, and a morphism f is an
isomorphism if and only if e(f) = 0. In brief, we require

Fac & BU & QBI & UFib & SGrad.

1.2 Markl operads

Composition laws of Markl operads are labeled by morphisms which are elementary in the sense
of the following definition.

Definition 1.3. A morphism φ : T → S ∈ Oord in a graded operadic category O is elementary if
all its fibers are trivial (= chosen local terminal) except precisely one whose grade is ≥ 1.

When i ∈ |S| is the unique element with nontrivial fiber φ−1(i), we will sometimes write φ
as the pair (φ, i) and say that φ is i-elementary. If we want to name the unique nontrivial fiber

F := φ−1(i) explicitly, we will write F ⊲i T
φ
→ S, or F ⊲ T

φ
→ S when the concrete i ∈ |S| is not

important.

Definition 1.4. Let T
(φ,j)
−→ S

(ψ,i)
−→ P be elementary morphisms. If |ψ|(j) = i we say that the fibers

of φ and ψ are joint. If |ψ|(j) 6= i we say that φ and ψ have disjoint fibers or, more specifically,
that the fibers of φ and ψ are (i, j)-disjoint. Denoting k := |ψ|(i), we call (ψ, φ) a (k, i)-pair.
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An example of a configuration with disjoint fibers is portrayed in the picture following Defini-
tion 5.4 of [3]. We need also to recall from [3] the following lemma and its corollary.

Lemma 1.5 (Lemma 5.5 of [3]). If the fibers of elementary morphisms φ and ψ in Definition 1.4
are joint, then the composite ξ = ψ ◦ φ is elementary as well, with nontrivial fiber over i, and
the induced morphism φi : ξ−1(i)→ ψ−1(i) is elementary with the nontrivial fiber over j equal to
φ−1(j). For l 6= i the morphism φl equals the identity Uc → Uc of trivial objects.

If the fibers of φ and ψ are (i, j)-disjoint then the morphism ξ = ψ ◦ φ has exactly two
nontrivial fibers and these are fibers over i and k := |ψ|(j). Moreover, there is a canonical induced
quasibijection

φi : ξ−1(i)→ ψ−1(i) ∈ Oord (8a)

and the equality
ξ−1(k) = φ−1(j). (8b)

Definition 1.6. We will call the pair T
(φ,j)
−→ S

(ψ,i)
−→ P of morphisms in Definition 1.4 with disjoint

fibers harmonic if ξ−1(i) = ψ−1(i) and the map φi in (8a) is the identity.

Corollary 1.7 (Corollary 5.8 of [3]). Assume that

P ′
(ψ′, i)

((❘❘
❘❘❘

❘❘❘
❘❘

T
(φ′′, l)

((❘❘
❘❘❘

❘❘❘
❘

(φ′, j) 66❧❧❧❧❧❧❧❧❧❧
S

P ′′

(ψ′′, k)
66❧❧❧❧❧❧❧❧❧

(9)

is a commutative diagram of elementary morphisms. Assume that |ψ′′|(l) = i, |ψ′|(j) = k and
i 6= k. Let F ′, F ′′, G′, G′′ be the only nontrivial fibers of φ′, φ′′, ψ′, ψ′′, respectively. Then one has
canonical quasibijections

σ′ : F ′ −→ G′′ and σ′′ : F ′′ −→ G′. (10)

If both pairs in (9) are harmonic, then F ′ = G′′, F ′′ = G′ and σ′, σ′′ are the identities.

In the following definition of a Markl operad, V is a strict symmetric monoidal category with a
strict monoidal unit k and symmetry τ , and Oiso ⊂ O the subcategory of isomorphisms. Axiom (ii)
of that definition is given in the simplified form assuming the BU axiom that guarantees, by [3,
Corollary 5.7], that all pairs of elementary morphisms with disjoint fibers are harmonic. A general
form can be found in [3].

Definition 1.8. A Markl O-operad in V is a presheaf M : O
op
iso → V with values in V equipped, for

each elementary morphism F ⊲ T
φ
→ S, with a “circle product”

◦φ : M(S)⊗M(F )→M(T ). (11)

These operations must satisfy the following set of axioms.

(i) Let T
(φ,j)
−→ S

(ψ,i)
−→ P be elementary morphisms such that |ψ|(j) = i and let ξ : T → P be the

composite ψφ. Then the diagram

M(P )⊗M(ξ−1(i))
◦ξ

**❯❯❯
❯❯❯❯

❯❯❯

M(P )⊗M(ψ−1(i))⊗M(φ−1(j))

◦ψ⊗11 ,,❨❨❨❨❨❨
❨❨❨❨❨❨

11⊗◦φi 22❡❡❡❡❡❡❡❡❡❡❡
M(T )

M(S)⊗M(φ−1(j))

◦φ

44✐✐✐✐✐✐✐✐✐

(12)

commutes.
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(ii) Consider the diagram

P ′
(ψ′, i)

((❘❘
❘❘❘

❘❘❘
❘

T
(φ′′, l)

((❘❘
❘❘❘

❘❘❘
❘

(φ′, j) 66❧❧❧❧❧❧❧❧❧
S

P ′′

(ψ′′, k)
66❧❧❧❧❧❧❧❧❧

(13)

of elementary morphisms with disjoint fibers as in Corollary 1.7. By the harmonicity implied
by BU, the morphisms σ′, σ′′ in (10) are the identities; denote F := F ′ = G′′ and G := G′ =
F ′′. With this notation, the diagram

M(S)⊗M(G)⊗M(F )
◦ψ′ ⊗11

// M(P ′)⊗M(F )

◦φ′

��
M(T )

M(S)⊗M(F )⊗M(G)

11⊗τ

OO

◦ψ′′ ⊗11
// M(P ′′)⊗M(G)

◦φ′′

OO

(14)

commutes.

(iii) For every commutative diagram

T ′
∼=

ω //

φ′

��

T ′′

φ′′

��
S′ σ

∼
// S′′

where ω is an isomorphism, σ a quasibijection, and F ′⊲iT
′ φ

′

→ S′, F ′′⊲jT
′′ φ

′′

→ S′′, the diagram

M(F ′′)⊗M(S′′)

ω∗
(i,j)⊗σ∗ ∼=

��

◦φ′′
// M(T ′′)

ω∗∼=

��
M(F ′)⊗M(S′)

◦φ′

// M(T ′)

(15)

in which ω(i,j) : F ′ → F ′′ is the induced map (2) of fibers, commutes.

Markl operad M is unital if one is given, for each trivial (i.e. chosen local terminal) object U of O,
a map ηU : k→M(U) such that the diagram

M(U)⊗M(T )
◦! // M(T )

k⊗M(T )

ηU⊗11

OO

∼=
M(T )

(16)

commutes whenever T is such that e(T ) ≥ 1 and T ⊲ T
!
→ U is the unique map.

Let Oltrm be the operadic subcategory of O consisting of its local terminal objects. Denote by
1trm : Oltrm → V the constant functor. The collection {ηU : k → M(U)} of unit maps extends
uniquely into a transformation

η : 1trm → ι∗M (17)

from 1trm to the restriction of M along the inclusion ι : Oltrm →֒ O. Transformation (17) amounts
to a family of maps ηu : k→M(u) given for each local terminal u ∈ O, such that the diagram

M(u)
!∗

// M(v)

k

ηu
OO

k

ηv
OO

(18)
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commutes for each (unique) map ! : v → u of local terminal objects. We will call the components
ηu : k→M(u) of the transformation (17) the extended units .

For each T with e(T ) ≥ 1 and F ⊲ T
!
→ u with u a local terminal object, one has a map

ϑ(T, u) : M(F )→M(T ) defined by the diagram

M(u)⊗M(F )
◦! // M(T )

k⊗M(F )

ηu⊗11

OO

∼=
M(F ) .

ϑ(T,u)

OO
(19)

The unitality offers a generalization of Axiom (iii) of Markl operads which postulates for each
commutative diagram

T ′ ω

∼=
//

φ′

��

φ

%%❏
❏❏

❏❏
❏❏

❏❏
❏ T ′′

φ′′

��
S′ σ

∼=
// S′′

(20)

where the horizontal maps are isomorphisms and the vertical maps are elementary, with F ′ ⊲iT
′ φ

′

→

S′, F ′′ ⊲j T
′′ φ

′′

→ S′′, the commutativity of the diagram

M(F )⊗M(S′′) M(F ′′)⊗M(S′′)
ω∗
j⊗11

∼=
oo

◦φ′′
// M(T ′′)

ω∗∼=

��
M(F ′)⊗M(S′′)

ϑ(F,σ−1(j))⊗11

OO

11⊗σ∗

∼=
// M(F ′)⊗M(S′)

◦φ′

// M(T ′) ,

(21)

in which F := φ−1(j) and ωj : F → F ′′ is the induced map of fibers. Notice that if σ is a
quasibijection, (21) implies (15).

Definition 1.9. A Markl operad M is strictly unital if all the maps ϑ(T, u) in (19) are identities.
It is 1-connected if the unit maps ηU : k→M(U) are isomorphisms for each trivial U .

If M is strictly unital, one has M(F ) = M(F ′) in (21), so this diagram assumes a particularly
simple form, namely

M(F ′′)⊗M(S′′)

ω∗
j⊗σ∗ ∼=

��

◦φ′′
// M(T ′′)

ω∗∼=

��
M(F ′)⊗M(S′)

◦φ′
// M(T ′) .

(22)

2 Markl operads and virtual isomorphisms

We introduce the category of virtual isomorphisms Ovrt related to an operadic category O, its
extension Ovrt

∫
Oiso, and the quotient QOvrt of Ovrt

∫
Oiso modulo virtual isomorphisms. In the

presence of a grading e on O we will further consider the subgroupoid Ovrt(e) of objects of grade
≥ 1, the extension Ovrt(e)

∫
Oiso and the related quotient QOvrt(e). Presheaves on QOvrt(e) will then

serve as the underlying collections for Markl operads.
The operadic category O will be required to fulfill Assumptions 1.2 although the grading (which

need not even be strict) will be used only in the second half of this section. All definitions and
results of this section hold also for operadic categories which are not constant-free. As before we
denote by Oltrm the groupoid of local terminal objects in O and by Oiso ⊂ O the subcategory with
the same objects as O, and morphisms the isomorphisms of O.

Let T ∈ O and let t ∈ O be a local terminal object in the connected component of T . We
therefore have a unique morphism T → t with a unique fiber F , which will be expressed by the
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shorthand F ◮ T → t. In this situation we write F T or F
t
 T if t needs to be specified, and

speak about a virtual morphism from F to T . Notice that F  T does not represent an “actual”
morphism F → T ; in fact there may not be any morphisms from F to T in O, cf. Example 2.4
below. Since we assume BU and UFib, there exists at most one virtual morphism between two
given objects of O by [3, Lemma 2.15]. In fact, “ ” interpreted as a relation on O is a preorder.

The notation F ◮ T → t shall not be confused with F ⊲ T → t used before. The map T → t
need not be an elementary morphism even when O is graded, since we do not demand e(T ) ≥ 1
or any analog of this. The following statement shows that one may define a composition rule for
virtual morphisms so that they form a groupoid.

Lemma 2.1. Virtual morphisms in the operadic category O form a groupoid Ovrt.

Proof. The lemma will follow from the following facts: each object of O possesses a virtual endo-
morphism; virtual endomorphisms can be composed; a virtual morphism S T exists if and only
if there exist a virtual morphism T  S. Since there is at most one virtual morphism between
two given objects of O by [3, Lemma 2.15], all properties of a groupoid follow automatically.

The virtual endomorphism of T ∈ O is T
U
 T , associated to the unique morphism T → U to

the chosen local terminal object U in the connected component of T . The composition of virtual
morphisms is defined as follows.

Let S
t
 T

r
 R be a chain of virtual morphisms. This means that S is the fiber of the unique

morphism φ : T → t, and T is the fiber of ψ : R → r, i.e. S ◮ T
φ
→ t and T ◮ R

ψ
→ r, t ∈ Oltrm.

By the weak blow-up axiom there exists a unique factorization of ψ as in the diagram

R
ξ //

ψ ��❅
❅❅

❅ s

δ�����
�

r

(23)

such that ξ1, the induced map between the unique fibers, equals φ. From Axiom (iv) of an operadic

category, one has ξ−1(1) = ξ−1
1 (1) = φ−1(1) = S, that is S ◮ R

ξ
→ s. We take the related virtual

morphism S
s
 R as the composite of S

t
 T and T

r
 R.

Consider a virtual morphism S
t
 T given by some S ◮ T

φ
→ t ∈ O. The morphism φ has a

unique factorization T → U
δ
→ t through a chosen local terminal object U . Let s be the unique

fiber of δ, i.e. s ◮ U
δ
→ t. The diagram

T //

φ ��❂
❂❂

❂ U

δ����
��

t

induces a morphism of fibers S → s whose fiber is T , giving rise to the required virtual morphism

T
s
 S in the opposite direction.

As we already noticed, if there exists a morphism S T in Ovrt then it is unique. Together
with Lemma 2.1 this implies that Ovrt is equivalent as a category to a discrete set. The notation
T S will denote the unique isomorphism from T to S, tacitly assuming its existence, and S T
its inverse.

As the next step towards our construction of QOvrt, we extend Ovrt to a category Ovrt

∫
Oiso

which has the same objects as O but whose morphisms T → R are sequences

S
φ
→ T  R

where φ : S → T ∈ Oiso is an isomorphism in O. To define the composition, consider the sequence

S
φ
→ T R

ψ
→ Q P.

The virtual morphism T  R is related to a morphism T ◮ R → r with a unique r ∈ Oltrm and
the virtual morphism Q P to Q ◮ P → p with p ∈ Oltrm, The objects R and Q live in the same
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connected component, so there is a unique D ◮ Q→ r. We may therefore construct the diagram

S
φ // T

ξ // D D

◮ ◮ ◮

R

!

--

ψ // Q

!

��

◮ P

ω

��

!

��
WBU p

r ◮ x
!

==

(24)

in which ω is the unique map such that the induced map between the fibers is Q !
→ r, and ξ := ψ1

is the induced map between the fibers. We then define the composite

(R
ψ
→ Q P )(S

φ
→ T R)

as the sequence

S
ξφ
−→ D P, (25)

with D P given by D ◮ P → x. The identity automorphism of S is S 11
→ S S.

One can easily check that the above structure makes Ovrt

∫
Oiso a category which is, in fact, a

groupoid: for a morphism Φ : S
φ
→ T  R in Ovrt

∫
Oiso take the inverse R T to T  R and

the inverse ψ : T → S of φ : S → T ∈ O. Then the composite

(T
ψ
→ S S)(R

11
→ R T )

in Ovrt

∫
Oiso is the inverse to Φ. We leave the details to the reader.

Remark 2.2. The composite (T
11
→ T  R)(S

φ
→ T  T ) equals S

φ
→ T  R as expected. The

diagram (24) in this particular case becomes

S
φ // T

ξ // T T

◮ ◮ ◮

T

!

..

ψ // T

!

��

◮ R

!

��

!

��
r

u ◮ x
!

DD

where u is the chosen local terminal object. Both ξ and φ are the identities by the axioms of
operadic categories, while x = r because u is chosen local terminal. The claim follows. One can
similarly verify the identity

(T
ψ
→ R R)(S

11
→ S T ) = (S

ξ
→ D T )

with S
ξ
→ D given by the diagram

S
ξ // D

◮ ◮

T

**

ψ // R

ttr

We may express the result of the above calculation as the distributive law

(T
ψ
→ R)(S T ) 7−→ (D R)(S

ξ
→ D)

between and
∼=
→ , cf. [24].
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We now consider the quotient QOvrt of Ovrt

∫
Oiso whose objects are classes of objects of Ovrt

∫
Oiso

with respect to the relation generated by virtual isomorphisms. That is, two objects are equivalent
if there is a virtual isomorphism between them. More precisely, QOvrt is defined by the pushout

Ovrt

��

// Ovrt

∫
Oiso

��
π0(Ovrt) // QOvrt

(26)

in the category of groupoids. Since the left vertical functor is an equivalence and the top horizontal
functor a cofibration of groupoids in the canonical model structure on the category of groupoids [1],
the right vertical functor is an equivalence of groupoids too.

It is easy to see that morphisms between objects in QOvrt are equivalence classes of non-virtual
isomorphisms in the following sense. Let φ′ : T ′ → S′ and φ′′ : T ′′ → S′′ be two isomorphisms in
O. They are equivalent if there exists a local terminal object t such that φ′′ is the induced fiber
map in the diagram

T ′ φ′

//

!!❈
❈❈

❈ S′

||②②②
②

t .

(27)

Example 2.3. Assume that each connected component of O contains precisely one terminal object,
i.e. all local terminal objects are the trivial (chosen) ones. Then QOvrt

∼= Oiso. This is the case of
e.g. the category Fin of finite ordinals or of the operadic category Per in Subsection 7.4.

Example 2.4. In the operadic category Bq(C) recalled in [3, Example 1.5] two bouquets are
virtually equivalent if they differ only in the last color. Notice that an “actual” morphism b′ → b′′

in Bq(C) between virtually equivalent bouquets exists if and only if b′ = b′′. The groupoid QBq(C)vrt

is the groupoid of strings (i1, . . . , ik), k ≥ 1, with morphisms arbitrary bijections.

Example 2.5. Two graphs in the operadic category Gr of [3, Definition 3.13] are virtually equiv-
alent if they differ only in the global orders of their leaves. Morphisms in QGrvrt are isomorphisms
of graphs which need not preserve the global orders.

Assume that O possesses a grading e : Objects(O)→ N. In this case we denote by Ovrt(e) ⊂ Ovrt

the full subgroupoid with objects T ∈ O such that e(T ) ≥ 1. We construct Ovrt(e)
∫

Oiso out of
Ovrt(e) and Oiso as before, and define its quotient QOvrt(e) by replacing Ovrt by Ovrt(e) in (26). In
the following lemma, V denotes a strict symmetric monoidal category as in Definition 1.8.

Lemma 2.6. Each unital Markl O-operad M with values in V induces a covariant functor Ovrt(e)→
V, denoted M again, which acts as M on objects, and on virtual morphisms is defined by

M(F T ) := ϑ(T, u),

where ϑ(T, u) is as in (19). Since Ovrt(e) is a groupoid, all maps ϑ(T, u) are invertible.

Proof. It follows from the unitality (16) of M that M(T  T ) = 11M(T ). Let us verify the
functoriality

M(S R) = M(T R)M(S T ). (28)

To this end we consider the commutative diagram

M(T )⊗M(r)
◦! // M(R)

M(S)⊗M(r)

ϑ(T,r)⊗11

OO

11⊗δ∗

// M(S)⊗M(r′) .

◦!

OO

M(S)
∼= // M(S)⊗ k

11⊗ηr

OO

11⊗ηr′

66♠♠♠♠♠♠♠♠♠♠♠♠♠

(29)
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Its upper square is (21) applied to the diagram

R

ξ ��
ψ

&&▲▲
▲▲

▲▲
▲▲

▲ R

ψ
��

r′ δ // r

in place of (20), in which the symbols have the same meaning as in (23). The commutativity of
the bottom triangle follows from the commutativity of (18). It follows from the definition of the
maps ϑ(T, u) that the composite

M(S) ∼= M(S)⊗ k
11⊗ηr′ // M(S)⊗M(r′)

◦! // M(R)

in (29) equals the left-hand side of (28), while the composite

M(S) ∼= M(S)⊗ k
11⊗ηr // M(S)⊗M(r)

ϑ(T,r)⊗11 // M(T )⊗M(r)
◦! // M(R)

equals the right-hand side of (28).

Proposition 2.7. The Oiso-presheaf structure of a Markl O-operad M in V combined with the
functor M : Ovrt(e)→ V of Lemma 2.6 makes M an Ovrt(e)

∫
Oiso-presheaf via the formula

M
(
S

φ
→ T R

)
:= φ∗

M(R T ). (30)

Proof. Since clearly M(T
11
→ T T ) = 11M(T ), we need only to prove that

M
(
S

φ
→ T R

)
M

(
R

ψ
→ Q P

)
= M

(
S

ξφ
−→ (Q P )(D Q)

)
(31)

for the composite

(R
ψ
→ Q P )(S

φ
→ T R) = S

ξφ
−→ (Q P )(D Q)

defined in (25). Evaluating both sides of (31) using (30) gives

φ∗
M(R T )ψ∗

M(P Q) = (ξφ)∗
M(Q D)M(P Q).

Since all the maps involved are isomorphisms, we easily see that (31) is equivalent to

M(D Q)(ξ−1)∗ = (ψ−1)∗
M(T R). (32)

To prove this equality, consider the diagram

M(T ) ∼= M(T )⊗ k
11⊗ηr // M(T )⊗M(r)

◦!

��

M(D)⊗M(r)
ξ∗⊗11oo

◦!

��
M(R) M(Q)

ψ∗

oo

(33)

in which the square is (21) associated to

R
!

&&▼▼
▼▼

▼▼▼
▼▼

!
��

ψ // Q

!
��

r r

in place of (20). It follows from the definitions that the composite of the maps

M(T ) ∼= M(T )⊗ k
11⊗ηr // M(T )⊗M(r)

(ξ∗⊗11)−1

// M(D)⊗M(r)
◦! // M(Q)

in (33) equals the left-hand side of (32), while the composite

M(T ) ∼= M(T )⊗ k
11⊗ηr // M(T )⊗M(r)

◦! // M(R)
ψ∗−1

// M(Q)

equals its right-hand side.
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Proposition 2.8. If M is a unital Markl O-operad in a cocomplete symmetric monoidal category
V, then the Ovrt(e)

∫
Oiso-presheaf of Proposition 2.7 associated to M functorially descends to a

QOvrt(e)-presheaf M̊ by means of the left Kan extension along the equivalence
(
Ovrt(e)

∫
Oiso

)op
→

QOvrt(e)op.

Proof. We will construct the presheaf M̊ explicitly. Objects of QOvrt(e) are, by definition, the
equivalence classes [T ] of the objects of O modulo the relation [T ′] = [T ′′] if T ′′ T ′. We define

M̊([T ]) as the colimit

M̊([T ]) := colimM(S) (34)

over the groupoid of all S ∈ O virtually isomorphic to T . It is clear that the canonical injection
ιT : M(T ) →֒ M̊([T ]) is an isomorphism.

Consider a morphism [φ] : [T ]→ [S] in QOvrt(e) given by an isomorphism φ : T → S. We define

M̊([φ]) : M̊([S])→ M̊([T ]) by the diagram

M̊([S])
M̊([φ]) // M̊([T ])

M(S)
φ∗

//
� ?

ιS ∼=

OO

M(T )
� ?

ιT∼=

OO

in which φ∗ refers to the Oiso-presheaf structure of M.
We need to show that M̊([φ]) does not depend on the choice of a representative of the map

[φ] under the equivalence that identifies φ′ as in (27) with the induced map φ′′ between the fibers
over t. To this end, consider the commutative diagram

M(T ′)

ϑ(T ′,t)

��

k⊗M(T ′)

ηu⊗11

��

k⊗M(S′)

ηu⊗11

��

11⊗φ′∗

oo M(S′)

φ′∗

tt

ϑ(S′,t)

��
M(T ′′) M(u)⊗M(T ′)

◦!oo M(u)⊗M(S′)
◦! //11⊗φ′′∗

oo M(S′′)

φ′′∗

kk

(35)

in which the leftmost and rightmost squares are instances of (19). The commutativity of the central
square and of the upper part is clear. Finally, the commutativity of the lower part follows from
axiom (15) of Markl operads. An easy diagram chase shows that the commutativity of (35) implies
the commutativity of the middle square in

M̊([T ′]) �
� ιT ′

∼=
// M(T ′)

ϑ(T ′,t)

��

M(S′)
φ′∗

oo

ϑ(S′,t)

��

M̊([S′])? _
ιS′

∼=
oo

M̊([T ′′])
� � ιT ′′

∼=
// M(T ′′) M(S′′)

φ′′∗

oo M̊([S′′]) .? _oo ? _
ιS′′

∼=
oo

The independence of M̊([φ]) on the choice of a representative of [φ] is now clear.

Remark 2.9. If M is strictly unital, the definition in (34) via a colimit can be replaced by

M̊([T ]) := M(T ).

3 Free Markl operads

This section is devoted to our construction of free strictly unital 1-connected Markl operads over
O generated by QOvrt(e)-presheaves. In the light of [3, Theorem 6.5] this will also provide free
(standard) O-operads. We require O to satisfy Assumptions 1.2 . The base symmetric monoidal
category is assumed to be monoidally cocomplete.
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3.1 Chains of elementary morphisms

In this subsection we introduce the cornerstones of free Markl operads. We will need the following
result.

Proposition 3.1. Consider a diagram

T ′ σT

∼
//

(φ′,j′) ��

T ′′

(φ′′,j′′)��
P ′ σP

∼
//

(ψ′,i′) ��

P ′′

(ψ′′,i′′)��
S′ σS

∼
// S′′

(36)

whose vertical maps are elementary with disjoint fibers as indicated, and where the horizontal maps
are quasibijections. Denoting k′ := |ψ′|(j′), k′′ := |ψ′′|(j′′), one has

|σS |(i
′) = i′′ |σS |(k

′) = k′′. (37)

If we are given a subdiagram of (36) consisting only of the morphisms φ′, φ′′, ψ′, ψ′′, σT and σS ,
i.e.

T ′ σT

∼
//

(φ′,j′) ��

T ′′

(φ′′,j′′)��
P ′

(ψ′,i′)
��

P ′′

(ψ′′,i′′)
��

S′ σS

∼
// S′′ ,

(38)

then the conditions (37) are also sufficient for the existence of a unique quasibijection σP as in (36).

Proof. The only nontrivial fiber of ψ′ is ψ′−1
(i′) and the only nontrivial fiber of ψ′′ is ψ′′−1

(i′′) so,
by [3, Remark 5.2], we have |σS |(i′) = i′′. By the same argument, |σP |(j′) = j′′. Since | − | is a
functor, we have

k′′ = |ψ′′||σP |(j
′) = |σS ||ψ

′|(j′) = |σS |(k
′)

proving the first part of the proposition.
To prove the second part, denote by ξ′ (resp. by ξ′′) the composite of the maps in the left (resp.

right) column of (38). Since the left column of (38) is harmonic by [3, Corollary 5.7], we may define
a map (σP )(i′,i′′) by the commutativity of the diagram

ξ′−1
(i′)

(σT )(i′,i′′) //

φ′

i′
=11

ξ′′−1
(i′′)

φ′′

i′′

��
ψ′−1

(i′)
(σP )(i′,i′′)// ψ′′−1

(i′′) .

(39)

The blow-up axiom produces a commutative diagram

P ′ σP

∼
//

ψ′

��

P̃ ′′

ψ̃′′

��
S′ σS

∼
// S′′

in which, by construction, ψ̃′′ is elementary with the only nontrivial fiber ψ′′−1
(i′′) over i′′, and

the map between nontrivial fibers induced by σP is (σP )(i′,i′′). Consider now two commutative
diagrams

T ′ σPφ
′

∼
//

ξ′

��

P̃ ′′

ψ̃′′

��
S′ σS

∼
// S′′

T ′ φ′′σT

∼
//

ξ′

��

P ′′

ψ′′

��
S′ σS

∼
// S′′ .

(40)
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In both diagrams, the right vertical map is elementary, with the only nontrivial fiber ψ′′−1
(i′′).

We will show that both σPφ
′ and φ′′σT induce the same map between nontrivial fibers. One has

(σPφ
′)(i′,i′′) = (σP )(i′,i′′)φ

′
i′

while
(φ′′σT )(i′,i′′) = φ′′

i′′ (σT )(i′,i′′).

By the defining diagram (39), the right-hand sides of both equations coincide. By BU, the diagrams
in (40) are the same, therefore both squares in (36) with σP constructed above commute. This
finishes the proof.

For the validity of the following lemma and Lemma 3.4 below, only the weak blow-up axiom
WBU is required.

Lemma 3.2. Let ρ : S → T ∈ Oord be elementary with the unique fiber F over a ∈ |T |. Suppose
that we are given a chain of elementary morphisms

F
ϕ1
−→ F1

ϕ2
−→ F2

ϕ3
−→ F3

ϕ4
−→ · · ·

ϕl−1
−→ Fl−1. (41a)

Then there exists a unique factorization

S
ρ1
−→ S1

ρ2
−→ S2

ρ3
−→ S3

ρ4
−→ · · ·

ρl−1
−→ Sl−1

ρl−→ T (41b)

of ρ into elementary morphisms such that (ρl · · · ρs)−1(a) = Fs−1 for each 2 ≤ s ≤ l, and (ρs)a = ϕs
for each 1 ≤ s < l.

Proof. We will inductively construct maps in the commutative diagram

S
ρ1 //

ρ

��

S1
ρ2 //

η1

}}

S2

η2

tt

ρ3 // S3
ρ4 //

η3

qq

· · ·
ρl−1 // Sl−1 .

ηl

ooT

(42)

The weak blow-up axiom implies that the maps

ϕ1 : F = ρ−1(a)→ F1, 11 : ρ−1(i) = Ui → Ui for i 6= a,

uniquely determine a decomposition ρ = η1ρ1. Clearly, η1 is elementary with the unique fiber F1

and we may apply the same reasoning to η1 in place of ρ. The result will be a unique decomposition
η1 = η2ρ2. Repeating this process (l − 1) times and defining ρl := ηl finishes the proof.

Remark 3.3. In the situation of (41a), assume that the pair (ϕt, ϕt+1) has (i, j)-disjoint fibers for
some 1 ≤ t ≤ l−2. Then the corresponding pair (ρt, ρt+1) in (41b) has (i+a−1, j+a−1)-disjoint
fibers. This is an immediate consequence of Axiom (iv) of an operadic category.

Lemma 3.4. With the notation of Lemma 3.2, suppose that we are given two chains of elementary
morphisms as in (41a) of the form

F
ϕ1
−→ F1

ϕ2
−→ · · ·

ϕu−1
−→ Fu−1

ϕ′
u−→ F ′

u

ϕ′
u+1
−→ Fu+1

ϕu+2
−→ · · ·

ϕl−1
−→ Fl−1 (43a)

and

F
ϕ1
−→ F1

ϕ2
−→ · · ·

ϕu−1
−→ Fu−1

ϕ′′
u−→ F ′′

u

ϕ′′
u+1
−→ Fu+1

ϕu+2
−→ · · ·

ϕl−1
−→ Fl−1 (43b)

such that the diagram

F ′
u ϕ′

u+1

&&◆◆
◆◆◆

◆

Fu−1
ϕ′′
u

&&◆◆
◆◆◆

◆

ϕ′
u

88♣♣♣♣♣♣
Fu+1

F ′′
u

ϕ′′
u+1 88♣♣♣♣♣♣
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commutes. Then the corresponding decompositions (41b) are of the form

S
ρ1
−→ S1

ρ2
−→ · · ·

ρu−1
−→ Su−1

ρ′
u−→ S′

u

ρ′
u+1
−→ Su+1

ρu+2
−→ · · ·

ρl−1
−→ Sl−1

ρl−→ T, (44a)

respectively

S
ρ1
−→ S1

ρ2
−→ · · ·

ρu−1
−→ Su−1

ρ′′
u−→ S′′

u

ρ′′
u+1
−→ Su+1

ρu+2
−→ · · ·

ρl−1
−→ Sl−1

ρl−→ T, (44b)

and the diagram

S′
u ρ′

u+1

&&▼▼
▼▼

▼▼

Su−1
ρ′′
u

&&▼▼
▼▼▼

▼

ρ′
u

88qqqqqq
Su+1

S′′
u

ρ′′
u+1 88qqqqqq

(45)

commutes.

Proof. We will rely on the notation used in the proof of Lemma 3.2. It is clear from the inductive
construction described there that the initial parts of the canonical decompositions corresponding
to (43a) resp. (43b) coincide and are equal to

S
ρ1
−→ S1

ρ2
−→ · · ·

ρu−1
−→ Su−1.

Consider the following two stages of the inductive construction in the proof of Lemma 3.2:

S
ρ1 //

ρ

��

· · ·
ρu−1 // Su−1

ρ′
u //

ηu−1

rr

S′
u

η′
u

nn

ρ′
u+1 // S′

u+1

η′
u+1

nnT

and

S
ρ1 //

ρ

��

· · ·
ρu−1 // Su−1

ρ′′
u //

ηu−1

rr

S′′
u

η′′
u

nn

ρ′′
u+1 // S′′

u+1 .

η′′
u+1

nnT

The maps ηu−1, η′
u+1 and η′′

u+1 are elementary, with the nontrivial fibers Fu−1 resp. Fu+1. By
construction, the horizontal maps in the factorizations

Su−1

ρ′
u+1ρ

′
u //

ηu−1

��

S′
u+1

ηu+1

xxqqq
qq
qq
qq
qq

T

Su−1

ρ′′
u+1ρ

′′
u //

ηu−1

��

S′′
u+1

ηu+1

xxqqq
qq
qq
qq
qq

T

induce the same map between these nontrivial fibers, namely ϕ′
u+1ϕ

′
u = ϕ′′

u+1ϕ
′′
u. By the uniqueness

of the weak blow-up, the diagrams in the above display coincide, so diagram (45) with Su+1 =
S′
u+1 = S′′

u+1 commutes. It is obvious that the remaining parts of (44a) and (44b) are the same.

3.2 Free operads

Let us proceed to our description of free Markl operads. In this subsection, V will be a cocomplete
strict symmetric monoidal category and 0 its initial object.

Definition 3.5. QOvrt(e)-presheaves in V will be called 1-connected O-collections in V. We will
denote by CollV

1(O), or simply CollV
1 when O is understood, the corresponding category.
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For E ∈ CollV
1, we will often write simply E[T ] instead of E([T ]). Notice that a 1-connected

O-collection can equivalently be defined as a QOvrt-presheaf E such that E(T ) = 0 if e(T ) = 0. It
follows that a 1-connected O-collection in V is the same as an Oiso-presheaf E with values in V such
that

(i) E(T ) = 0 if e(T ) = 0 (1-connectivity),

(ii) E(T ) = E(F ) whenever F ◮ T !
→ u, and

(iii) φ′∗ = φ′′∗, where φ′ is as in (27) and φ′′ is the induced map between the fibers.

Example 3.6. It follows from Example 2.3 that the category CollV
1(Fin) is isomorphic to the

category of 1-connected Σ-modules, i.e. sequences {E(n) ∈ V}n≥2, with actions of the symmetric
groups Σn.

Proposition 3.7. One has a forgetful functor � : SUMOpV
1(O)→ CollV

1(O) from the category of 1-
connected strictly unital Markl O-operads to the category of 1-connected O-collections in a cocomplete
symmetric monoidal category V defined, on objects by

�M
(
[T ]

)
:=

{
M(T ) if e(T ) ≥ 1

0 otherwise.
(46)

Proof. The Oiso-presheaf structure induces on M an Ovrt(e)
∫

Oiso-presheaf structure by Proposi-

tion 2.7. The functor � is then the composite of the functor M 7→ M̊ of Proposition 2.8, cf.
Remark 2.9, with the functor that replaces the values of the presheaf M̊ by 0 on objects of grade
zero.

In the rest of this section we construct a left adjoint E 7→ F(E) to the forgetful functor
of Proposition 3.7. Our strategy will be to construct a Markl O-operad lTw with values in the
category of groupoids Grp, extend E to a functor E : lTw → V and define F(E) as the colimit of
this functor. The building blocks of the operad lTw will be the towers

T := T
τ1−→ T1

τ2−→ T2
τ3−→ · · ·

τk−1
−→ Tk−1

τk−→ Uc (47)

of elementary morphisms as in Definition 1.3, with τk the unique morphism to a chosen local
terminal object Uc. Since τk bears no information, we will sometimes write the tower as

T := T
τ1−→ T1

τ2−→ T2
τ3−→ · · ·

τk−1
−→ Tk−1. (48)

Let t1, . . . , tk be the unique nontrivial fibers of τ1, . . . , τk; notice that tk = Tk−1. We will call
t1, . . . , tk the fiber sequence of the tower T. The number k is the height of the tower T.

We will denote by Tw(T ) the set of all towers with the initial term T . A morphism σ : T′ → T
′′

of towers (47) is an array σ = (σ1, σ2, . . . , σk) of isomorphisms as in

T ′

τ ′
1

��

σ1

∼=
// T ′′

τ ′′
1

��
T ′

1

τ ′
2 ��

σ2

∼=
// T ′′

1

τ ′′
2��

...

τ ′
k−1

��

...

τ ′′
k−1

��
T ′
k−1

σk

∼=
// T ′′

k−1 .

(49)

Definition 3.8. A labeled tower is a pair (ℓ,T) consisting of a tower T as in (47) together with
an isomorphism (the labeling) ℓ : X → T . We denote by lTw(X) the set of all labeled towers of
this form.
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We will equip lTw(X) with the structure of a groupoid generated by morphisms of two types,
modulo the commutativity relations specified below. Each morphism σ : T′ → T

′′ of towers (47)
determines a morphism (ℓ,σ) : (ℓ,T′)→ (σ1ℓ,T

′′) of the first type. These morphisms compose as
follows. Suppose that (ℓ,σ′) : (ℓ,T′)→ (σ′

1ℓ,T
′′) and (σ′

1ℓ,σ
′′) : (σ′

1ℓ,T
′′)→ (σ′′

1σ
′
1ℓ,T

′′′) are two
such morphisms, then

(σ′
1ℓ,σ

′′)(ℓ,σ′) := (σ′′
1σ

′
1ℓ,σ

′′σ′).

To define morphisms of the second type, consider two towers of elementary morphisms,

T
′ := T

τ1−→ T1
τ2−→ · · ·

τu−1
−→ Tu−1

τ ′
u−→ T ′

u

τ ′
u+1
−→ Tu+1

τu+2
−→ · · ·

τk−1
−→ Tk−1

and

T
′′ := T

τ1−→ T1
τ2−→ · · ·

τu−1
−→ Tu−1

τ ′′
u−→ T ′′

u

τ ′′
u+1
−→ Tu+1

τu+2
−→ · · ·

τk−1
−→ Tk−1,

as in (48). Their associated fiber sequences are clearly of the form

t1, . . . , tu−1, t
′
u, t

′
u+1, tu+2, . . . , tk resp. t1, . . . , tu−1, t

′′
u, t

′′
u+1, tu+2, . . . , tk.

Assume that the diagram
T ′
u τ ′

u+1

&&◆◆
◆◆◆

◆

Tu−1
τ ′′
u

&&◆◆
◆◆◆

◆

τ ′
u

88♣♣♣♣♣♣
Tu+1

T ′′
u

τ ′′
u+1 88qqqqqq

is as in (9) from Corollary 1.7, with φ′ = τ ′
u, φ

′′ = τ ′′
u , ψ′ = τ ′

u+1 and ψ′′ = τ ′′
u+1, and thus

t′u = t′′u+1 and t′u+1 = t′′u. The above situation, by definition, determines an invertible morphism
ϑu : (ℓ,T′)→ (ℓ,T′′) of the second type. The resulting groupoid will be denoted lTw(X).

Morphisms of both types are subject to relations. They are easy to figure out, so we address
only the most complicated case of morphisms ϑu, ϑv of the second type with |v−u| = 1. To this
end, consider the diagram

T ′
u

τ ′
u+1 //

ω′
u+1

��❅
❅❅

❅❅
❅❅

❅❅
❅❅

❅❅
T ′
u+1

τ ′
u+2

  ❇
❇❇

❇❇
❇❇

❇❇
❇❇

❇❇

ϑ′
u+1

· · · // Tu−1

τ ′′
u

��❅
❅❅

❅❅
❅❅

❅❅
❅❅

❅❅

τ ′
u

??⑧⑧⑧⑧⑧⑧⑧⑧⑧⑧⑧⑧⑧
ϑu Tu+1

τu+2 // Tu+2
// · · ·

ϑ′′
u+1

T ′′
u

ω′′
u+1

??⑧⑧⑧⑧⑧⑧⑧⑧⑧⑧⑧⑧⑧ τ ′′
u+1 // T ′′

u+1

τ ′′
u+2

>>⑤⑤⑤⑤⑤⑤⑤⑤⑤⑤⑤⑤⑤

(50)

representing the composition ϑ′′
u+1ϑuϑ

′
u+1, such that τ ′

u is r-elementary, τ ′
u+1 is j-elementary, τ ′

u+2

is i-elementary, and i, |τ ′
u+2|(j) |τ

′
u+2τ

′
u+1|(r) are mutually distinct elements of |Tu+2| – the case

of three disjoint fibers. Notice that the maps τ ′
u, τ

′
u+1 and τ ′

u+2 uniquely determine the remaining
ones, by the following

Lemma 3.9. There exists a natural reflection (φ′, ψ′)↔ (φ′′, ψ′′) between (k, i)-pairs, cf. Defini-
tion 1.4, and (i, k)-pairs such that φ′ψ′ = φ′′ψ′′.

Proof. Assume that T
ψ′

→ P ′ φ′

→ S is a (k, i)-pair. Then α := φ′ψ′ has precisely two nontrivial
fibers, say F ′ over k and F ′′ over i. The weak blow-up axiom produces the commutative diagram

T

α

��✷
✷✷

✷✷
✷✷

✷✷
ψ′′

// P ′′

φ′′

��✡✡
✡✡
✡✡
✡✡
✡✡

WBU

S .
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in which φ′′ is elementary, with its only nontrivial fiber F ′ over k, under the condition that the
prescribed fiber maps ψ′′

s , s ∈ |T |, are the unique maps to the chosen local terminal objects
except ψ′′

k which is the identity 11 : F ′ → F ′. Then (φ′′, ψ′′) is an (i, k)-pair. Applying the above
construction to (φ′′, ψ′′) clearly produces the original (φ′, ψ′).

Returning to (50), Lemma 3.9 with φ′ = τ ′
u+2 and ψ′ = τ ′

u+1 gives the maps τu+2 and ω′
u+1,

the maps ω′
u+1 and τ ′

u determine ω′′
u+1 and τ ′′

u and, finally, τu+2 and ω′′
u+1 determine τ ′′

u+2 and
τ ′′
u+1. In the same manner, we obtain the diagram

T ′
u

τ ′
u+1 // T ′

u+1

τ ′
u+2

!!❇
❇❇

❇❇
❇❇

❇❇
❇❇

❇❇

ϑ′
u

· · · // Tu−1
τu //

τ ′′
u

��❅
❅❅

❅❅
❅❅

❅❅
❅❅

❅❅

τ ′
u

??⑦⑦⑦⑦⑦⑦⑦⑦⑦⑦⑦⑦⑦
Tu

δ′′
u+1

��❅
❅❅

❅❅
❅❅

❅❅
❅❅

❅❅

δ′
u+1

??⑦⑦⑦⑦⑦⑦⑦⑦⑦⑦⑦⑦⑦
ϑu+1 Tu+2

// · · ·

ϑ′′
u

T ′′
u

τ ′′
u+1 // T ′′

u+1

τ ′′
u+2

==⑤⑤⑤⑤⑤⑤⑤⑤⑤⑤⑤⑤⑤

One can prove, by generalizing Lemma 3.9 to the case of three morphisms, that the maps τ ′′
u , τ

′′
u+1

and τ ′′
u+2 are the same in both diagrams, giving rise to the relation

ϑ′′
u+1ϑuϑ

′
u+1 = ϑ′′

uϑu+1ϑ
′
u. (51)

Since all morphisms of the second type are involutions by Lemma 3.9 again, we notice the resem-
blance of (51) and the relation between the generating transpositions of the symmetric group Σ3.
This is because morphisms of the second type generalize the interchange of adjacent levels in a
leveled tree.

Example 3.10. Since morphisms of both types preserve the height of towers, the groupoid lTw(X)
is graded,

lTw(X) =
∐
h≥1 lTwh(X),

where lTwh(X) is the subgroupoid of labeled towers of height h. It is clear that lTw1(X) is the
category X/Oiso of isomorphisms in O under X .

In lTw2(X), only morphisms of the first type exist. Therefore, labeled towers (ℓ′,T′) and
(ℓ′′,T′′) are connected by a morphism if and only if there is a commuting diagram

X

ℓ′

∼=~~⑥⑥
⑥⑥
⑥⑥
⑥⑥

ℓ′′

∼=   ❇
❇❇

❇❇
❇❇

T ′

τ ′

��

σ1

∼=
// T ′′

τ ′′

��
T ′

1

σ2

∼=
// T ′′

1

(52)

with isomorphisms σ1 and σ2.

For an isomorphism ω : X ′
∼=−→X ′′ one has the induced map ω∗ : lTw(X ′′) → lTw(X ′) that

sends the labeled tower (ℓ′′,T′′) ∈ lTw(X ′′) to (ℓ′′ω,T′′) ∈ lTw(X ′), which clearly extends to
a functor (denoted by the same symbol) ω∗ : lTw(X ′′) → lTw(X ′). This makes the collection of

categories lTw(X) a Grp-presheaf on Oiso. Our next move will be to construct, for each G⊲W
φ
→ X ,

a functor
◦φ : lTw(X)× lTw(G)→ lTw(W ). (53)

As the first step in this construction we will prove that each labeled tower (ℓ,T) can be func-
torially replaced by one in which ℓ is a quasibijection. To this end we prove a couple of auxiliary
lemmas.
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Lemma 3.11. The factorization ξ = φσ, φ ∈ Oord, σ ∈ Oqb, of an isomorphism ξ : A → B
guaranteed by the factorization axiom is unique, and both φ and σ are isomorphisms too.

Proof. Consider two factorizations, φ′σ′ and φ′′σ′′, of ξ. Since σ′ and σ′′ are quasibijections, they
are invertible, so one may define u by the commutativity of the diagram

X ′
φ′

∼= ''❖❖
❖❖❖

❖

A

σ′

∼

88qqqqqq
σ′′

∼ &&▼▼
▼▼▼

▼ B .

X ′′

φ′′

∼=

77♦♦♦♦♦♦

u

OO

By the left triangle, u is a quasibijection while it belongs to Oord by the right triangle. The
uniqueness follows from [3, Corollary 2.6]. The invertibility of φ′ and φ′′ is clear.

Lemma 3.12. Each corner
T̃

ω

∼=
// T
φ��
S

(54a)

in which ω is an isomorphism from Oord and φ is elementary, can be canonically and functorially
completed to the square

T̃

φ̃ ��

ω

∼=
// T
φ��

S̃
ω̃

∼=
// S

(54b)

with ω̃ an isomorphisms from Oord and φ̃ elementary.

Proof. Since φ is elementary, it has one fiber F = φ−1(i) for some i ∈ |S| such that e(F ) ≥ 1, and
the remaining fibers are the chosen local terminal objects u1, . . . , ui−1, ui+1, . . . , u|S|. Consider the
diagram

T̃
ω //

π

��✾
✾✾

✾ T
φ

��✆✆
✆✆

S

in which π := φω. Since ω is an isomorphism, by the functoriality of fiber functors, each induced
map ωs : π−1(s) → φ−1(s), s ∈ |S|, is an isomorphism too. Using this and the obvious fact that
π ∈ Oord, we see that the ordered list of fibers of π equals

v1, . . . , vi−1, G, vi+1, . . . , v|S|

where e(G) ≥ 1, while all the remaining fibers are of grade 0 and cardinality 1. The WBU produces
the diagram

T̃

π

��✷
✷✷
✷✷
✷✷

φ̃ // S̃

ω̃

��☞☞
☞☞
☞☞
☞

WBU

S

such that the ordered list of fibers of ω̃ equals

v1, . . . , vi−1, U, vi+1, . . . , v|S|

and all the induced maps between the fibers are the identities except φ̃i : G → U , which is the
unique map to the chosen local terminal object U in the connected component of G.

Axiom (iv) of an operadic category, cf. [3, Section 1] or [2, page 1634], identifies the fibers of
φ̃ with the corresponding fibers of the maps induced by φ̃ between the fibers. Since, again by the
axioms of an operadic category, the fibers of the identity map are the chosen local terminal objects,
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and the fiber of the unique map G → U is G, we conclude that φ̃ is elementary. Finally, ω̃ is an
isomorphism by [3, Lemma 2.12]. This concludes the constructions.

The functoriality means that any isomorphism of corners in (54a), in the usual sense of isomor-
phisms of diagrams, uniquely extends to an isomorphism of the corresponding squares (54b). This
can be established by a standard diagram chase.

Proposition 3.13. Each (ℓ,T) ∈ lTw(X) can be functorially replaced within its isomorphism class
by some (ℓ̃, T̃) in which ℓ̃ is a quasibijection.

Proof. Let T be as in (47) and let ℓ : X → T be an isomorphism. We decompose ℓ as σ1ℓ̃, with ℓ̃
a quasibijection and σ1 an isomorphism in Oord. Lemma 3.12 gives a canonical square

T̃

τ̃1 ��

σ1

∼=
// T
τ1��

T̃1
σ2

∼=
// T1

in which τ̃1 is elementary and σ2 an isomorphism in Oord. Repeated application of Lemma 3.12
produces a tower T̃ labeled by the quasibijection ℓ̃ : X → T̃ , as well as a morphism of the first
type (ℓ̃, T̃)→ (ℓ,T).

Let l̃Tw(X) be the graded category whose objects are towers (ℓ,T) labeled by a quasibijection.
Morphisms of the first type in l̃Tw(X) are those (ℓ,σ) : (ℓ,T′)→ (σ1ℓ,T

′′) in which σ1 is a quasi-
bijection. Morphisms of the second type are the same as those in lTw(X). Notice that l̃Tw(X) is
a full subcategory of lTw(X). Indeed, if both ℓ and σ1ℓ are quasibijections, then ℓ−1 is a quasi-
bijection by QBI, so σ1 = (σ1ℓ)ℓ

−1 is a quasibijection too. This, along with Proposition 3.13,
implies that l̃Tw(X) is a full reflective graded subcategory of lTw(X).

Example 3.14. Labeled towers (ℓ′,T′), (ℓ′′,T′′) ∈ l̃Tw
2
(X) are isomorphic if and only if there is

the commuting diagram (52) in which the maps in the upper triangle are quasibijections.

Let G ⊲W
φ
→ X be elementary. Assume we are given a labeled tower (ℓ′,F) ∈ lTw(G), where

F := F
ϕ1
−→ F1

ϕ2
−→ F2

ϕ2
−→ · · ·

ϕl−1
−→ Fl−1 (55)

is a tower with the associated fibers f1, . . . , fl, with the labeling ℓ′ : G → F . Assume we are also
given a labeled tower (ℓ̃,T) ∈ l̃Tw(X), with ℓ̃ a quasibijection. The blow-up axiom gives a unique
diagram

W
φ ��

ℓ′′

∼=
// S
ρ��

X
ℓ̃

∼
// T

in which F ⊲ S
ρ
→ T is elementary and ℓ′′ an isomorphism inducing the map ℓ′ : G → F between

the unique nontrivial fibers of φ and ρ, respectively. Lemma 3.2 gives the composite tower

T ◦ρ F := S
ρ1
−→ S1

ρ2
−→ S2

ρ3
−→ · · ·

ρl−1
−→ Sl−1

ρl−→ T
τ1−→ T1

τ2−→ T2
τ2−→ · · ·

τk−1
−→ Tk−1 (56)

whose initial part is (41b), so we have the composite labeled tower

(ℓ̃,T) ◦φ (ℓ′,F) := (ℓ′′,T ◦ρ F) ∈ lTw(W ). (57)

The above construction clearly extends to a functor

◦φ : l̃Tw(X)× lTw(G)→ lTw(W )

which, precomposed with the equivalence lTw(X)→ l̃Tw(X) in the first variable, gives (53).
Let E ∈ CollV

1 be a 1-connected collection. For a tower (48) we define

E(T) := E[t1]⊗ · · · ⊗E[tk] ∈ V.
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We will show how the rule E(ℓ,T) := E(T) extends to a functor E : lTw(X) → V. Consider a
morphism (ℓ,σ) : (ℓ,T′)→ (σ1ℓ,T

′′) of the first type, with σ : T′ → T
′′ a map of towers as in (49).

For each 0 ≤ s ≤ k one has the commutative diagram

T ′
s

(τ ′
s,i)

��

τs

%%▲▲
▲▲

▲▲
▲▲

▲▲
▲

σs+1

∼=
// T ′′
s

(τ ′′
s ,j)

��
T ′
s−1

σs

∼=
// T ′′
s−1

in which τs := σsτ
′
s = τ ′′

s σs+1 and where T ′
s := T ′, T ′′

s := T ′′ if s = 0. Lemma 1.1 provides us with

t′s ⊲ τ
−1
s (j)

(τ ′
s)j
−→ σ−1

s (j) and (σs+1)j : τ−1
s (j)→ t′′s

where σ−1
s (j) is local terminal by [3, Lemma 2.12], so we can define σ⋆s : E[t′′s ] → E[t′s] as the

composite

σ⋆s : E[t′′s ]
(σs+1)∗

j
−→ E[τ−1

s (j)] = E[t′s]

where the equality uses the fact that E is constant along virtual isomorphisms. This in turn induces
a map

σ⋆ : E(T′′) = E[t′1]⊗ · · · ⊗E[t′k] −→ E(T′) = E[t′′1 ]⊗ · · · ⊗E[t′′k ] (58)

by σ⋆ := σ⋆1 ⊗ · · · ⊗ σ
⋆
k. Define finally E(ℓ,σ) : E(ℓ,T′′)→ E(σ1ℓ,T

′) as E(ℓ,σ) := σ⋆.
Let us discuss morphisms of the second type. Corollary 1.7 gives identities

t′u = t′′u+1 and t′′u = t′u+1.

We define the E-image of this map as the identification of

e1 ⊗ · · · ⊗ e
′′
u+1 ⊗ e

′
u+1 ⊗ · · · ⊗ ek ∈ E[t1]⊗ · · · ⊗E[t′u]⊗ E[t′u+1]⊗ · · · ⊗E[tk]

in E(T′) with

e1 ⊗ · · · ⊗ e
′
u+1 ⊗ e

′′
u+1 ⊗ · · · ⊗ ek ∈ E[t1]⊗ · · · ⊗E[t′′u]⊗ E[t′′u+1]⊗ · · · ⊗E[tk]

in E(T′′) given by the symmetry constraint in V. It is simple to show that the above definition
of the functor E is compatible with the relations between the generating morphisms of lTw(X).
For instance, the compatibility with (51) is guaranteed by the hexagon axiom for the symmetric
monoidal category V.

Here and at several places below we use the notation that assumes that the objects of V have
elements. The interested reader can easily rewrite formulas of this type to more general but less
intuitive language of diagrams.

Lemma 3.15. The diagram of functors

V

l̃Tw(X)× lTw(G)

E⊗E

88qqqqqqqqqqq
◦φ // lTw(W )

E

cc❋❋❋❋❋❋❋❋❋

commutes for an arbitrary elementary morphism G ⊲W
φ
→ X.

Proof. Assume that (ℓ̃,T) ∈ l̃Tw(X) and (ℓ′,F) ∈ lTw(G), with T as in (48) and F as in (55).
Recall that then (ℓ̃,T) ◦φ (ℓ′,F) ∈ lTw(W ) is given by formula (57). The crucial fact is that the
fiber sequence of T ◦ρ F is

f1, . . . , fl, t1, . . . , tk,

where f1, . . . , fl resp. t1, . . . , tk is the fiber sequence of F resp. of T. The canonical isomorphism

E(ℓ,T)⊗ E(ℓ′,F) ∼= E
(
(ℓ,T) ◦φ (ℓ′,F)

)

then follows immediately from the definition of the functor E as given above.
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Theorem 3.16. Let V be a cocomplete symmetric monoidal category and let E ∈ CollV
1 be a

1-connected collection in V. Then the formula

F(E)(X) :=





colim
(ℓ,T)∈lTw(X)

E(ℓ,T) if e(X) ≥ 1

k if e(X) = 0
(59)

defines a left adjoint E 7→ F(E) to the forgetful functor � of Proposition 3.7. Therefore F(E) is
the free 1-connected strictly unital Markl operad generated by E.

Adjoining the monoidal unit in (59) should be compared to adjoining the unit to the free
nonunital operad in formula (II.1.58) of [21].

Proof of Theorem 3.16. Assume that X ∈ O is such that e(X) ≥ 1. It is clear that F(E)(X) is
graded by the height k of the underlying towers so that it decomposes as

F(E)(X) ∼=
∐

k≥1

F
k(E)(X). (60)

Elements of F
k(E)(X) are equivalence classes [ℓ, e] consisting of a labeling ℓ : X

∼=
−→T and of an

element e ∈ E(T) associated with a labeled tower (ℓ,T) of height k as in Definition 3.8. For an

isomorphism ω : Y
∼=
−→X one puts ω∗[ℓ, e] := [ℓω, e] ∈ F

k(E)(Y ). This turns F
k(E) into an Oiso-

presheaf in V. Defining formally F
0(E) to be the trivial presheaf k, one thus has a decomposition

F(E) ∼=
∐

k≥0

F
k(E)

of Oiso-presheaves in V.
In particular, this shows that F(E) is an Oiso-presheaf as required in the definition of Markl

operad.
To define the composition, recall that l̃Tw(X) is a full reflective subcategory of lTw(X), therefore

one has the canonical isomorphism

F
k(E)(X) ∼= colim

(ℓ̃,T)∈l̃Tw
k

(X)

E(ℓ̃,T)

with the colimit taken over towers of height k labeled by quasibijections. The composition law

◦φ : F
k(E)(X)⊗ F

l(E)(G) −→ F
k+l(E)(W ), G ⊲ W

φ
→ X, k, l ≥ 1, (61)

is then defined as the colimit of the natural isomorphism between the functors

E ⊗ E : l̃Tw
k
(X)× lTwl(G)→ V and E : lTwk+l(W )→ V

established in Lemma 3.15. One must also define the composition law in (61) for k = 0, i.e., specify
a map

◦φ : F
l(E)(G) ∼= F

0(E)(X)⊗ F
l(E)(G) −→ F

l(E)(W ). (62)

Notice first that the grade of X must be zero, so by our assumptions on O, X is a local terminal

object. Consider an element [ℓ′, e] ∈ F
l(E)(G) with ℓ′ : G

∼=−→F and e ∈ E(F) with F as in (55).
Using the blow-up axiom we include φ : W → X to the diagram

W
ℓ′′

∼=
//

φ ��✻
✻✻

✻✻
✻ S

ρ
��✡✡
✡✡
✡✡

X

in which ℓ′′ induces the map ℓ′ : G
∼=−→F between the fibers. Let S be the tower as in (41b) with

X in place of T . Then (ℓ′′,S) ∈ lTw(W ). Since by construction the associated fiber sequence of
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S is the same as the associated fiber sequence of F, one has E(F) = E(S), thus it makes sense to
define ◦φ in (62) by ◦φ([ℓ′, e]) := [ℓ′′, e].

Notice that one cannot have l = 0 in (61), since the fiber of an elementary map has always
positive grade. We leave to the reader to verify that the above constructions make F(E) a Markl
operad.

Let us describe F
1(E) explicitly. As noticed in Example 3.10, lTw1(X) is the category X/Oiso

of isomorphisms in O under X . Elements of F
1(E)(X) are equivalence classes [ω, e] of pairs ω :

X
∼=
−→T , e ∈ E[T ], modulo the identification [σω′, e′′] = [ω′, σ∗e′′] for each diagram

X

ω′

∼=��✠✠
✠✠
✠✠

ω′′

∼= ��✻
✻✻

✻✻
✻

T ′ σ

∼=
// T ′′

of isomorphisms in O. Since lTw1(X) is connected, with a distinguished object 11 : X → X , the map
i : E[X ]→ F

1(E)(X) given by i(e) := [11, e] for e ∈ E[X ], is an isomorphism. These isomorphisms
assemble into an isomorphism E ∼= F

1(E) of collections. Let us finally denote by ι : E →֒ �F(E)
the composite

ι : E
∼=−→F

1(E) →֒ �F(E). (63)

To establish the freeness of Theorem 3.16 means to prove that, for each 1-connected strictly
unital Markl operad M and a map of collections y : E → �M, there exists precisely one map
ŷ : F(E)→M of strictly unital Markl operads making the diagram

E
� � ι //

y

$$■
■■

■■
■■

■■
■ �F(E)

�ŷ

��
�M

commutative.
Let us assume that such a map ŷ : F(E) → M exists and prove that it is unique. To this end

consider an arbitrary element [ℓ, e] ∈ F(E)(X) given by a pair ℓ : X
∼=
−→T , e ∈ E(T) for a labeled

tower (ℓ,T) ∈ lTw(X) as in Definition 3.8. For

e = e1 ⊗ · · · ⊗ ek ∈ E[t1]⊗ · · · ⊗E[tk]

it immediately follows from the definition of the operad structure of F(E)(X) that

[ℓ, e] = ℓ∗
(
e1 ◦τ1 (e2 ◦τ2 · · · (ek−1 ◦τk−1

ek) · · · )
)
,

where we used the notation
x ◦τi y := (−1)|x||y| ◦τi (y ⊗ x)

for x ∈ E[Ti], y ∈ E[ti] and 1 ≤ i ≤ k−1. We moreover considered e1, . . . , ek as elements of F
1(E)

via the isomorphism i : E
∼=
−→F

1(E). Since ŷ is a morphism of operads, we have

ŷ([ℓ, e]) = ℓ∗
(
y(e1) ◦τ1 (y(e2) ◦τ2 · · · (y(ek−1) ◦τk−1

y(ek)) · · · )
)
. (64)

On the other hand, one may verify that (64) indeed defines a morphism of operads with the
required property, to finish the proof.

4 Quadratic Markl operads and duality

The goal of this section is to introduce quadratic Markl operads over operadic categories and define
their Koszul duals. As customary in this context, the base monoidal category V here and in the
rest of the paper will be the category Vect of graded vector spaces over a field k of characteristic
0. All operads will be tacitly assumed to be strictly unital. The operadic category O shall fulfill
Assumptions 1.2 plus the rigidity axiom Rig.

Accepted in Compositionality on 2023-01-17. Click on the title to verify. 24



Volume 5 Issue 4 ISSN 2631-4444

Definition 4.1. An ideal I in a Markl operad M is a sub-Oiso-presheaf of M which is simultaneously
an ideal with respect to the circle products (11), i.e.

◦φ(a⊗ b) ∈ I(T ) if a ∈ I(S) or b ∈ I(F ) for F ⊲ T
φ
→ S.

For a sub-Oiso-presheaf R we denote by (R) the component-wise intersection of all ideals containing
R. We call (R) the ideal generated by R.

Definition 4.2. A quadratic data consists of a 1-connected collection E ∈ CollV
1 and an sub-Oiso-

presheaf R of F
2(E). A 1-connected Markl operad M is quadratic if it is of the form

M = F(E)/(R).

It is binary if the generating collection E is such that E[T ] 6= 0 implies that e(T ) = 1.

Many examples of binary operads will be given in the following sections. Let us proceed to our
generalization of the operadic Koszul duality of [10] to operads over general operadic categories.

We start by noticing that the piece lTwk(X) of height k of the groupoid lTw(X) constructed
in Section 3 decomposes into the coproduct

lTwk(X) =
∐

c∈π0(lTwk(X))

lTwkc (X)

over the set π0(lTwk(X)) of connected components of lTwk(X), which is thus also true for the kth
piece of the X-component of the free operad

F
k(E)(X) =

⊕

c∈π0(lTwk(X))

F
k
c (E)(X). (65)

Choose a labeled tower (ℓc,Tc) in each connected component c of lTwk(X) and assume the notation

T
c := T c

τc1−→ T c1
τc2−→ T c2

τc2−→ · · ·
τck−1
−→ T ck−1,

with the associated fiber sequence tc1, . . . , t
c
k. Since there are no automorphisms of the first type of

(ℓc,Tc) in lTwk(X) by the rigidity of O, we have

F
k
c (E)(X) ∼= E[tc1]⊗ · · · ⊗E[tck],

so we have an isomorphism of graded vector spaces

F
k(E)(X) ∼=

⊕

c∈π0(lTwk(X))

E[tc1]⊗ · · · ⊗E[tck], (66a)

cf. the similar presentation [21, formula (II.1.51)] for “ordinary” free operads. In the light of

Proposition 3.13, one may assume that the tower (ℓc,Tc) in (65) belongs to l̃Tw
k
(X), therefore (66a)

can be written as the direct sum

F
k(E)(X) ∼=

⊕

c∈π0(l̃Tw
k

(X))

E[tc1]⊗ · · · ⊗E[tck] (66b)

over isomorphism classes of objects of l̃Tw
k
(X).

Let ↑E∗ be the suspension of the component-wise linear dual of the collection E. With the
above preliminaries, it is easy to define a pairing

〈−|−〉 : F
2(↑E∗)(X)⊗ F

2(E)(X) −→ k, (α, x) 7−→ α(x) (67)

as follows. If c′ 6= c′′ we declare the subspaces F
2
c′(↑E∗)(X) and F

2
c′′(E)(X) of F

2(↑E∗)(X)
resp. F

2(E)(X) to be orthogonal. If c := c′ = c′′, then

F
2
c(↑E

∗)(X) ∼= ↑E∗[tc1]⊗ ↑E∗[tc2] and F
2
c(E)(X) ∼= E[tc1]⊗ E[tc2]
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and the pairing between F
2
c(↑E

∗)(X) and F
2
c(E)(X) is defined as the canonical evaluation

↑E∗[tc1]⊗ ↑E∗[tc2]⊗ E[tc1]⊗ E[tc2] −→ k.

We leave as an exercise to show that this definition does not depend on the choices of the repre-
sentatives (ℓc,Tc).

Definition 4.3. Let M be a quadratic Markl operad as in Definition 4.2. Its Koszul dual M! is
the quadratic Markl operad defined as

M
! = F(↑E∗)/(R⊥),

where R⊥ denotes the component-wise annihilator of R in F
2(↑E∗) under the pairing (67).

Definition 4.4. A quadratic Markl operad M is self-dual if the associated categories of M- and
M!-algebras in Vect are isomorphic.

Example 4.5. All assumptions of this section are met by the operadic category Finsemi of finite
non-empty sets and their surjections. The operads for this category are the classical constant-
free operads for which Koszul duality is classical heritage [10]. A similar example is the operadic
category ∆semi of non-empty ordered finite sets and their order-preserving surjections. Our theory in
this case recovers Koszul duality for nonsymmetric operads. The terminal category 1 also satisfies
the assumptions of this section. The only 1-connected 1-operad, i.e. an associative algebra, is
however the ground field k.

5 Modular and odd modular operads

In this section we analyze binary quadratic operads over the operadic category ggGrc of connected
genus-graded ordered graphs introduced in [3, Example 4.19]. Recall from [3, Example 4.26] that
ggGrc satisfies all of the properties required for Koszul duality, namely, ggGrc is rigid and fulfills
Assumptions 1.2 .

We will prove that the terminal operad 1ggGrc in the category ggGrc is binary quadratic and
describe its Koszul dual KggGrc := 1!

ggGrc. We then show that algebras for 1ggGrc are modular
operads of [9] while algebras for 1!

ggGrc are their suitably twisted versions. We start by analyzing
graphs in ggGrc with a small number of internal edges.

Example 5.1. The local terminal objects of ggGrc are genus-graded corollas c(σ)g for a permu-
tation σ = (σ1, . . . , σn) ∈ Σn and a genus g ∈ N:

b

g

1
2

3

4

n
σ1

σ2

σ4

σ3

σn (68)

The chosen local terminal objects are the genus-graded corollas cgn := c(11n)g with 11n ∈ Σn the
identity permutation.

Example 5.2. Any ordered connected genus-graded graph with one internal edge and one vertex
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looks like ξ(λ1, . . . , λk|λk+1, λk+2)g in

g

b

1

2

k

λ1

λ2

λk

λk+1

λk+2

(69a)

with half-edges labeled by a permutation {λ1, . . . , λk+2} of {1, . . . , k + 2}. Its automorphism group
equals Σ2 that interchanges the half-edges forming the loop. Any two graphs of this kind are
isomorphic. In

gu gv

l1

l2

lk

λu1
λu2

λuk

b

λvl

λv2

λv1

b

lk+1

lk+2

lk+l

λuk+1 λvl+1u v

(69b)
we depict a general graph ν(λu1 , . . . , λ

u
k |λ

u
k+1, λ

v
l+1|λ

v
1 , . . . , λ

v
l )
gu|gv with one internal edge and two

vertices labeled by u, v ∈ {1, 2} with genera gu, gv ∈ N. Its global order is determined by a
(k, l)-shuffle

{l1 < · · · < lk, lk+1 < · · · < lk+l} = {1, . . . , k + l}.

The half-edges adjacent to u are labeled by a permutation λu of {1, . . . , k + 1}; the half-edges
adjacent to v by a permutation λv of {1, . . . , l+ 1}. Two such graphs with the same global orders
and the same genera are always isomorphic. There are no nontrivial automorphisms except for
the case k = l = 0 and gu = gv when the graph is an interval with no legs. Then one has the
automorphism flipping it around its middle.

Example 5.3. A general graph ξ(λ1, . . . , λk|λk+1, λk+2|λk+3, λk+4)g with two internal edges and
one vertex is depicted in

g

b

k

1
λ1

λ2

λk

λk+1

λk+2

λk+3

λk+4

2

(70)

Its local order at its single vertex is determined by a permutation λ of {1, . . . , k+4}. Its automor-
phism group equals the semidirect product Σ2× (Σ2 ×Σ2). We leave the similar detailed analysis
of the remaining graphs with two internal edges as an exercise.

Our next task will be to describe free operads over ggGrc using formula (66b). As the first

step towards this goal we describe isomorphism classes of labeled towers (ℓ,T) ∈ l̃Tw
2
(X) for the

ordered graph
X := ξ(1, . . . , k|k+1, k+2|k+3, k+4)g
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i.e. for the graph in (70) with λ the identity. As observed in Example 3.14, it suffices to consider
diagrams (52) in which all maps in the upper triangle are quasibijections. Since the graphs X,T ′

and T ′′ in that triangle have one vertex only, all ℓ′, ℓ′′ and σ1 belong to Grord, therefore they are

the identities by [3, Corollary 2.6]. Isomorphism classes in l̃Tw
2
(X) are thus represented by maps

τ : ξ(1, . . . , k|k+1, k+2|k+3, k+4)g −→ ξ(ν1, . . . , νk|νk+1, νk+2)g+1 (71)

modulo the equivalence that identifies τ ′ with τ ′′ if and only if there exists an isomorphism σ such
that τ ′′ = στ ′. Notice that a map as in (71) is automatically elementary, and that all elementary
maps from X decreasing the grade by 1 are of this form. Now define the “canonical” maps

pi : ξ(1, . . . , k|k+1, k+2|k+3, k+4)g −→ ξ(1, . . . , k|k+1, k+2)g+1, i = 1, 2,

by postulating that p1 (resp. p2) contracts the loop {k+1, k+2} (resp. {k+3, k+4}) leaving the
other loop unaffected. In other words, the injection ψ1 (resp. ψ2) of half-edges defining p1 (resp. p2)
is the order-preserving injection

(1, . . . , k+2) →֒ (1, . . . , k+4)

that misses the subset {k+1, k+2} (resp. {k+3, k+4}).
We claim that for each τ in (71) there exist a unique i ∈ {1, 2} and a unique isomorphism σ

making the diagram

ξ(1, . . . , k|k+1, k+2|k+3, k+4)g

pi

zztt
tt
tt
tt
tt
t

τ

%%❑
❑❑

❑❑
❑❑

❑❑
❑❑

ξ(1, . . . , k|k+1, k+2)g+1 σ

∼=
// ξ(ν1, . . . , νk|νk+1, νk+2)g+1

(72)

commutative. Since, by definition, morphisms in ggGrc preserve global orders, one has for the
injections ψτ resp. ψσ of half-edges defining τ resp. σ,

ψτ (νj) = ψσ(νj) = j for 1 ≤ j ≤ k.

Since ψτ must further preserve the involutions on the sets of half-edges, there are only two possi-
bilities:
Case 1: ψτ{νk+1, νk+2} = {k+3, k+4}. In this case we take i = 1 in (72) and define

ψσ(νk+1) := ψτ (νk+1)− 2, ψσ(νk+2) := ψτ (νk+2)− 2.

It is clear that with this choice the diagram in (72) is commutative and that it is the only such
choice.
Case 2: ψτ{νk+1, νk+2} = {k+1, k+2}. In this case we take i = 2 and define

ψσ(νk+1) := ψτ (νk+1), ψσ(νk+2) := ψτ (νk+2).

Intuitively, in Case 1 the map τ contracts the loop {k+1, k+2}, in Case 2 the loop {k+3, k+4}. In
both cases the isomorphism σ is uniquely determined by the behavior of τ on the non-contracted
edge.

The above calculation shows that there are precisely two isomorphism classes of objects of

l̃Tw
2
(X), namely those of p1 and p2. Notice that

p−1
1 (1) = ξ(1, . . . , k, k+3, k+4|k+1, k+2)g and p−1

2 (1) = ξ(1, . . . , k, k+1, k+2|k+3, k+4)g.

Let E ∈ CollV
1 be a 1-connected ggGrc-collection as in Definition 3.5. Formula (66a) gives

F
2(E)(X) ∼= E[ξ(1, . . . , k, k+3, k+4|k+1, k+2)g]⊗ E[ξ(1, . . . , k|k+1, k+2)g+1]

⊕ E[ξ(1, . . . , k, k+1, k+2|k+3, k+4)g]⊗ E[ξ(1, . . . , k|k+1, k+2)g+1] .

Analogous expressions for X = ξ(λ1, . . . , λk|λk+1, λk+2|λk+3, λk+4)g can be obtained from the
above ones by substituting j 7→ λj for 1 ≤ j ≤ k + 4. The result is

F
2(E)(X) ∼= E[ξ(λ1, . . . , λk, λk+3, λk+4|λk+1, λk+2)g]⊗ E[ξ(λ1, . . . , λk|λk+1, λk+2)g+1] (73)

⊕ E[ξ(λ1, . . . , λk, λk+1, λk+2|λk+3, λk+4)g]⊗ E[ξ(λ1, . . . , λk|λk+1, λk+2)g+1] .
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Example 5.4. The right-hand side of (73) depends only on the virtual isomorphism classes in
QOvrt(e) of the graphs involved. By the observations made in Example 2.5, these classes do not
depend on the global orders. In this particular case, this means that they do not depend on
the indices λ1, . . . , λk; we can therefore simplify the exposition by removing them from notation
and drawings. We also replace λk+1, . . . , λk+4 by less clumsy symbols a, b, c and d. With this

convention, we write the two representatives of isomorphism classes in l̃Tw
2
(X) as

ξ(∗, c, d|a, b)g ⊲ ξ(∗|a, b|c, d)g
p1
−→ ξ(∗|c, d)g+1 and

ξ(∗, a, b|c, d)g ⊲ ξ(∗|a, b|c, d)g
p2
−→ ξ(∗|a, b)g+1,

where ∗ stands for unspecified labels. The right-hand side of (73) now takes the form
{
E[ξ(∗, c, d|a, b)g]⊗ E[ξ(∗|c, d)g+1]

}
⊕

{
E[ξ(∗, a, b|c, d)g]⊗ E[ξ(∗|a, b)g+1]

}
(74)

with the first summand corresponding to the class of p1 and the second to the class of p2.
We also noticed that the maps p1 and p2 are determined by specifying which of the two loops

of ξ(∗|a, b|c, d)g they contract. The map p1 and its unique nontrivial fiber is thus depicted as

g g g+1
b

a

b

a

b

c

d

cc

d d

p1

⊲

bbb

where he dashed oval indicates which part of the graph is contracted by p1. The pictorial expression
of p2 is similar.

We will use similar pictures as a language for free operads over ggGrc. As an illustration, here
is a pictorial version of (74):

g g
b ⊕ b

E

E

E

E

.

a
a

b b

c
c

d d

(75)

It features the souls of the relevant graphs in the sense of the following

Definition 5.5. The soul of a graph Γ is the graph obtained from Γ by amputating its legs.

The E’s inside the dashed circles indicate the decoration of the fiber represented by the subgraph
inside the circle, while the E’s outside the circles indicate the decoration of the images. Thus the
object on the left of (75) represents the first summand of (74) and the object on the right the
second one. This description should be compared to the description of free “classical” operads in
terms of trees with decorated vertices, cf. [21, Section II.1.9]. Here we have graphs instead of trees
and “nests” of subgraphs ordered by inclusion in place of vertices.

Example 5.6. Using the same reasoning as in Examples 5.3 and 5.4, we can draw similar pictures
describing F

2(E)(X) for X a graph with two internal edges and two vertices with genera g1 and
g2. Their souls are shown in (76a)–(76b) below

b b bb

E

E

E

E
a

c

b

d

a b

c d
⊕

(76a)
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b ⊕
E

E

b b

E

E

b
a ab b

u

v

u

v

(76b)

where, in order to ease the interpretation, we did not show the genera of the vertices. The picture
in (76a) represents an analog of (74):

F
2(E)(X) ∼=

{
E[ν(∗, c|a, b|d, ∗)g1|g2 ]⊗ E[ξ(∗|c, d)g1+g2 ]

}

⊕
{
E[ν(∗, a|c, d|b, ∗)g1|g2 ]⊗ E[ξ(∗|a, b)g1+g2 ]

}

in which the notation ν(∗, c|a, b|d, ∗) resp. ν(∗, a|c, d|b, ∗) refers to the graph in (69b). The picture
in (76b) symbolizes

F
2(E)(X) ∼=

{
E[ξ(∗, b|u, v)g1 ]⊗ E[ν(∗|a, b|∗)g1|g2+1]

}

⊕
{
E[ν(∗|a, b|u, v, ∗)g1|g2 ]⊗ E[ξ(∗|u, v)g1+g2 ]

}
.

The last relevant case is when X is an ordered graph with two internal edges and three vertices
with genera g1, g2 and g3. The situation is portrayed in

b

E

E

b b b

E

E

b b⊕
aa b bc cd d

(77)

where again the genera of the vertices are not shown. The resulting formula is

F
2(E)(X) ∼=

{
E[ν(∗|a, b|c, ∗)g1|g2 ]⊗ E[ν(∗|c, d|∗)g1+g2|g3 ]

}

⊕
{
E[ν(∗, b|c, d|∗)g2|g3 ]⊗ E[ν(∗|a, b|∗)g1|g2+g3 ]

}
.

Remark 5.7. In order to appreciate the advantages of our approach, we suggest to compare the
simple and self-explaining pictures in (75)–(77) with Figures 2 and 3 of [25] expressing the axioms
of modular operads as algebras over a colored operad.

The observations in Examples 5.4 and 5.6 easily generalize to descriptions of isomorphism
classes of labeled towers in lTw(Γ) for an arbitrary graph Γ ∈ ggGrc. Since we will be primarily
interested in free operads generated by binary collections, i.e. 1-connected collections that are
trivial on graphs with more than one internal edge, we will consider only towers whose associated
fiber sequence consists of graphs with one internal edge. Let

Γ
τ1−→ Γ1

τ2−→ Γ2
τ2−→ · · ·

τk−1
−→ Γk−1

be such a tower. By the definition of graph morphisms, one has the associated sequence

edg(Γ) ⊃ edg(Γ1) ⊃ · · · ⊃ edg(Γk−1) (78)

of inclusions of the sets of internal edges. Since the cardinalities of the sets in (78) decrease by
one, there is an obvious one-to-one correspondence between sequences (78) and linear orders on
edg(Γ) such that x > y if y ∈ edg(Γi), x 6∈ edg(Γi) for some i, 1 ≤ i ≤ k − 1. We formulate:

Proposition 5.8. The isomorphism classes of labeled towers in lTw(Γ) whose associated fiber
sequence consists of graphs with one internal edge are in one-to-one correspondence with linear
orders on edg(Γ) modulo the relation ⊲⊳ that interchanges two adjacent edges without a common
vertex in Γ.
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Example 5.9. One has two isomorphism classes of towers for the graph in (70). In the notation
of (75), let x be the edge {a, b} and y the edge {c, d}. Then the picture on the left in that display
corresponds to the order x > y (x is contracted first), the one on the right to y > x.

Proof of Proposition 5.8. Using the same arguments as in Examples 5.4 and 5.6 we show that
each tower can be replaced by an isomorphic one all of whose morphisms are pure contractions
of internal edges, in the sense of [3, Definition 3.3]. Such towers are determined by the order in
which the edges are contracted. The relation ⊲⊳ reflects morphisms of towers of the second type
introduced in Section 3.

Theorem 5.10. The terminal ggGrc-operad 1ggGrc having 1ggGrc(Γ) := k for each Γ ∈ ggGrc and
constant composition laws is binary quadratic.

Proof. Let us define a collection E ∈ CollV
1 by

E[Γ] :=

{
k if Γ has exactly one internal edge

0 otherwise
(79)

with the constant QOvrt(e)-presheaf structure. As we already noticed, the quadratic part F
2(E)

of the free operad may be nontrivial only for graphs with precisely two internal edges, i.e. those
analyzed in Examples 5.4 and 5.6. For X as in (70) and E in (79), formula (74) gives

F
2(E)(X) ∼= {k⊗ k} ⊕ {k⊗ k}

which is a two-dimensional vector space with the basis

b1
1 := {1⊗ 1} ⊕ {0⊗ 0} and b1

2 := {0⊗ 0} ⊕ {1⊗ 1}. (80)

For the situations portrayed in (76a)–(76b) and (77) we get similar spaces, with bases (bt1, b
t
2),

2 ≤ t ≤ 4. Let us denote

r1 := b1
1 − b

1
2, r2 := b2

1 − b
2
2, r3 := b3

1 − b
3
2 and r4 := b4

1 − b
4
2 (81)

We define R(X) to be the subspace of F
2(E)(X) spanned by

– r1 for X with soul as in (75),
– r2 for X with soul as in (76a),
– r3 for X with soul as in (76b), and
– r4 for X with soul as in (77),
while R(X) := 0 if X does not have exactly two internal edges. We are going to prove that

1ggGrc
∼= F(E)/(R) (82)

for the sub-presheaf R = {R(X)}X∈ggGrc of F(E) defined above.
By Proposition 5.8 combined with formula (66a), the vector space F(E)(Γ) is spanned by the

set of total orders on edg(Γ) modulo the relation ⊲⊳ that interchanges any two edges x, y ∈ edg(Γ)
that do not share a common vertex in Γ.

All possible relative configurations of edges x, y that do share a common vertex are in (75)–
(77). Relations in (81) guarantee that two orders that differ by the interchange x ↔ y agree in
the quotient (82). We conclude that all orders on edg(Γ) are mutually equivalent modulo (R), so
F(E)/(R)(Γ) ∼= k as required.

Proposition 5.11. Algebras over the terminal ggGrc-operad 1ggGrc are modular operads.

Proof. The key ingredients of the proof are presentation (82) together with Proposition 6.13 of [3]
which describes 1ggGrc-algebras as morphisms to the endomorphism operad. We start by determin-
ing what the underlying collection

V = {Vc | c ∈ π0(O)}

of the endomorphism operad is in this case.
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We noticed in Example 5.1 that the local terminal objects of ggGrc are the n-corollas c(σ)g

with the vertex of genus g and the local order given by a permutation σ ∈ Σn. The chosen local
terminal objects are the n-corollas cgn := c(11n)g, n, g ∈ N. Therefore the set π0(ggGrc) is indexed
by pairs (n; g) of natural numbers consisting of an “arity” n and a “genus” g, i.e.

π0(ggGrc) =
{

(n; g) | (n; g) ∈ N× N
}
.

The underlying collection of the endomorphism operad is thus a family

M =
{
M(n; g) ∈ Vect | (n; g) ∈ N× N

}
.

The actions u : Vπ0(s1(u)) → Vπ0(u) of the groupoid of local terminal objects in this particular
case give rise to actions of the symmetric group Σn on each M(n; g). We recognize M as the
skeletal version of a modular module recalled in Appendix A. Proposition 6.13 of [3] now identifies
1ggGrc-algebras with morphisms

a : F(E)/(R)→ EndM, (83)

where E is as in (79) and R is spanned by relations (81).

By Proposition 2.8, the unital operad EndM determines a QOvrt(e)-presheaf E̊ndM. Although

EndM is not strictly unital, morphism (83) is still uniquely determined by a map ã : E → E̊ndM

of QOvrt(e)-presheaves given by a family

ã[Γ] : E[Γ]→ E̊ndM([Γ]), [Γ] ∈ QOvrt(e). (84)

By definition, the generating collection E is supported on graphs with one internal edge por-
trayed in (69a) and (69b), whose souls are:

g1 g2 g

.bb
a b

b

u

v

(85)

The operations ã[Γ] may therefore be nontrivial only for graphs of this form.
Let us analyze the operation (84) induced by the virtual isomorphism class of the graph Γ :=

ξ(λ1, . . . , λk|λk+1, λk+2) in (69a). One clearly has π0(s1(Γ)) = (k+2; g) and π0(Γ) = (k; g+1),
therefore ã[Γ] is by (34) a map

ã[Γ] : E[Γ] = k −→ colim
Γ̃

EndM(Γ̃) ∼= colim
σ∈Σk

Vect
(
M(k+2; g),M(k; g+1)σ

)
,

where the first colimit is taken over all Γ̃’s virtually isomorphic to Γ, where σ = (σ1, . . . , σk) and
where M(k; g+1)σ is the copy of M(k; g+1) corresponding to the graph

ξ(σ1, . . . , σk|λk+1, λk+2),

which is virtually isomorphic to ξ(λ1, . . . , λk|λk+1, λk+2). The map ã[Γ] is clearly determined by

ã[Γ](1) :M(k+2; g)→ colim
σ∈Σk

M(k; g+1)σ

which is the same as a collection of morphisms

◦σuv :M(k+2; g) −→M(k; g+1), u := λk+1, v := λk+2, σ ∈ Σk,

satisfying
◦σδuv(x) = σ ◦δuv (x), x ∈ M(k+2; g), σ, δ ∈ Σk.

The operation ◦uv := ◦11k
uv is the skeletal version of the contraction (116b). The identity ◦uv =

◦vu follows from the Σ2-symmetry of the graph Γ. In exactly the same manner, the graph in (69b)
gives rise to the operations in (116a).

The map ã determines a morphism (83) if and only if it sends the generators (81) of R to 0.
The vanishing ã(ri) = 0 for 1 ≤ i ≤ 4 corresponds to the remaining axiom of modular operads:

Axiom (116h) corresponds to relation r2, Axiom (116i) corresponds to relation r3,

Axiom (116f) corresponds to relation r4, Axiom (116g) corresponds to relation r1.
This finishes the proof.
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Theorem 5.12. The Koszul dual of the operad 1ggGrc, denoted KggGrc, is the operad whose algebras
are odd modular operads.

Proof. The Koszul dual KggGrc := 1!
ggGrc is, by definition, generated by the collection

↑E∗ :=

{
↑k if Γ has exactly one internal edge

0 otherwise.

We get the similar type of generators di1, d
i
2, 1 ≤ i ≤ 4, for F

2(↑E∗) as in the proof of Theorem 5.10
except that now they will be in degree 2. The pairing (67) in this particular case is given by

〈 bik | d
j
l 〉 =

{
1 if i = j, k = l

0 otherwise.

Therefore the annihilator R⊥ of the relations (81) is spanned by

o1 := d1
1 + d1

2, o2 := d2
1 + d2

2, o3 := d3
1 + d3

2 and o4 := d4
1 + d4

2.

Repeating the arguments in the proof of Theorem 5.10 we identify algebras over F(↑E∗)/(R⊥) with
odd modular operads whose definition is recalled in Appendix A.

Remark 5.13. As observed in [3, Example 4.19], the category ggGrc is similar to the category of
graphs of [9, §2.15]. The difference is the presence of the local orders of graphs in ggGrc manifested
e.g. by the fact that, while the category in [9, §2.15] has only one local terminal object for each
arity n and genus g, the local terminal objects in ggGrc are indexed by n, g and by a permutation
σ ∈ Σn, cf. Example 5.1. The category of operads over the operadic category ggGrc is however
equivalent to the category of hyperoperads in the sense of [9, §4.1]. Moreover, there is a canonical
isomorphism between the category of algebras for a ggGrc-operad and the category of algebras for
the corresponding hyperoperad.

This relation enables one to compare the operad KggGrc of Theorem 5.12 to a similar object
considered in [9]. Recall that the determinant det(S) of a finite set S is the top-dimensional
piece of the exterior (Grassmann) algebra generated by the elements of S placed in degree +1. In
particular, det(S) is a one-dimensional vector space concentrated in degree k, with k the cardinality
of S. Mimicking the arguments in the second half of the proof of Theorem 5.10 one can establish
that KggGrc(Γ) ∼= det(edg(Γ)), the determinant of the set of internal edges of Γ. This relates KggGrc

directly to the dualizing cocycle of [9, §4.8], cf. also Example II.5.52 of [21].

6 Other operad-like structures

In this section we analyze other operad-like structures whose pasting schemes are obtained from the
basic operadic category Gr of graphs by means of the iterated Grothendieck construction. For all
these categories the properties UFib and SGrad can be easily checked “manually.” By the reasoning
from the beginning of Section 5 they are rigid and fulfill Assumptions 1.2 .

6.1 Cyclic operads

Cyclic operads introduced in [8] are, roughly speaking, modular operads without the genus grading
and contractions (116b). Explicitly, a cyclic operad is a functor C : Fin → Vect along with
operations

a◦b : C
(
S1 ⊔ {a}

)
⊗ C

(
S2 ⊔ {b}

)
−→ C(S1 ⊔ S2) (86)

indexed by disjoint finite sets S1, S2 and symbols a, b. These operations satisfy axioms (116c),
(116e) and (116f) of modular operads (without the genus grading). Let Tr be the full subcategory
of Gr consisting of graphs of genus zero whose geometric realizations are contractible, i.e. which
are trees. The local terminal objects of Tr are corollas c(σ), σ ∈ Σn, as in (68) but without the
genus labeling the vertex. The chosen local terminal objects are corollas cn := c(11n), n ∈ N.
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Theorem 6.1. The terminal Tr-operad 1Tr is binary quadratic. Its algebras are cyclic operads.
Its Koszul dual KTr := 1!

Tr is the operad whose algebras are anticyclic operads.

Anticyclic operads introduced in [8, §2.11] are “odd” versions of cyclic operads, see also [21,
Definition II.5.20]. Due to the absence of the operadic units in our setup, the category of anticyclic
operads is however isomorphic to the category of ordinary cyclic operads, via the isomorphism
given by the suspension of the underlying collection.

Proof of Theorem 6.1. The proof is a simplified version of calculations in Section 5. The soul of the
only graph in Tr with one internal edge is the one on the left of (85) (without the genera, of course),
the corresponding operation is (86). The souls of the only graphs in Tr with two internal edges are
portrayed in (77). Let E be the restriction of the collection (79) to the virtual isomorphism classes
of trees in Tr. If R denotes the subspace of F

2(E) spanned by r2 in (81), then 1Tr
∼= F(E)/(R).

The arguments are the same as in the proof of Theorem 5.10. With the material of Section 5 at
hand, the identification of 1Tr-algebras with cyclic operads is immediate.

Algebras over KTr can be analyzed in the same way as KggGrc-algebras in the proof of Theo-
rem 5.12. KTr-algebras posses degree +1 operations

a•b : C
(
S1 ⊔ {a}

)
⊗ C

(
S2 ⊔ {b}

)
−→ C(S1 ⊔ S2) (87)

satisfying non-genus graded variants of (117b), (117c) and (117d). The level-wise suspension ↑C
with operations

a◦b : ↑C
(
S1 ⊔ {a}

)
⊗↑C

(
S2 ⊔ {b}

)
−→ ↑C(S1 ⊔ S2)

defined as the composite

↑C
(
S1 ⊔ {a}

)
⊗↑C

(
S2 ⊔ {b}

) ↑⊗↑
−→ C

(
S1 ⊔ {a}

)
⊗C

(
S2 ⊔ {b}

) a•b−→ C(S1 ⊔ S2)
↑
→ ↑C(S1 ⊔ S2)

can easily be shown to be an anticyclic operad [21, Definition II.5.20].

As in Remark 5.13, one may observe that KTr(T ) equals the determinant of the set of internal
edges of the tree T . Our description of anticyclic operads as KTr-algebras is therefore parallel to
the definition as T−-algebras given in [8, page 178].

6.2 Ordinary operads

Let us consider a variant RTr of the operadic category Tr consisting of trees that are rooted in
the sense explained in [3, Example 4.8]. By definition, the output half-edge of each vertex is the
minimal element in the local order; we will denote this minimal element by 0 in the context of
rooted trees. We use the same convention also for the smallest leg in the global order, i.e. for the
root. Since RTr was obtained from the basic operadic category Gr by a Grothendieck construction,
it is again an operadic category sharing all the nice properties of Gr.

Theorem 6.2. The terminal RTr-operad 1RTr is binary quadratic. Its algebras are nonunital Markl
operads recalled in Definition A.4 of Appendix A. The category of algebras over its Koszul dual
KRTr := 1!

RTr is isomorphic to the category of Markl operads, via the isomorphism given by the
suspension of the underlying collection.

Proof. The soul of graphs in RTr with one internal edge is the oriented interval consisting of two
oriented half-edges as in

b b
i

.
0

Since the label of the out-going half-edge is always the minimal one in the local order, we omit it
from pictures and draw the internal edges as arrows acquiring the label of the in-going half-edge,
see

b b
i

. (88)
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Let E be an obvious modification of the constant collection (79) to the category RTr. The display

b b

b bbb

⊕

b

b

b

b

b

b

⊕a b c d

e

f

g

h
E

E

EE

E

E

E

E

(89)

features souls of rooted trees with two internal edges. It shows that F
2(E) has two families of

bases, (b1
1, b

1
2) corresponding to the direct sum in the left part and (b2

1, b
2
2) corresponding to the

direct sum on the right of the display. Let R be the subspace of F
2(E) spanned by the relations

r1 := b1
1 − b

1
2 and r2 := b2

1 − b
2
2. (90)

The isomorphism 1RTr
∼= F(E)/(R) can be established as in the proof of Theorem 5.10.

To identify 1RTr-algebras with Markl operads we proceed as in the proof of Theorem 5.11. We
start by realizing that the local terminal objects are rooted corollas c↑(σ), σ ∈ Σn, shown in

b

σ1

σ2 σn
1

2
n

0

0

while the chosen local terminal objects are c↑
n := c↑(11n). The set π0(RTr) of connected components

is therefore identified with the natural numbers N. Analyzing the actions of local terminal objects
in [3, display (60)] we conclude that the underlying collections for 1RTr-algebras are sequences S(n),
n ∈ N, of Σn-modules.

As in the proof of Theorem 5.11 we establish that the value of the generating collection E on
graphs whose soul is the arrow in (88) produces partial compositions (118a), that the relation r1

expresses the parallel associativity, i.e. the first and the last cases of the relation in (118b) of the
Appendix, and r2 the sequential associativity, i.e. the middle case of that relation.

We are sure that at this stage the reader will easily describe the annihilator R⊥ of the space R
of relations and identify algebras of the Koszul dual

KRTr := 1!
RTr = F(↑E∗)/(R⊥)

as structures with degree +1 operations

•i : S(m)⊗ S(n)→ S(m+ n− 1) (91)

satisfying (118c) and the associativities (118b) with the minus sign. It can be verified directly
that the level-wise suspension of such a structure is an ordinary Markl operad. However, a more
conceptual approach based on coboundaries introduced in [3, Example 6.10] is available.

As in the cases of modular and cyclic operads we notice that, for a rooted tree T ∈ RTr, we
have KRTr(T ) ∼= det(edg(T )), the determinant of the set of internal edges of T . On the other hand,
the correspondence that assigns to each vertex of T its out-going edge is an isomorphism

edg(T ) ∼= {vertices of T} \ {the root} (92)

which implies that det(edg(T )) is isomorphic to Dl(T ), where Dl is the coboundary with l :
π0(RTr)→ Vect the constant function with value the desuspension ↓k of the ground field. There-
fore

KRTr = 1RTr ⊗Dl

and the identification of KRTr-algebras with Markl operads via the suspension of the underlying
collection follows from [3, Proposition 6.11].
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Similar statements can be proved also for the operadic categories PTr and PRTr of planar
resp. planar rooted trees introduced in [3, Example 4.9]. The corresponding terminal operads 1PTr

resp. 1PRTr will again be self-dual binary quadratic, with algebras nonsymmetric cyclic operads [21,
page 257] resp. nonsymmetric Markl operads [21, Definition II.1.14]. We leave the details to the
reader.

6.3 Pre-permutads.

Pre-permutads introduced in [13] form a link between nonsymmetric operads and permutads. They
are structures satisfying all axioms of Markl operads as recalled in Definition A.4 except the parallel
associativity, i.e. the first and the last case of (118b). Pre-permutads are algebras for a certain
binary quadratic operad over the category RTr of rooted trees which is very far from being Koszul
self-dual.

Definition 6.3. Let pp := F(E)/(R) be the RTr-operad with the same collection E of generators
as the RTr-operad 1RTr for ordinary operads, cf. the proof of Theorem 6.2. The ideal of relations
(R) is spanned by r2 in (90) belonging to the direct sum on the right of (89).

Theorem 6.4. Pre-permutads in the sense of [13, page 348] are algebras over pp. The category of
algebras over the Koszul dual pp! is isomorphic to the category of structures satisfying all axioms
of Markl operads, except the associativity (118b) which is replaced by

(f ◦j g) ◦i h =





0 for 1 ≤ i < j

f ◦j (g ◦i−j+1 h) for j ≤ i < b+ j

0 for j + b ≤ i ≤ a+ b− 1.

Proof. The first part of the theorem is an immediate consequence of the definition of pp. Let d1
1, d

1
2

resp. d2
1, d

2
2 be the bases of F

2(↑E∗) dual to b1
1, b

1
2 resp. b2

1, b
2
2. Then the annihilator R⊥ is clearly

spanned by
o := d2

1 + d2
2, d

1
1 and d1

2.

As before, we identify algebras over pp! = F(↑∗E)/R⊥ with structures equipped with degree +1
operations (91) satisfying

(f •j g) •i h =





0 for 1 ≤ i < j

−f •j (g •i−j+1 h) for j ≤ i < b+ j

0 for j + b ≤ i ≤ a+ b− 1,

whose first case corresponds to d1
1, the middle to o, and the last one to d1

2. The level-wise suspension
of this object is the structure described in Theorem 6.4.

7 PROP-like structures and permutads

In this section we treat some important variants of PROPs whose associated operadic categories
are sundry modifications of the category Whe of connected ordered oriented graphs introduced in [3,
Example 4.20]. The orientation divides the set of half-edges adjacent to each vertex of the graphs
involved into two subsets – inputs and outputs of that vertex. The local terminal objects in these
categories will thus be the ordered corollas c

(
σ
λ

)
, σ ∈ Σk, λ ∈ Σl, as in

b

σ1

σ2 σk
1

2
k

.

λ1

λ2
λl1

2
l
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The chosen local terminal objects are the ordered corollas ckl := c
(

11k
11l

)
, k, l ∈ N. The underlying

collections of the corresponding algebras will be families

D(m,n), m, n ∈ N, (93)

of Σm × Σn-modules. We will see that the orientation of the underlying graphs implies that the
corresponding terminal operads are self-dual.

7.1 Wheeled properads

These structures were introduced in [20] as an extension of Vallette’s properads [26] that allowed
“back-in-time” edges in order to capture traces and therefore also master equations in mathematical
physics. Surprisingly, this extended theory is better behaved than the theory of properads in that
their composition laws are iterated composites of elementary ones, that is, in terms of pasting
schemes, of those given by contraction of a single edge.

The operadic category relevant for wheeled properads is the category Whe of connected oriented
ordered graphs. Since Whe was constructed in [3, Example 4.20] from the basic operadic category
Gr by iterating the Grothendieck construction, and since it clearly satisfies the conditions UFib and
SGrad, we conclude as in the previous sections that our theory of Koszul duality applies to it.

Theorem 7.1. The terminal Whe-operad 1Whe is binary quadratic. Its algebras are wheeled proper-
ads introduced in [20, Definition 2.2.1]. The operad 1Whe is self-dual in the sense of Definition 4.4.

Proof. The proof goes along the same lines as the proofs of similar statements, namely Theo-
rems 5.10, 5.12, 6.1, 6.2, 6.4 and Proposition 5.11, so we will be telegraphic. As before, for a
wheeled graph Γ we put

KWhe(Γ) := 1!
Whe(Γ) ∼= det(edg(Γ)),

the determinant of the set of internal edges of Γ. On the other hand, the correspondence that
assigns to each vertex v of Γ the set out(v) of its out-going edges defines an isomorphism

edg(Γ) ∼=
⋃
v∈Ver(Γ) out(v) \ out(Γ) (94)

which implies that det(edg(Γ)) is isomorphic to Dl(Γ), where Dl is the coboundary with l :
π0(RTr)→ Vect the function defined by

l(ckl ) :=↓k k,

the desuspension of the ground field iterated k times. Therefore

KWhe
∼= 1Whe ⊗Dl

which, by [3, Proposition 6.11], implies the self-duality of 1Whe.
It follows from the description of the local terminal objects in Whe that the underlying structure

of a 1Whe-algebra is a collection of bimodules as in (93). The composition laws are given by wheeled
graphs with one internal edge, whose souls are depicted in

b

b

b .

We recognize them as the operations

◦ij : D(m,n)⊗D(k, l) −→ D(m+k−1, n+l−1), 1 ≤ i ≤ n, 1 ≤ j ≤ k, and (95a)

ξij : D(m,n) −→ D(m−1, n−1), 1 ≤ i ≤ m, 1 ≤ j ≤ n (95b)

in formulas (16) and (17) of [20].
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As in the previous cases, the axioms that these operations satisfy are determined by graphs
with two internal edges whose souls are depicted in the following display.

b

b

b

b

b

b

b

b

b

b

b

b

b b

b

b

1 2

1

1

1

1
2

2

2

2

lollipops eyes

circles

(96)

The graphs with three vertices induce the parallel and sequential associativity of the ξ-operations,
similar to that for Markl operads (118b). They were explicitly given in the dioperadic context as
axioms (a) and (b) in [7, page 111].

The circles in (96) represent the rules of the type ◦1ξ2 = ◦2ξ1, where ξ1 resp. ξ2 is the operation
corresponding to the shrinking of the edge labeled 1 resp. 2, and similarly for ◦1 and ◦2. The
lollipops in (96) force the interchange rule ξ2◦1 = ◦1ξ2, and the eyes the rule ◦1◦2 = ◦2◦1. To
expand these remaining axioms into explicit forms similar to that on [7, page 111] would not be
very helpful; we thus leave it as an exercise for a determined reader.

7.2 Dioperads

They were introduced in [7] as PROP-like structures whose algebras are objects such as Lie or
infinitesimal bialgebras (called mock bialgebras in [15]). A short definition is that a dioperad is
a wheeled properad without the ξij-operations (95b). The underlying operadic category is the
category Dio of ordered simply connected oriented graphs introduced in [3, Example 4.21]. As
before, one may check that Dio meets all requirements of our theory. One has the expected:

Theorem 7.2. Dioperads are algebras over the terminal Dio-operad 1Dio, which is binary quadratic
and self-dual.

Proof. The proof is a simplified version of the wheeled case. The self-duality of 1Dio is established
in precisely the same way as the self-duality of the terminal Whe-operad 1Whe; the existence of the
relevant coboundary is given by isomorphism (94) which clearly holds in Dio as well. The soul
of graphs in Dio with one internal edge is the oriented interval, with the corresponding operation
as in (95a). The souls of graphs in Dio with two internal edges are the three upper left graphs
in (96). The resulting axioms are the parallel and sequential associativities which are the same as
for ξij-operations of wheeled properads, see [7, §1.1].

7.3 1

2
PROPs

These structures were introduced, following a suggestion of Kontsevich, in [22] as a link between
dioperads and PROPs. A 1

2PROP is a collection of bimodules (93) which is stable in that it fulfills

D(m,n) = 0 if m+ n < 3,

together with partial vertical compositions

◦i : D(m1, n1)⊗D(1, l)→ D(m1, n1 + l − 1), 1 ≤ i ≤ n1, and

j◦ : D(k, 1)⊗D(m2, n2)→ D(m2 + k − 1, n2), 1 ≤ j ≤ m2,
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that satisfy the axioms of vertical compositions in PROPs. The corresponding operadic category
1
2 Gr is introduced in [3, Example 4.22]. We have the expected statement whose proof is left to the
reader.

Theorem 7.3. 1
2 PROPs are algebras over the terminal 1

2 Gr-operad 1 1
2 Gr. This operad is binary

quadratic and self-dual.

The operadic categories considered so far in this section were based on graphs. Let us give one
example where this is not the case.

7.4 Permutads

They are structures introduced by Loday and Ronco in [13] to handle the combinatorial structure
of objects like the permutahedra. We will describe an operadic category Per such that permutads
are algebras over the terminal operad for this category.

Let n denote the finite ordered set (1, . . . , n), n ≥ 1. Objects of Per are surjections α : n։ k,
n ≥ 1, and the morphisms are diagrams

n

α′

����

n

α′′

����
k′ γ // k′′

(97)

in which γ is order preserving (and necessarily a surjection).
The cardinality functor is defined by |α : n։ k| := k. The i-th fiber of the morphism in (97) is

the surjection (γα′)−1(i)։ γ−1(i), i ∈ k. The only local terminal objects are n→ 1, n ≥ 1, which
are also the chosen ones. The category Per is graded by e(n։ k) := k−1. All quasibijections, and
isomorphisms in general, are identities. The first sentence of the following theorem is the content
of [19, Proposition 26].

Theorem 7.4. Algebras over the terminal Per-operad 1Per are the permutads of [13]. The operad
1Per is binary quadratic. It is self-dual in the sense that the category of algebras over 1!

Per is
isomorphic to the category of permutads via the functor induced by the suspension of the underlying
collection.

Proof. Let us give a quadratic presentation of the terminal operad 1Per. As noticed in Example 2.3,
the category QOvrt(e) of virtual isomorphisms related to Per is isomorphic to the category Oiso of
isomorphisms in Per. Since all isomorphisms in Per are identities, we infer that in fact QOvrt(e) ∼=
Perdisc, the discrete category with the same objects as Per. Therefore a QOvrt(e)-presheaf is just
a rule that assigns to each α ∈ Per a vector space E(α) ∈ Vect. Let us define a 1-connected
Per-collection, in the sense of Definition 3.5, by

E(α) :=

{
k if |α| = 2

0 otherwise,
(98)

and describe the free operad F(E) generated by E.
The first step is to understand the labeled towers in lTw(α). As all isomorphisms in Per are

identities, the labeling is the identity map, so these towers are of the form

α := α
τ1−→ α1

τ2−→ α2
τ3−→ · · ·

τs−1
−→ αs−1.

Since the generating collection E is such that E(α) 6= 0 only if |α| = 2, we may consider only
towers in which each τi, 1 ≤ i ≤ s − 1, decreases the cardinality by one. For α : n ։ k, such a
tower is a diagram

n

α
����

n

α1

����

n

α2

����

· · · n

αk−1

����
k

ν1 // // k−1
ν2 // // k−2

ν3 // // · · ·
νk−2 // // 2

(99)

with ν1, . . . , νk−2 order-preserving surjections. Notice that all vertical maps are determined by α
and ν1, . . . , νk−2. It will be convenient to represent k by a linear graph with k vertices:
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1 2 3
bb bb

k

and denote by edg(k) or edg(α) the set of k−1 edges of this graph. In this graphical presentation,
each ν1, . . . , νk−2 contracts one of the edges of our linear graph; thus ν1, . . . , νk−2 and therefore
also the tower (99) is determined by the linear order on edg(k) in which the edges are contracted.
We readily get the following analog of Proposition 5.8, which we formulate as a separate claim so
we can refer to it later in the proof.

Claim 7.5. The isomorphism classes of labeled towers (99) are in one-to-one correspondence with
the linear orders on edg(k) modulo the relation ⊲⊳ that interchanges two edges adjacent in this
linear order that do not share a common vertex.

Let us continue the proof of Theorem 7.4. By the above claim, F(E)(α) equals the span of the
set of linear orders on edg(k) modulo the equivalence ⊲⊳. Let us inspect in detail its component
F

2(E)(α). It might be nonzero only for α : n→ k ∈ Per with k = 3, for which (99) takes the form

n

α
����

n

α1

����
3

ν // // 2

and the relation ⊲⊳ is vacuous.
There are two possibilities for the map ν and therefore also for α1. The map ν may either equal

ν{1,2} : 3→ 2 defined by
ν{1,2}(1) = ν{1,2}(2) := 1, ν{1,2}(3) := 2

which corresponds to the linear order

1 2
bb b

on edg(3), or equal ν{2,3} : 3→ 2 defined by

ν{2,3}(1) := 1, ν{2,3}(2) = ν{2,3}(3) := 2,

corresponding to the order

2 1
bb b .

The fiber sequence associated to ν{1,2} is α|α−1{1,2}, ν{1,2}α, and the one associated to ν{2,3} is
α|α−1{2,3}, ν{2,3}α; therefore

F
2(E)(α) ∼= {E(α|α−1{1,2})⊗ E(ν{1,2}α)} ⊕ {E(α|α−1{2,3})⊗ E(ν{2,3}α)}.

Since E(α|α−1{1,2}) = E(α|α−1{2,3}) = E(ν{1,2}α) = E(ν{2,3}α) = k by definition, F
2(E)(α) has a

basis formed by
b1 := [1⊗ 1]⊕ [0⊗ 0] and b2 := [0⊗ 0]⊕ [1 ⊗ 1].

Let R be the subspace of F
2(E) spanned by b2 − b1. Quotienting by the ideal (R) generated by

R extends the relation ⊲⊳ of Claim 7.5 by allowing edges that do share a common vertex, thus
F(E)/(R)(α) ∼= k for any α, in other words,

1Per
∼= F(E)/(R).

Now we describe 1Per-algebras. Since π0(Per) = {1, 2, . . .}, their underlying collections are
sequences of vector spaces P (n), n ≥ 1. As we saw several times before, the structure operations
of 1Per-algebras are parametrized by the generating collection E, therefore, by (98), by surjections
r : n։ 2 ∈ Per. If ni := |r−1(i)|, i = 1, 2, the operation corresponding to r is of the form

◦r : P (n1)⊗ P (n2)→ P (n1 + n2) (100)
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by [3, display (57)]. It is easy to verify that the vanishing of the induced map F(E) → EndP on
the generator b2 − b1 of the ideal of relations (R) is equivalent to the associativity

◦t(◦s ⊗ 11) = ◦u(11⊗ ◦v) (101)

with s := α|α−1{1,2}, t := ν{1,2}α, u := α|α−1{2,3} and v := ν{2,3}α. We recognize it as the
associativity of [13, Lemma 2.2] featured in the biased definition of permutads.

It can easily be seen that KPer(α) := 1!
Per(α) ∼= det(edg(α)). As in §6.2 we identify KPer-algebras

as structures with degree +1 operations

•r : P (n1)⊗ P (n2)→ P (n1 + n2)

with r as in (100) satisfying an odd version

•t(•s ⊗ 11) + •u(11⊗ •v) = 0

of (101). It is elementary to show that the structure induced on the component-wise suspension of
the underlying collection is that of a permutad.

In [19] we prove the following theorem:

Theorem 7.6. The terminal P-operad 1Per is Koszul.

Its meaning is that the canonical map Ω(1!
Per)→ 1Per from a suitably defined bar construction of

1!
Per to 1Per is a component-wise homology equivalence. In other words, the dg-Per operad Ω(1!

Per)
is the minimal model of 1Per; therefore, according to the philosophy of [17, Section 4], Ω(1!

Per)-
algebras are strongly homotopy permutads. An explicit description of these objects is given in [19]
as well.

8 Derivations and the cobar construction

Derivations of traditional operads defined in terms of partial compositions (118a) (i.e. “traditional”
Markl operads) were introduced in [17, Definition 1.5], and the cobar construction in that context
then implicitly in [17, Theorem 1.9]. The aim of this section is to generalize these notions to Markl
(co)operads over operadic categories.

We require that the base operadic category O fulfills Assumptions 1.2 . Then e(X) = 0 if and
only if X ∈ O is local terminal by [3, Lemma 3.25]. All Markl operads are tacitly assumed to be
strictly unital and 1-connected. The base monoidal category V will be the category Vect of graded
vector spaces over a field k of characteristic 0.

8.1 Derivations, cooperads

To simplify the notation, we will use the same symbol both for a (co)operad and for its underlying
collection when the meaning is clear from the context.

Definition 8.1. A degree s derivation of a Markl operad M is defined as a degree s endomorphism
̟ : M→M of the underlying collection such that, for each elementary morphism F ⊲ T

φ
→ S and

the related composition law ◦φ : M(S)⊗M(F )→M(T ), one has the equality

̟T ◦φ = ◦φ(11S ⊗̟F ) + ◦φ(̟S ⊗ 11T ) (102)

of maps M(S)⊗M(F )→M(T ). A dg Markl operad is a pair (M, ∂) consisting of a Markl operad
M and a degree −1 derivation ∂ such that ∂∂ = 0.

In the following proposition, F(E) is the free Markl operad generated by a 1-connected collection
E, which is considered as a subcollection of F(E) via the inclusion ι : E →֒ F(E) in (63).

Proposition 8.2. Each degree s map of collections ζ : E → F(E) uniquely extends to a degree s
derivation ̟ of the free operad F(E) satisfying ̟|E = ζ.
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Proof. Our proof follows the scheme of the proof of an analogous statement for operad algebras [14,
Proposition 12.3.11]. To avoid cumbersome but conceptually insignificant sign issues, we assume
that s = 0. The modification for a general s is indicated at the end of the proof. Given a Markl
operad M, we give the component-wise direct sum M⊕M of the underlying collections the structure
of an operad with composition laws ◦⊕

φ given by

◦⊕
φ (a′ ⊕ b′, a′′ ⊕ b′′) := ◦φ(a′, a′′)⊕

(
◦φ (a′, b′′) + (−1)|a′′|·|b′| ◦φ (a′′, b′)

)
,

for a′, a′′ ∈M(S), b′, b′′ ∈M(F ), where ◦φ is the composition law of M associated to an elementary
morphism F ⊲ T

φ
→ S. Then clearly ̟ : M → M is a degree 0 derivation if and only if the map

(11, ̟) : M→M⊕M is a morphism of Markl operads.
Let ι : E → F(E) be the inclusion (63). The map (ι, ζ) : E → F(E)⊕F(E) extends to a unique

operad morphism F(E) → F(E) ⊕ F(E) by the freeness of F(E). This extension is of the form
(11, ̟), where ̟ is the required derivation. If s 6= 0, we replace the direct sum M⊕M by M⊕↑sM
and introduce the canonical Koszul signs.

Definition 8.3. A Markl O-cooperad is a functor

M

: Oiso → V equipped, for each elementary
morphism F ⊲ T

φ
→ S as in Definition 1.3, with the “partial coproduct”

δφ :

M

(T )→

M

(S)⊗

M

(F ). (103)

These operations must fulfill the axioms obtained by reversing the arrows in the diagrams in
Definition 1.8 of Markl operads.

Example 8.4. Assume that M is a Markl operad whose components M(T ), T ∈ O, are either finite-
dimensional, or non-negatively, or non-positively graded dg vector spaces of finite type. Then its
component-wise linear dual M∗ := {M(T )∗}T∈O is a Markl cooperad. The partial coproducts (103)
are given by dualizing the operations (11), i.e.

δψ := ◦∗
ψ : M(T )∗ → (M(S)⊗M(F ))∗ ∼= M(S)∗ ⊗M(F )∗.

The finiteness assumption guarantees that the inclusion (M(S) ⊗M(F ))∗ ←֓ M(S)∗ ⊗M(F )∗ is
an isomorphism. Since M is a V-presheaf on Oiso, its dual is a functor M∗ : Oiso → V as required
in our definition of a cooperad.

Markl cooperad

M

is counital if there is given, for each trivial U , a “counit” ǫU :

M

(U) → k

such that the diagram

M

(T )
δ! // M

(U)⊗

M

(T )

ǫU⊗11

��M

(T )
∼=

k⊗

M

(T )

commutes whenever T is such that e(T ) ≥ 1 and T ⊲ T
!
→ U the unique map. By reversing the

arrows of (19) we obtain a map ϑ(T, u) :

M

(T )→

M

(F ) for each T with e(T ) ≥ 1 and F ⊲ T
!
→ u,

with u a local terminal object.

Definition 8.5. A counital Markl cooperad

M

is strictly counital if all the maps ϑ(T, u) are
identities. It is 1-connected if ǫU :

M

(U)→ k is an isomorphism for each trivial U ∈ O.

From this moment on, all Markl cooperads will be tacitly assumed to be strictly counital and
1-connected. The main source of examples will be component-wise linear duals of strictly unital
1-connected Markl operads that satisfy the finiteness assumption of Example 8.4.

8.2 The cobar construction

The underlying collection of a Markl cooperad

M

is a covariant functor Oiso → V. Since Oiso is a
groupoid, we may consider

M

also as a V-presheaf with the contravariant action of ω ∈ Oiso given
by ω∗ := (ω−1)∗. With this convention in mind, the family

M

= {

M

(T )}T∈O defined by

M

(T ) :=

{ M

(T ) if e(T ) ≥ 1

0 otherwise,
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and also its component-wise desuspension ↓

M

, becomes a 1-connected O-collection in the sense of
Definition 3.5, so it make sense to form the free operad F(↓

M

) which it generates. We denote the
restrictions of the partial coproducts δφ of (103) to

M

by

δφ :

M

(T )→

M

(S)⊗

M

(F ), for F ⊲ T
φ
→ S.

Note that

M

with the above operations is an analog of the coaugmentation coideal of an coaug-
mented coalgebra featured in the classical cobar construction. We finally define, for every elemen-

tary map F ⊲ T
φ
→ S, degree −1 operations

δ
↓

φ := (↑ ⊗ ↑) δφ ↓ : ↓

M

(T )→ ↓

M

(S)⊗ ↓

M

(F ).

A prominent rôle in the calculations below will be played by labeled towers of height 2. Recall
that such a tower τ = (ℓ,T) ∈ lTw2(X) consists of an elementary morphism τ : T → S and an
isomorphism ℓ : X

∼=
→ T which can always be replaced by a quasibijection. Its associated fiber

sequence is the pair (F, S), with F the unique nontrivial fiber of τ . We will denote such a tower
by

F
▽

X
ℓ // T .

τ��τ

S

(104)

In the rest of this section we also assume that the groupoid lTw2(X) has, for each X ∈ O, only
finitely many connected components.

Let us denote by Ω(

M

) the free operad F(↓

M

) generated by the 1-connected collection ↓

M

, with
the natural grading Ω(

M

) =
⊕

n≥0 Ω
n(

M

) inherited from F(↓

M

) by Ω
n(

M

) := F
n(↓

M

). We are
going to introduce a degree −1 derivation ∂Ω : Ω(

M

) → Ω(

M

) that squares to zero, thus making
Ω(

M
) a differential graded Markl operad. Referring to Proposition 8.2, ∂Ω will be defined as the

unique extension of its restriction to the generators of Ω(

M

). For x ∈ ↓

M

(X) ∼= Ω
1(

M

)(X) and
X ∈ O, this restriction is the finite sum

∂Ω(x) =
∑

[τ ]∈π0(lTw2(X))

∂τ (x), (105)

with τ running over representatives of the connected components of the groupoid lTw2(X). If
τ = (ℓ,T) as in (104) is such a representative, we put

∂τ (x) := ℓ∗◦τ (δ
↓

τ (ℓ∗x)) ∈ Ω
2(

M

)(X), (106)

where ◦τ : Ω(

M

)(S) ⊗ Ω(

M

)(F ) → Ω(

M

)(T ) is the partial composition in the operad Ω(

M

) asso-
ciated to the elementary map τ . In detail, ℓ∗x ∈ ↓

M

(T ), thus δ
↓

τ (ℓ∗x) ∈ ↓

M

(S)⊗ ↓

M

(F ) which is
canonically a subspace of Ω(

M

)(S)⊗ Ω(

M

)(F ), so the application of ◦τ makes sense.
We must show that ∂τ (x) does not depend on the choices of the representatives of the connected

components of lTw2(X). Suppose thus that τ ′ = (ℓ′,T′) and τ ′′ = (ℓ′′,T′′) are two isomorphic
labeled towers as in

X

ℓ′

∼=~~⑥⑥
⑥⑥
⑥⑥
⑥⑥

ℓ′′

∼=   ❇
❇❇

❇❇
❇❇

T ′

τ ′

��

σ1

∼=
// T ′′

τ ′′

��
S′ σ2

∼=
// S′′

with associated fiber sequences (F ′, S′) resp. (F ′′, S′′). Denote by F = φ−1(j) the unique nontrivial
fiber of the auxiliary morphism φ := σ2τ

′ : T ′ → S′′. By the strong counitality assumption, we
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have

M

(F ) =

M

(F ′′), so the dual of commutative diagram (22) leads to

↓

M

(S′′)⊗ ↓

M

(F ′′) ↓

M

(T ′′)
δ

↓

τ′′oo

↓

M

(X) .

ℓ′′
∗

jj❚❚❚❚❚❚❚❚❚

ℓ′
∗

tt❥❥❥❥
❥❥❥

❥❥

↓

M

(S′)⊗ ↓

M

(F ′)

σ2∗⊗σ1j ∼=

OO

↓

M

(T ′)
δ

↓

τ′oo

σ1∗∼=

OO

We conclude from this diagram that δ
↓

τ ′(ℓ′
∗x) ∈ ↓

M

(T′) and δ
↓

τ ′′(ℓ′′
∗x) ∈ ↓

M

(T′′) are related by
the isomorphism σ∗ associated to (σ2, σ1) as in (58), thus ∂τ ′(x) = ℓ′∗◦τ ′ (δ

↓

τ ′(ℓ′
∗x)) and ∂τ ′′(x) =

ℓ′′∗◦τ ′′ (δ
↓

τ ′′(ℓ′′
∗x)) are the same.

Proposition 8.6. The derivation ∂Ω : Ω(

M

)→ Ω(

M

) introduced above squares to zero.

Proof. It is simple to verify, using the defining equation (102), that the square of an odd-degree
derivation is a derivation again. In particular, ∂2

Ω
is a derivation, thus it suffices, by Proposition 8.2,

to verify that ∂2
Ω

(x) = 0 for x ∈ ↓

M

(X), X ∈ O, i.e. that

∑

τ

∂Ω∂τ (x) =
∑

τ

∂Ωℓ
∗◦τ (δ

↓

τ (ℓ∗x)) =
∑

τ

ℓ∗∂Ω◦τ (δ
↓

τ (ℓ∗x)) = 0.

In the above display, as well as in the following ones, we will not specify the summation range
where it is clear from the context. By the derivation rule (102) we have

∑

τ

ℓ∗∂Ω◦τ (δ
↓

τ (ℓ∗x)) =
∑

τ

ℓ∗◦τ (∂Ω ⊗ 11)(δ
↓

τ (ℓ∗x)) +
∑

τ

ℓ∗◦τ (11⊗ ∂Ω)(δ
↓

τ (ℓ∗x)),

thus ∂2
Ω

(x) decomposes as ∂2
Ω

(x) = ∂2
L(x) +∂2

R(x), where ∂2
L(x), resp. ∂2

R(x), is the left, resp. right,
term at the left-hand side of the above equation.
Analyzing ∂2

L(x). Let us focus on ∂2
L(x) first. Expanding further using definitions, we get

∂2
L(x) =

∑

ψ′

ℓ ∗
ψ′ ◦ψ′ (∂Ω ⊗ 11)(δ

↓

ψ′(ℓ ∗
ψ′x)) =

∑

φ,ψ′

ℓ ∗
ψ′ ◦ψ′ (∂φ ⊗ 11)(δ

↓

ψ′(ℓψ′
∗x))

=
∑

φ,ψ′

ℓ ∗
ψ′ ◦ψ′ (ℓ ∗

φ ◦φ δ
↓

φℓφ∗ ⊗ 11)(δ
↓

ψ′(ℓψ′
∗x))

=
∑

φ,ψ′

ℓ ∗
ψ′ ◦ψ′ (ℓ ∗

φ ⊗ 11)(◦φ ⊗ 11)(δ
↓

φ ⊗ 11)(ℓφ∗ ⊗ 11)(δ
↓

ψ′(ℓψ′
∗x)),

where ψ′ and φ run over the representatives of the isomorphism classes of labeled towers of the
form

F
▽

X
ℓψ′

// T ′ ,

ψ′

��
ψ′

H ′

B
▽

H ′
ℓφ // H .

φ
��

φ

S

Consider now the diagram

F
11 ///o/o/o/o/o F

▽ ▽

X
ℓψ′

// T ′

ψ′

��

ℓ̃φ // T

ψ

��
BU

H ′
ℓφ // H

φ
��
S
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whose square was obtained using the blow-up axiom with the condition that the prescribed maps of
fibers are identities, which is symbolized by the wavy arrow decorated by 11. From (22) we conclude

that ◦ψ′(ℓ ∗
φ ⊗ 11) = ℓ̃ ∗

φ◦ψ and, dually, (ℓφ∗ ⊗ 11)δψ′ = δψ ℓ̃φ∗, thus also (ℓφ∗ ⊗ 11)δ
↓

ψ′ = δ
↓

ψ ℓ̃φ∗, and
therefore

∂2
L(x) =

∑

φ,ψ′

(ℓ̃φℓψ′)∗ ◦ψ′ (◦φ ⊗ 11)(δ
↓

φ ⊗ 11)δ
↓

ψ(ℓ̃φℓψ′)∗(x).

This can clearly be rewritten as

∂2
L(x) =

∑

φ,ψ

ℓ∗◦ψ (◦φ ⊗ 11)(δ
↓

φ ⊗ 11) δ
↓

ψℓ∗(x), (107)

where φ, ψ runs over the representatives of the isomorphism classes of labeled towers as in

F
▽

X
ℓ // T ,

ψ
��

ψ

H

B
▽

H
11 // H .

φ
��

φ

S

(108)

Let us further decompose
∂2
L(x) = ∂2

L(x)′ + ∂2
L(x)′′,

where ∂2
L(x)′, resp. ∂2

L(x)′′, is the part of the sum in (107) running over φ and ψ with joint,
resp. disjoint, fibers in the sense of Definition 1.4. We are going to show that ∂2

L(x)′′ = 0.

To start, let k, i ∈ |S|, k 6= i. Recall that (φ, ψ) is a (k, i)-pair if there is j ∈ |φ|−1
(k) such that

ψ−1(j) is the only nontrivial fiber of ψ, and φ−1(i) the only nontrivial fiber of φ. This results in
the decomposition

∂2
L(x)′′ =

∑

k 6=i

∂2
L(x)′′

(k,i)

where ∂2
L(x)′′

(k,i) is the part of the sum in (107) taken over (k, i)-pairs. Out next aim will be to
prove that

∂2
L(x)′′

(k,i) + ∂2
L(x)′′

(i,k) = 0, (109)

for each k 6= i ∈ |S|, using Lemma 3.9. The commutative diagram

P ′
(φ′, i)

((❘❘
❘❘❘

❘❘❘
❘

T
(ψ′′, l)

((❘❘
❘❘❘

❘❘❘
❘

(ψ′, j) 66❧❧❧❧❧❧❧❧❧
S

P ′′

(φ′′, k)
66❧❧❧❧❧❧❧❧❧

leads, with the help of the dual of (14), to

M

(P ′)⊗

M

(F )
δφ′ ⊗11

// M

(S)⊗

M

(G)⊗

M

(F )

11⊗ transposition

��

M

(T )

δψ′′ ��

δψ′

OO

M

(P ′′)⊗

M

(G)
δφ′′ ⊗11

// M

(S)⊗

M

(F )⊗

M

(G) .

As a simple application of the Koszul sign rule we obtain the diagram

↓

M

(P ′)⊗ ↓

M

(F )
δ

↓

φ′ ⊗11
// ↓

M

(S)⊗ ↓

M

(G)⊗ ↓

M

(F )

11⊗ transposition

��

↓

M

(T )

δ
↓

ψ′′ ��

δ
↓

ψ′

OO

commutes up to −1

↓

M

(P ′′)⊗ ↓

M

(G)
δ

↓

φ′′ ⊗11
// ↓

M

(S)⊗ ↓

M

(F )⊗ ↓

M

(G)
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commuting up to multiplication by −1. Combining it with diagram (14) applied to the composition
laws of the free Markl operad Ω(

M

), we get

↓

M

(P ′)⊗ ↓

M

(F )
δ

↓

φ′ ⊗11
// ↓

M

(S)⊗ ↓

M

(G)⊗ ↓

M

(F )
◦φ′ ⊗11

// ↓

M

(P ′)⊗ ↓

M

(F )

◦ψ′

��
↓

M

(T )

δ
↓

ψ′′

��

δ
↓

ψ′

OO

commutes up to −1 ↓

M

(T )

↓

M

(P ′′)⊗ ↓

M

(G)
δ

↓

φ′′ ⊗11
// ↓

M

(S)⊗ ↓

M

(F )⊗ ↓

M

(G)
◦φ′′ ⊗11

// ↓

M

(P ′′)⊗ ↓

M

(G) ,

◦ψ′′

OO

expressing the equation

◦ψ′(◦φ′ ⊗ 11)(δ
↓

φ′ ⊗ 11)δ
↓

ψ′ + ◦ψ′′(◦φ′′ ⊗ 11)(δ
↓

φ′′ ⊗ 11)δ
↓

ψ′′ = 0.

Invoking (107), we conclude that each summand of ∂2
L(x)′′

(k,i) has its counterterm in ∂2
L(x)′′

(i,k).

This establishes (109), and therefore ∂2
L(x)′′ = 0, so we may assume that the sum in (107) runs

over isomorphism classes of pairs (108) with φ and ψ having joint fibers.
Analyzing ∂2

R(x). Let us perform a similar analysis of ∂2
R(x). We have

∂2
R(x) =

∑

α′

ℓ ∗
α′ ◦α′ (11⊗ ∂Ω)δ

↓

α′ℓα′ ∗(x) =
∑

β,α′

ℓ ∗
α′ ◦α′ (11⊗ ∂β)δ

↓

α′ℓα′ ∗(x)

=
∑

β,α′

ℓ ∗
α′ ◦α′ (11⊗ ℓ ∗

β ◦β δ
↓

β ℓβ∗)δ
↓

α′ℓα′ ∗(x)

=
∑

β,α′

ℓ ∗
α′ ◦α′ (11⊗ ℓ ∗

β )(11 ⊗ ◦β)(11⊗ δ
↓

β )(11 ⊗ ℓβ∗)δ
↓

α′ℓα′ ∗(x) ,

where α′ and β run over representatives of the isomorphism classes of labeled towers as in

A′

▽

X
ℓα′ // T ′ ,

α′

��
α′

S

F
▽

A′
ℓβ // A .

β
��

β

B

Let us construct, out of α′ and β, the commutative diagram

A′
ℓβ ///o/o/o/o/o/o A

▽ ▽

X
ℓα′ // T ′

α′

��✼
✼✼

✼✼
✼✼

✼

ℓ
β // T

α

��✟✟
✟✟
✟✟
✟✟WBU

S

whose triangle is given by the weak blow-up axiom, under the condition that the prescribed map
between the only nontrivial fibers is ℓβ and the remaining maps of the fibers are identities. Us-
ing (22) and its dual as before, we rewrite ∂2

R(x) as

∂2
R(x) =

∑

β,α′

(ℓβℓα′)∗◦α(11⊗ ◦β)(11 ⊗ δ
↓

β )δ
↓

α(ℓβℓα′)∗(x)

which is the same as
∂2
R(x) =

∑

β,α

ℓ∗◦α(11⊗ ◦β)(11⊗ δ
↓

β ) δ
↓

αℓ∗(x), (110)
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where α and β run over representatives of the isomorphism classes of towers as in

A
▽

X
ℓ // T ,

α��α

S

F
▽

A
11 // A .

β
��

β

B

(111)

The weak blow-up axiom produces a unique factorization α = φψ in the diagram

A
β ///o/o/o/o/o/o B

▽ ▽

S

α

��✻
✻✻

✻✻
✻✻

✻
ψ // H

φ
��✞✞
✞✞
✞✞
✞✞WBU

T

(112)

in which α is elementary and the map between the only nontrivial fibers of α resp. φ is β : A→ B,
as symbolized by the wavy arrow. Notice that the pair (φ, ψ) has joint fibers. The dual of (12)
gives

M

(S)⊗

M

(A)
11⊗δβ

**❱❱❱
❱❱❱❱

❱❱❱

M

(T )

δα
77♥♥♥♥♥♥♥

δψ ''PP
PPP

PP

M

(S)⊗

M

(B)⊗

M

(F )

M

(H)⊗

M

(F )
δφ⊗11

44❤❤❤❤❤❤❤❤❤❤

which, combined with the Koszul sign rule, leads to

↓

M

(S)⊗ ↓

M

(A)
11⊗δ

↓

β

++❲❲❲❲
❲❲❲❲

❲❲❲

↓

M

(T )

δ
↓

α

66❧❧❧❧❧❧❧❧

δ
↓

ψ
((❘❘❘

❘❘❘
❘❘

commutes up to −1 ↓

M

(S)⊗ ↓

M

(B) ⊗ ↓

M

(F )

↓

M

(H)⊗ ↓

M

(F )
δ

↓

φ⊗11

33❣❣❣❣❣❣❣❣❣❣❣

which commutes up to multiplication by −1. Combining it with diagram (12) for the composition
laws of the free operad Ω(

M

), we obtain the diagram

↓

M

(S)⊗ ↓

M

(A)
11⊗δ

↓

β

++❱❱❱❱
❱❱❱❱

❱❱
↓

M

(S)⊗ ↓

M

(A)

◦α''PP
PPP

PP

↓

M

(T )

δ
↓

α

66♠♠♠♠♠♠♠♠

δ
↓

ψ
((◗◗

◗◗◗
◗◗
commutes up to −1 ↓

M

(S)⊗ ↓

M

(B)⊗ ↓

M

(F )

◦φ⊗11 **❱❱❱❱
❱❱❱❱

❱❱

11⊗◦β 44❤❤❤❤❤❤❤❤❤❤
↓

M

(T )

↓

M

(H)⊗ ↓

M

(F )
δ

↓

φ⊗11

33❤❤❤❤❤❤❤❤❤❤
↓

M

(H)⊗ ↓

M

(F )

◦ψ

77♥♥♥♥♥♥

which translates into the equation

◦ψ(◦φ ⊗ 11)(δ
↓

φ ⊗ 11)δ
↓

ψ + ◦α(11⊗ ◦β)(11⊗ δ
↓

β )δ
↓

β = 0. (113)

Notice that the assignment (α, β) 7→ (φ, ψ) described by diagram (112) induces a bijection
between the set of isomorphism classes of towers (111) and (108) with (φ, ψ) having joint fibers.
Its inverse (φ, ψ) 7→ (α, β) produces α as the composite φψ while β is the induced map between
the unique nontrivial fibers as in

A
β ///o/o/o/o/o B

▽ ▽

S

φψ ��✾
✾✾

✾✾
✾

ψ // H

φ��☎☎
☎☎
☎☎

T .
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Therefore, by (113), each summand ℓ∗ ◦ψ (◦φ ⊗ 11)(δ
↓

φ ⊗ 11)δ
↓

ψℓ∗(x) of (107) possesses a unique

counterterm ℓ∗◦α(11⊗ ◦β)(11 ⊗ δ
↓

β )δ
↓

β ℓ∗(x) in the sum (110), which proves that

∂2
Ω(x) = ∂2

L(x) + ∂2
R(x) = 0

as claimed.

Definition 8.7. We call the dg operad Ω(

M

) = (Ω(

M

), ∂Ω) the cobar construction of a strictly
counital 1-connected Markl cooperad

M

.

9 The dual dg operad and Koszulity

The dual dg operad of a traditional operad was introduced in Section 3 of [10], and the Koszulity
for quadratic operads in Section 4 of the same article. In this section we generalize these notions
to Markl operads over operadic categories and prove that operads whose algebras are the most
common structures are Koszul.

Remark 9.1. The duality for the (colored) operad whose algebras are non-unital nonsymmetric
operads was studied in 2002 by van der Laan [27]. Nineteen years later, Dehling and Vallette
proved in [5] that the colored operad whose algebras are the classical (symmetric) operad is curved
Koszul. Koszulity of the groupoid-colored operad whose algebras are modular operads was proved
by Ward [25]. A general approach to graph-based operadic structures in the language of Feynman
categories was suggested by Kaufmann and Ward in [12].

The base operadic category O is required to fulfill Assumptions 1.2 . Let M be a strictly unital
1-connected Markl operad satisfying the assumptions of Example 8.4, so that the component-wise
linear dual M∗ := {M(T )∗}T∈O is a strictly counital 1-connected Markl cooperad.

Definition 9.2. The dual dg operad of a Markl operad M as above is the dg operad

D(M) = (D(M), ∂D) := (Ω(M∗), ∂Ω),

the cobar construction of the component-wise linear dual of M.

Assume that M = F(E)/(R) is a quadratic Markl operad as in Definition 4.2 and M
! its Koszul

dual, cf. Definition 4.3. To introduce the Koszulity, we start from the injection ↑E →֒ M! of
collections defined as the composite

↑E →֒ F(↑E)։ F(↑E)/(R⊥) = M
!.

Its linear dual M!∗ ։ ↑E desuspends to a map π : ↓M!∗ ։ E. The related twisting morphism
↓M!∗ →M, defined as the composite

↓M!∗ π
։ E →֒ F(E)։ F(E)/(R) = M,

extends, by the freeness of F(↓M!∗), to a morphism ρM : F(↓M!∗)→ M of Markl O-operads. One
verifies by direct calculation:

Proposition 9.3. The morphism ρM induces the canonical map

canM : D(M!) = (F(↓M!∗), ∂D) −→ (M, 0) (114)

of Markl dg O-operads.

Definition 9.4. A quadratic Markl O-operad M is Koszul if the canonical map (114) is a component-
wise homology isomorphism.

Remark 9.5. In the “classical” operad theory one proves that a quadratic operad is Koszul if and
only if its Koszul dual is Koszul [10, Proposition 4.1.4]. We believe the same is true also in our
setup, but postpone the proof for future work.
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In the rest of this section we establish the Koszulity of some of the binary quadratic operads
introduced in Sections 5–7. Namely, we prove the Koszulity of the operad 1ggGrc whose algebras
are modular operads, of the operad 1Tr whose algebras are cyclic operads, of the operad 1RTr

whose algebras are ordinary Markl operads and of the operad 1Whe whose algebras are wheeled
properads. The Koszulity of the operad 1Per whose algebras are permutads was already established
in [19, Corollary 49].

Theorem 9.6. The binary quadratic operads 1ggGrc, 1Tr, 1RTr and 1Whe are Koszul.

Proof. In the proof we drop the subscripts of ρ and can since they will always be clear from the
context. We start with the most complex case of the terminal ggGrc-operad 1ggGrc. Our strategy
will be to show that its minimal model MggGrc constructed in [4, Section 3] is isomorphic to the
dual dg operad D(KggGrc) of its Koszul dual KggGrc = 1!

ggGrc, via an isomorphism compatible with

the resolving maps MggGrc

ρ
→ 1ggGrc resp. D(KggGrc)

can

−→ 1ggGrc.
It is not difficult to determine, using the presentation in the proof of Theorem 5.12, the operad

structure of KggGrc. As we noticed in Remark 5.13, given a genus-graded connected graph Γ ∈
ggGrc, the corresponding piece KggGrc(Γ) can be identified with the one-dimensional vector space
det(Γ) := det(edg(Γ)), the determinant of the set of internal edges of Γ, placed in degree e(Γ) + 1,
where by definition e(Γ), the grade of Γ is the number of internal edges. The unit map associated
to a corolla c ∈ ggGrc is the canonical isomorphism

k = det(∅) ∼= KggGrc(c).

Given two finite sets S1 = {e1
1, . . . , e

1
a} and S2 = {e2

1, . . . , e
2
b}, we define the canonical isomorphism

ωS1,S2 : det(S1 ⊔ S2)→ det(S1)⊗ det(S2)

by
ωS1,S2(e1

1 ∧ · · · ∧ e
1
a ∧ e

2
1 ∧ · · · ∧ e

2
b) := (e1

1 ∧ · · · ∧ e
1
a)⊗ (e2

1 ∧ · · · ∧ e
2
b).

Notice that if Γ ⊲ Γ′ τ
→ Γ′′ is an elementary morphism, there is a natural isomorphism

edg(Γ′) ∼= edg(Γ′′) ⊔ edg(Γ)

of the sets of internal edges. The partial composition related to τ then equals

◦τ : KggGrc(Γ′′)⊗ KggGrc(Γ) ∼= det(Γ′′)⊗ det(Γ)
ω−1

edg(Γ′′),edg(Γ) // det(Γ′) ∼= KggGrc(Γ′).

Our next step will be to describe the dual dg operad D(KggGrc) which, by definition, equals the
cobar construction Ω(K∗

ggGrc) of the cooperad K∗
ggGrc. Paying attention to the Koszul sign rule, we

determine the cooperad structure operation of K∗
ggGrc related to τ as

δτ := (−1)(e(Γ′′)+1)(e(Γ)+1) · ◦∗
τ : K∗

ggGrc(Γ′)→ K∗
ggGrc(Γ′′)⊗ K∗

ggGrc(Γ).

The underlying collection of the reduced cooperad K∗
ggGrc is given by

K∗
ggGrc(Γ) :=

{
K∗

ggGrc(Γ) if Γ has at least one internal edge

0 otherwise.

The desuspended operation

δ
↓

τ := (↓ ⊗ ↓)δτ↑ : ↓K∗
ggGrc(Γ′)→ ↓K∗

ggGrc(Γ′′)⊗ ↓K∗
ggGrc(Γ)

is then, with the help of the identification K∗
ggGrc(Γ) ∼= det(Γ) for Γ with at least one internal edge,

described as

δ
↓

τ = (−1)(e(Γ′′)+1)+(e(Γ′′)+1)(e(Γ)+1) · ωedg(Γ′′),edg(Γ) = (−1)e(Γ)(e(Γ′′)+1) · ωedg(Γ′′),edg(Γ).
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The new sign (−1)(e(Γ′′)+1) is the contribution of the commutation of the first tensor factor of the
image of δτ↑ over the desuspension ↓ .

Let τ = (ℓ,T) ∈ lTw2(X) be the labeled tower

Γ
▽

X
ℓ // Γ′ .

τ��τ

Γ′′

We may assume that ℓ is a quasibijection by Proposition 3.13. Since quasibijections obviously act
trivially on KggGrc and thus also on ↓K∗

ggGrc, formula (106) for the component ∂τ of the differen-
tial (105) associated to τ reads

∂τ (x) = (−1)e(Γ)(e(Γ′′)+1) · ◦τ ωedg(Γ),edg(Γ′′)(x) ∈ F
2(↓K∗

ggGrc)(X), (115a)

for x ∈ ↓K∗
ggGrc(X) = ↓K∗

ggGrc(Γ). Thus D(KggGrc) = (F(↓K∗
ggGrc), ∂D), with ∂D given by the right-

hand side of (106) with ∂τ as in (115a).
To describe the map can : D(KggGrc) → 1ggGrc notice that, for Γ ∈ ggGrc with precisely one

internal edge, the graded vector space ↓K∗
ggGrc(Γ) is canonically isomorphic to k placed in degree

0, since it is the desuspension of the dual of the determinant of a one-point set. The operad
morphism can is the unique extension of the map ↓K∗

ggGrc → 1ggGrc of collections whose component

↓K∗
ggGrc(Γ) → 1ggGrc(Γ) is trivial if Γ has at least two internal edges, and which is the canonical

isomorphism ↓K∗
ggGrc(Γ) ∼= k ∼= 1ggGrc(Γ) if Γ has exactly one internal edge. This finishes the

description of the dual dg operad D(KggGrc) and the associated canonical map.
Recall that the underlying non-dg operad of the minimal model MggGrc of 1ggGrc in [4] is the free

operad F(D) generated by the collection D, which in fact coincides with ↓K∗
ggGrc, so D(KggGrc) =

MggGrc as non-dg operads. With this identification, the resolving map ρ : MggGrc → 1ggGrc equals
the morphism can : D(KggGrc)→ 1ggGrc described above.

The differential ∂ of the minimal model translated to the formalism used in this article is given
by the sum in the right-hand side of (105), but the component ∂τ is now

∂τ (x) = (−1)e(Γ) · ◦τ ωedg(Γ),edg(Γ′′)(x) ∈ F
2(D)(X), (115b)

cf. formula (18b) of [4]. We see that the expressions in (115a) and (115b) agree up to the sign factor
(−1)e(Γ′′)e(Γ). To compensate this discrepancy, we define a map χ : K∗

ggGrc → D of collections by

χ(x) := (−1)
e(Γ)(e(Γ)−1)

2 · x for x ∈ ↓K∗
ggGrc(Γ)

and denote by the same symbol also its unique extension χ : F(↓K∗
ggGrc) → F(D) to an operad

morphism. It is simple to verify that χ commutes with the differentials and that the diagram

D(KggGrc)
can

))❚❚❚
❚❚❚

∼=χ

��
1ggGrc

MggGrc

ρ 55❥❥❥❥❥❥❥

of dg operads commutes. Since ρ is a component-wise homology isomorphism by [4, Theorem 31],
so is can. This establishes the Koszulity of 1ggGrc.

The proofs of the remaining cases are similar. One describes the dual dg operad by an obvi-
ous modification of the method above, and compares it with the corresponding minimal models
described in Theorem 32 and Sections 3.4 and 3.5 of [4].

Appendix

A (Odd) modular operads, and classical Markl operads.

In this appendix we recall three structures referred to in this work. All definitions given here
are standard today, see e.g. [9, 21], so the purpose is merely to fix the notation and terminology.
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Let fSet denote the category of finite sets and Vect, the category of graded vector spaces. For
S1, S2 ∈ fSet, we write S1 ⊔ S2 ∈ fSet to denote the disjoint union, the notation implying that
S1 and S2 are disjoint. When we write e.g. “elements a, b, c” we tacitly assume that a, b and c are
mutually distinct.

Recall that a modular module is a functor fSet×N → Vect, with N interpreted as a discrete
category with objects called genera in this context.

Definition A.1. A modular operad is a modular module

M =
{
M(S; g) ∈ Vect | (S; g) ∈ fSet× N

}

together with degree 0 morphisms (composition laws)

a◦b :M
(
S1 ⊔ {a}; g1

)
⊗M

(
S2 ⊔ {b}; g2

)
→M(S1 ⊔ S2; g1+g2) (116a)

given for arbitrary finite sets S1, S2, elements a, b, and genera g1, g2 ∈ N. There are, moreover,
degree 0 contractions

◦uv = ◦vu :M
(
S ⊔ {u} ⊔ {v}; g

)
→M(S; g+1) (116b)

given for any finite set S, genus g ∈ N, and elements u, v. These data are required to satisfy the
following axioms.

(i) For arbitrary isomorphisms ρ : S1 ⊔ {a} → T1 and σ : S2 ⊔ {b} → T2 of finite sets and genera
g1, g2 ∈ N, one has the equality

M
(
ρ|S1 ⊔ σ|S2

)
a◦b = ρ(a)◦σ(b)

(
M(ρ)⊗M(σ)

)
(116c)

of maps

M
(
S1 ⊔ {a}; g1

)
⊗M

(
S2 ⊔ {b}; g2

)
→M

(
T1 ⊔ T2 \ {ρ(a), σ(b)}; g1 + g2

)
.

(ii) For an isomorphism ρ : S ⊔{u}⊔{v} → T of finite sets and a genus g ∈ N, one has the equality

M
(
ρ|S

)
◦uv = ◦ρ(u)ρ(v)M(ρ) (116d)

of maps M
(
S ⊔ {u} ⊔ {v}; g

)
→M

(
T \ {ρ(u), ρ(v)}; g+1

)
.

(iii) For S1, S2, a, b and g1, g2 as in (116a), one has the equality

a◦b = b◦a τ (116e)

of maps M(S1 ⊔ {a}; g1) ⊗ M(S2 ⊔ {b}; g2) → M
(
S1 ⊔ S2; g1 + g2

)
; here τ denotes the

commutativity constraint in Vect.

(iv) For finite sets S1, S2, S3, elements a, b, c, d and genera g1, g2, g3 ∈ N, one has the equality

a◦b(11⊗ c◦d) = c◦d( a◦b⊗11) (116f)

of maps

M
(
S1 ⊔{a}; g1

)
⊗M

(
S2 ⊔{b}⊔{c}; g2

)
⊗M

(
S3 ⊔{d}; g3

)
−→M

(
S1 ⊔S2 ⊔S3; g1+g2+g3

)
.

(v) For a finite set S, elements a, b, c, d and a genus g ∈ N one has the equality

◦ab ◦cd = ◦cd ◦ab (116g)

of maps M
(
S ⊔ {a} ⊔ {b} ⊔ {c} ⊔ {d}; g

)
→M(S; g + 2).

(vi) For finite sets S1, S2, elements a, b, c, d and genera g1, g2 ∈ N, one has the equality

◦ab c◦d = ◦cd a◦b (116h)

of maps M
(
S1 ⊔ {a} ⊔ {c}; g1

)
⊗M

(
S2 ⊔ {b} ⊔ {d}; g2

)
→M(S1 ⊔ S2; g1 + g2 + 1).
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(vii) For finite sets S1, S2, elements a, b, u, v, and genera g1, g2 ∈ N, one has the equality

a◦b (◦uv ⊗ 11) = ◦uv a◦b (116i)

of maps M
(
S1 ⊔ {a} ⊔ {u} ⊔ {v}; g1

)
⊗M

(
S2 ⊔ {b}; g2

)
→M(S1 ⊔ S2; g1 + g2 + 1).

Definition A.2. An odd modular operad is a modular module

O =
{
O(S; g) ∈ Vect | (S; g) ∈ fSet× N

}

together with degree +1 morphisms ( a•b-operations)

a•b : O
(
S1 ⊔ {a}; g1

)
⊗ O

(
S2 ⊔ {b}; g2

)
→ O(S1 ⊔ S2; g1 + g2) (117a)

given for arbitrary finite sets S1, S2, elements a, b, and arbitrary g1, g2 ∈ N. There are, moreover,
degree 1 morphisms (the contractions)

•uv = •vu : O
(
S ⊔ {u} ⊔ {v}; g

)
→ O(S; g + 1)

given for any finite set S, g ∈ N, and elements u, v; we are using the notation for composition
laws of odd modular operads introduced in [11]. These data are required to satisfy the following
axioms.

(i) For arbitrary isomorphisms ρ : S1 ⊔ {a} → T1 and σ : S2 ⊔ {b} → T2 of finite sets and g1,
g2 ∈ N, one has the equality

O
(
ρ|S1 ⊔ σ|S2

)
a•b = ρ(a)•σ(b)

(
O(ρ)⊗ O(σ)

)
(117b)

of maps

O
(
S1 ⊔ {a}; g1

)
⊗ O

(
S2 ⊔ {b}; g2

)
→ O

(
T1 ⊔ T2 \ {ρ(a), σ(b)}; g1 + g2

)
.

(ii) For an isomorphism ρ : S ⊔ {u} ⊔ {v} → T of finite sets and g ∈ N, one has the equality

O
(
ρ|S

)
•uv = •ρ(u)ρ(v)O(ρ)

of maps O
(
S ⊔ {u} ⊔ {v}; g

)
→ O

(
T \ {ρ(u), ρ(v)}; g + 1

)
.

(iii) For S1, S2, a, b and g1, g2 as in (117a), one has the equality

a•b = b•a τ (117c)

of maps O(S1 ⊔ {a}; g1)⊗ O(S2 ⊔ {b}; g2)→ O
(
S1 ⊔ S2; g1 + g2

)
.

(iv) For finite sets S1, S2, S3, elements a, b, c, d and g1, g2, g3 ∈ N, one has the equality

a•b(11⊗ c•d) = − c•d( a•b⊗11) (117d)

of maps

O
(
S1 ⊔ {a}; g1

)
⊗ O

(
S2 ⊔ {b} ⊔ {c}; g2

)
⊗ O

(
S3 ⊔ {d}; g3

)
−→ O

(
S1 ⊔ S2 ⊔ S3; g1+g2+g3

)
.

(v) For a finite set S, elements a, b, c, d and g ∈ N one has the equality

•ab •cd = − •cd •ab

of maps O
(
S ⊔ {a} ⊔ {b} ⊔ {c} ⊔ {d}; g

)
→ O(S; g + 2).

(vi) For finite sets S1, S2, elements a, b, c, d and g1, g2 ∈ N, one has the equality

•ab c•d = − •cd a•b

of maps O
(
S1 ⊔ {a} ⊔ {c}; g1

)
⊗ O

(
S2 ⊔ {b} ⊔ {d}; g2

)
→ O(S1 ⊔ S2; g1 + g2 + 1).
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(vii) For finite sets S1, S2, elements a, b, u, v, and g1, g2 ∈ N, one has the equality

a•b (•uv ⊗ 11) = − •uv a•b

of maps O
(
S1 ⊔ {a} ⊔ {u} ⊔ {v}; g1

)
⊗ O

(
S2 ⊔ {b}; g2

)
→ O(S1 ⊔ S2; g1 + g2 + 1).

Remark A.3. Odd modular operads appeared in [9, Section 4] as modular K-operads for the
dualizing cocycle K. The terminology we use was suggested by Ralph Kaufmann. A discussion of
odd modular operads and similar structures can be found e.g. in [18].

Definition A.4. A (classical) Markl operad is a collection S = {S(n)}n≥0 of right k[Σn]-modules,
together with k-linear maps (◦i-compositions)

◦i : S(m)⊗ S(n)→ S(m+ n− 1), (118a)

for 1 ≤ i ≤ m and n ≥ 0. These data fulfill the following axioms.

(i) For each 1 ≤ j ≤ a, b, c ≥ 0, f ∈ S(a), g ∈ S(b) and h ∈ S(c),

(f ◦j g) ◦i h =





(f ◦i h) ◦j+c−1 g for 1 ≤ i < j

f ◦j (g ◦i−j+1 h) for j ≤ i < b+ j

(f ◦i−b+1 h) ◦j g for j + b ≤ i ≤ a+ b− 1.

(118b)

(ii) For each 1 ≤ i ≤ m, n ≥ 0, τ ∈ Σm and σ ∈ Σn, let τ ◦i σ ∈ Σm+n−1 be given by inserting
the permutation σ at the ith place in τ . Let f ∈ S(m) and g ∈ S(n). Then

(fτ) ◦i (gσ) = (f ◦τ(i) g)(τ ◦i σ). (118c)
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Index

Algebra over a Markl operad, Definitions 6.7
and 6.9 of [3]

Canonical grading, [3, Section 2]
Cocycle, Example 6.10 of [3]
Cobar construction, Definition 8.7
Coboundary, Example 6.10 of [3]
Constant-free operadic category, page 5, Sub-

section 1.1
CollV

1(O), category of 1-connected O-collections,
Definition 3.5

Contraction, Definition 3.3 of [3]
Derivation of a Markl operad, Definition 8.1
Discrete operadic fibration, Definition 4.1 of [3]
Derived sequence, display (3)
Dual dg Markl operad, Definition 9.2
Elementary morphism, Definition 1.3
Extended units, page 8, Subsection 1.2
Factorizability, Fac, page 5, Subsection 1.1
Free Markl operad, display (59)
F ◮ T → t, map to a local terminal object and

its fiber, page 9, Section 2
F⊲T → S, elementary map and its fiber, page 5,

Subsection 1.2
Grading of an operadic category, page 5, Sub-

section 1.1
Harmonic pair, Definition 1.6
Ideal in a Markl operad, Definition 4.1
Invertibility of quasibijections, QBI, page 3, Sub-

section 1.1
Koszul dual, Definition 4.3
Labeled tower, labeling, Definition 3.8
Local isomorphism, Definition 3.3 of [3]
Local reordering morphism, Definition 3.3 of [3]
lTw(X), groupoid of labeled towers under X ,

page 19, Section 3
Markl operad, Definition 1.8
Markl cooperad, Definition 8.3
Order-preserving morphism, Definition 3.3 of [3]
Ordered graph, Definition 3.13 of [3]
Oiso ⊂ O, subcategory of isomorphisms, page 6,

Subsection 1.2
Oltrm ⊂ O, subcategory of local terminal ob-

jects, page 7, Subsection 1.2
Oord ⊂ O, subcategory of order-preserving mor-

phisms, page 4, Subsection 1.1
Oqb ⊂ O, subcategory of quasibijections, page 3,

Subsection 1.1
Ovrt, groupoid of virtual isomorphisms, page 9,

Section 2
Ovrt(e) ⊂ Ovrt, subgroupoid of objects of posi-

tive grade, page 11, Section 2
Pairs with disjoint fibers, Definition 1.4
Preodered graph, Definition 3.1 of [3]

Pure contraction, Definition 3.3 of [3]
Quadratic Markl operad, Definition 4.2
Quadratic data, Definition 4.2
QOvrt, quotient of Ovrt

∫
Oiso by virtual isomor-

phisms, page 11, Section 2
QOvrt(e), quotient of Ovrt(e)

∫
Oiso by virtual iso-

morphisms, page 11, Section 2
Rigidity, Rig, page 5, Subsection 1.1
Self-dual Markl operad, Definition 4.4
Strict grading, SGrad, page 5, Subsection 1.1
Strictly unital Markl operad, Definition 1.9
Strictly counital Markl cooperad, Definition 8.5
Blow-up axiom, BU, page 4, Subsection 1.1
Strongly factorizable operadic category, SFac,

Definition 2.9 of [3]
SUMOpV

1(O), category of 1-connected strictly uni-
tal Markl O-operads, page 17, Section 3

Tower, display (47)
Unital Markl operad, page 7, Subsection 1.2
Unique fiber axiom, UFib, page 5, Subsection 1.1
Virtual (iso)morphism, page 9, Section 2
Weak blow-up axiom, WBU, page 4, Subsec-

tion 1.1
1-connected Markl operad, Definition 1.9
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