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The theme in this paper is a composition of random graphs and Pólya urns. The
random graphs are generated through a small structure called the seed. Via Pólya
urns, we study the asymptotic degree structure in a random m-ary hooking network
and identify strong laws. We further upgrade the result to second-order asymptotics
in the form of multivariate Gaussian limit laws. We give a few concrete examples and
explore some properties with a full representation of the Gaussian limit in each case.
The asymptotic covariance matrix associated with the Pólya urn is obtained by a new
method that originated in this paper and is reported in [25].

1 Introduction
Many random structures grow by adding small components. For example, networks grow by linking
new small structures, and urns grow by adding balls, etc. In this manuscript, we deal with a certain
flavor of network growth via “hooking” components of fixed structure (all additions are graphs that
have the same form). The basic repetitive form is called a seed, which has a particular node in it
called the hook.

Initially, the network is just the seed. At every discrete point in time, a copy of the seed is
brought to the current network and adjoined to it by fusing its hook into a node (vertex) chosen
from the network. After a long period of growth, we have a large network. Figure 1 shows the
step-by-step growth of a hooking network grown from a triangular seed in four steps. We have
not specified how a node is chosen in the network. It could be specified deterministically by an
external agent, such as an AI optimizer, or it could be done according to a probability distribution
on the nodes of the existing network. In the latter case, the growth of the network is a stochastic
process. In this light, Figure 1 would be only one realization of the process.

hook

Figure 1: A hooking network grown in four time steps from a triangle (seed).

Alternative nomenclature appears in the jargon. For instance, adjoining the seed to the network
is called by some hooking. The word “fusing” also appears frequently. The chosen receptacle node
in the graph to host the hook of the newly added seed is referred to as a “latch.” The hooking
(fusing) operation is achieved by identifying the hook and the chosen latch. The act of adjoining
a seed at a step may then be considered as “latching” or “recruiting” by the latch.
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There has been recently a flurry of research papers on hooking networks (though some do not
call it that) [3–7,9–13,15,23,24,27]; see [29] for a comprehensive background.

Applications can be found in organic chemistry, social networks and many other areas. For in-
stance, in polymer chemistry, monomers link together into a covalently bonded network of macro-
molecules to form polymers [4, 5, 7]. Social networks and the like grow by adding communities in
which one member of a new community is a friend of one member of an existing social network,
where the degree of a node in the network is a reflection of the popularity of the network subscriber
it represents.

With the degrees of nodes in a network being of prime importance, our purpose in this paper
is to study the degrees in a certain kind of network (with a limit on the number of hookings at
every node). As the degrees in the network and the balls in a certain kind of Pólya urns have the
same generative mechanism, we rely on the urn composition to produce theorems for the network
structure considered in this manuscript.

We note that the study of the asymptotic degree structure in hooking networks has already
been conducted (under different assumptions) in [9–11, 23]. The authors of these papers did not
impose a limit on the number of hookings at a particular place.

Some applications put a cap on the number of times a component can be added at one place.
A popular example is the binary search tree, which arises in computer science as an efficient data
structure that expedites the fast retrieval of data [8, 21]. The binary imposition comes from the
physical implementation of the nodes in computer memory. A node is comprised of space for fields
of information with distinguishable pointers to the left and right subtrees containing nodes of a
similar structure. These pointers occupy different locations in the computer memory.

A few models of hooking networks [4,10–12] have been introduced for applications with no limit
on the number of hookings that can be made at a particular node or edge. In this paper, we turn
our attention to m-ary hooking networks, where at most m (finite) copies of a seed can join a node
in the network. Figures 2–3 will aid the reader visualize this construct.

Via Pólya urns, we study the asymptotic degree structure in these m-ary networks. We identify
strong laws for the number of nodes of various degrees in the network. We further upgrade the
result to second-order asymptotics in the form of multivariate Gaussian limit laws. We compute
the covariances of the Pólya urn by a new method that originated in this paper and is reported
in [25].

1.1 The m-ary hooking network
An m-ary network grows as follows: We start with a connected seed graph G0 with vertex set of
size τ0. A vertex in the seed is designated as a hook. Each copy of the seed that joins the network
subsequently uses its own copy of that vertex for hooking. At step n, a copy of the seed is hooked
into the graph Gn−1 = (Vn−1, En−1) that exists at time n − 1 to produce the graph Gn = (Vn, En).
So, τ0 is the size of V0, and τn = (τ0 − 1)n + τ0. For instantiation, see Figure 1 in which the seed
is a triangle, and τ0 = 3, τ1 = 5, τ2 = 7, τ3 = 9, and τ4 = 11.

We think of the graph Gn as a network of age n. The hooking is accomplished by fusing
together the hook of a new copy of the seed and a latch (vertex) randomly chosen from the
network at age n − 1. A vertex in the network can qualify as a latch at most m ≥ 1 times.

We consider a uniform probability model that equally likely selects any of the insertion positions
in the network as a latch. Initially, there are m insertion positions associated with each vertex
in G0. Every hooking takes away an insertion position from a vertex. After a node recruits r ≤ m
times, there remain m − r insertion positions. When all m positions are taken at a vertex (i.e., the
vertex has recruited m times), the vertex is saturated and is no longer active in recruiting.

A visual device helps us discern the insertion positions. We represent each insertion position
at a node as a virtual node connected by an edge to the vertex. The graph carrying the virtual
nodes is called the extended network. Initially, there are m virtual nodes attached to each vertex
of the seed, which is the graph G0. Figure 2 shows a seed to be used in building a binary network
(m = 2) and its extension. The nodes of the seed are shown as bullets and the virtual nodes in the
extended seed are shown as squares. The colors in the square nodes encode the degree and history
of the nodes they are attached to. Initially every node has two square nodes (insertion positions)
attached to it and colors representing their degrees at the start. For instance, initially each node
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of degree 3 carries two white (color 1) square nodes, and each node of degree 7 carries two blue
(color 2) square nodes. These colors will change over time according to a scheme that is explained
later.

hook
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Figure 2: A seed (left) for a binary network and its extension (right).

Figure 3 shows a binary network grown from the seed in Figure 2 in four steps. The four
hookings occur at the nodes labeled x (twice), y (once), and hook (once) in Figure 2. Note in
Figure 3 the appearance of additional colors (to be explained later). Note also that node x no
longer carries virtual nodes, as it has used all its recruiting chances, having recruited twice. There
is no change at the node labeled z, but now each of the hook and y carries only one virtual node,
having only recruited once (with one extra chance left at recruiting).

The seed in this particular binary hooking network has nodes of degree 3 and 7. The hook
is of degree 3. Hooking the seed into nodes of degree 3 increases the degree to 6, which can
ultimately increase to 9; hooking the seed into nodes of degree 7 increases the degree to 10, which
can ultimately increase to 13. The six degrees 3, 7, 6, 9, 10, 13 are the only admissible degrees. A
coloring scheme needs six tracking colors, one color for each admissible degree.

1.2 Organization
This section is continued in Subsection 1.3, which sets up the notation used throughout. The
sequel is organized in sections. We investigate the distribution of degrees in the network Gn, for
large n. It is demonstrated that asymptotically the admissible degrees have joint multivariate
Gaussian laws. A paramount device for this investigation is the Pólya urn [22]. In Section 2, we
say a word about Pólya urns and mention the specific results on which our investigation falls back.
In Section 3, we associate a specific Pólya urn with m-ary networks.

Applying urn theory requires extensive linear algebra computation for large matrices. We
take up most of the computation to find eigenvalues and eigenvectors in Section 3. The main
results, presented in Section 4, are strong laws for the degrees, and asymptotic Gaussian laws,
for any m ≥ 1. In Section 5, we give some specific instances in four subsections. The examples
illustrate the usual cases and properties that appear in degenerate cases. The lengthy details for
the construction of the covariance matrix in the binary example in Section 5 are relegated to an
appendix.

1.3 Notation
We use the notation [r] to denote the set {1, 2, . . . , r}. For a real number x, we denote the falling
factorial x(x − 1) . . . (x − r + 1) by (x)r; the usual interpretation of (x)0 is 1.

Suppose the distinct degrees in the seed are d1 < d2 < · · · < dk, for some k ≥ 1 , and there are
nℓ vertices of degree dℓ in the seed, for ℓ = 1, . . . , k. Throughout, the hook is considered to be of
degree di =: h, and we assume there are nj ≥ 1 nodes of degree dj in the seed. Hence, the degrees
that appear in the m-ary network are dj + sh, for j ∈ [k] and for s = 0, 1, . . . , m. Note that the
numbers dj + sh need not be distinct. We present an example of this in Subsection 5.3.
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Figure 3: An extended binary network at age 4 (after four hookings). Colors 1, 2, 3, and 4 correspond to active
nodes of degrees 3, 7, 6, and 10, respectively.

We print matrices and vectors in boldface, often subscripted in a way to reveal the dimension or
the position in a block matrix. The distinction is clear from the context. We use 0j to denote either
a vector of j zeros or a j × j matrix of zeros. The intent will be determined by the context. We use
Ij for the j × j identity matrix. For a matrix C, we denote the transpose by CT ; the notation |C|
is its determinant. We refer to a diagonal matrix that has the numbers b1, . . . , bs on the diagonal
as Diag(b1, . . . , bs). For a function g(n), the notation O(g(n)) and o(g(n)) respectively represent
a matrix in which all the entries are O(g(n)) and o(g(n)) in the usual sense.

Acknowledgements
The authors are thankful to Professor Alexander Boris Levin for a valuable discussion on the
linear algebra. We also thank two anonymous reviewers for their insightful comments and helpful
suggestions. The referees’ sincere and generous effort improved the exposition.

2 Pólya urns
A multicolor Pólya urn scheme is initially nonempty. Suppose up to c colors, numbered 1, 2, . . . , c,
can appear over the course of time. At each time step, a ball is drawn at random from the urn
and its color is noted. If the color of the ball withdrawn is i, we put it back in the urn and add
ai,j balls of color j ∈ [c], and the drawing is continued. These dynamics are captured in a c × c
replacement matrix:

A =


a1,1 a1,2 . . . a1,c

a2,1 a2,2 . . . a2,c

...
...

. . .
...

ac,1 ac,2 . . . ac,c

 .
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In a general setting, the entries of the replacement matrix can be negative (which means
removing balls) or even random. All the urns that appear in this paper have deterministic entries.
We restrict all further presentations to fixed replacement matrices. Let Xn,i be the number of balls
of color i ∈ [c] in the urn after n draws, and let Xn be the random vector with these components.
The urn scheme is said to be balanced, if the number of balls added at each step is constant, say
θ ≥ 0, (that is,

∑c
j=1 ai,j = θ, for all i ∈ [c]). The parameter θ is called the balance factor. The

scheme is called tenable if it is always possible to draw balls and execute the rules. In a tenable
scheme, the urn never becomes empty and the scheme never calls for taking out balls of a color,
when there is not a sufficient number of balls of that color present in the urn. We shall focus only
on balanced tenable urn schemes with deterministic replacement matrices, as that is all we need
in our investigation of m-ary hooking networks.

Suppose the c eigenvalues of AT are λ1, . . . , λc and are labeled according to decreasing order
of their real parts. That is, we arrange the eigenvalues so that

ℜ λ1 ≥ ℜ λ2 ≥ · · · ≥ ℜ λc.

The eigenvalue λ1 is called the principal eigenvalue and the corresponding eigenvector v1 is called
the principal eigenvector. In the context of urns, the scale of v1 is chosen so that ||v1||1 is 1. For
a tenable balanced urn scheme with a deterministic replacement matrix, the principal eigenvalue
is the balance factor by Perron–Frobenius theorem, i.e., λ1 = θ; see Chapter 8 in [17].

The number of balls in the scheme follows a strong law [1]:
1
n

Xn
a.s.−→ λ1v1. (1)

Smythe [28] and Janson [18] present a theory for classes of generalized urn models, wherein one
finds joint Gaussian laws.

Under mild regularity conditions, strong laws and Gaussian limit laws for properly normalized
versions of Xn are available in terms of the eigenvalues and eigenvectors of AT . In practice, the
urn schemes associated with the growth of random structures are often tenable, growing, balanced
and the corresponding replacement matrices have finite entries. Further, most applications involve
schemes in which no color is redundant, in the sense that from the starting condition every color
appears infinitely often, even if it is not present at the start. For this restricted class of urn schemes,
the normality conditions are:

(1) λ1 > 0 is real and simple.

(2) ℜ(λ2)
λ1

is at most 1
2 .

These conditions are certainly met in the urn associated with an m-ary network.
The theory in [18, 28] covers urn schemes with random entries under some rather general

regularity conditions. These conditions are significantly simplified in the case of tenable balanced
deterministic replacement matrices. For the latter class, asymptotically there is an underlying joint
multivariate normal distribution, if λ1 is real positive and simple (of multiplicity 1) and all the
components of v1 are positive with ℜ λ2 < 1

2 ℜ λ1. In such a case, we have a multivariate Gaussian
law:

1√
n

(Xn − λ1v1) D−→ N (0c, Σc), (2)

where the limit is a multivariate normal vector with mean vector 0c, and some c × c covariance
matrix Σc.

The method in [18] for the computation of the covariance matrix associated with a Pólya urn
is quite elaborate. More recently, several authors revisited these issues from an existential point of
view [19,26] and from a computational point of view [25].

The general theory in [18] covers matrices with random entries. According to [19], in the case of
small-index urns (with λ2 < 1

2 λ1), 1
nCov[Xn] converges to the limit matrix c × c, and [25] specifies

the limiting matrix Σc as the one that solves a linear matricial equation. Specialized to the case
of deterministic Pólya urns, Σc is the solution to the equation

λ1Σc = AT Σc + ΣcA + λ1AT
(
Diag(x1, . . . , xc) − v1vT

1
)
A, (3)

where the diagonal matrix has the c components of the principal eigenvector v1 = (x1, . . . , xc)T

on its diagonal.
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3 The Pólya urn underlying m-ary hooking networks
We map the virtual nodes (corresponding to actively recruiting vertices) onto a Pólya urn on mk
colors. This number of colors corresponds to the evolution of k different initial degrees, and each
node of any particular initial degree can recruit m times. Ultimately, this mapping leads us to
strong laws for active and inactive nodes in the network.

Recall that k is the number of distinct degrees in the seed, h is the degree of the hook, and nℓ is
the number of vertices of degree dℓ in the seed, for ℓ = 1, . . . , k. For j ∈ [k] and s = 0, . . . , m−1, we
associate colors j+sk respectively with active nodes that are originally of degree dj , and experience
latching s times.

As the node degrees increase by hooking, they lose insertion positions. The fewer insertion
positions left (if any) change colors.

Think of the virtual nodes as balls in a Pólya urn. The urn evolves as follows: When a virtual
node of color j ̸= i is chosen as the insertion position at time n, an extended seed is hooked to
the latch it emanates from. (Recall that the hook is of degree di.) We determine the replacement
rules of the urn by distinguishing several cases according to the color of the drawn ball. Consider
latching at a node of degree dj , for j ∈ [k]. For ℓ ∈ [k], ℓ ̸= j and ℓ ̸= i, the hooking adds mnℓ

virtual nodes of color ℓ to the extended network Gn (mnℓ balls of color ℓ to the urn), resulting in
adding nℓ actual nodes of degree dℓ each to Gn. The dynamics impose two exceptions at ℓ = j ̸= i
and at ℓ = i. At ℓ = j, the hooking adds only mnj − m virtual nodes of color j (balls of color j
in the urn) as m virtual nodes of color j from the graph Gn−1 are lost in Gn. Also, the incoming
hook loses its m virtual nodes, so we add only mni − m balls of color i.

The rules for the case j = i are similar. We add mnℓ nodes of color ℓ ̸= i. The hooking
occurs at a node of the hook degree di, with m virtual nodes lost from Gn−1 and m more from the
incoming seed. So, we only add mni − 2m virtual balls of color i to the urn.

In the binary example of Figures 2–3, the seed has the degrees 3 and 7; the associated external
nodes are encoded with colors 1 and 2, respectively. Nodes of degree 3 can progress to be of
degree 6, and nodes of degree 7 can progress to be of degree 10; the corresponding external nodes
are of colors 3 and 4, respectively. Then again, nodes of degree 6 can progress to be of degree 9,
and nodes of degree 10 can progress to be of degree 13, meeting the quota of at most two hookings,
so, they carry no external nodes, and no colors are associated with them. The scheme needs four
colors in all.

Remark 3.1. It is possible for some seed structures to have the numbers dj +rk and dj′ +sk being
equal. An example of this arises from a seed of a binary network that has the two degrees d1 = 2
and d2 = 4, with k = 2, with a hook of degree d1 = 2. In this instance, d1 + 2 = 4 and d2 = 4
(with j = 1, j′ = 2, r = 1 and s = 0). There are two types of nodes of degree 4, depending on
their recruiting history. Nodes of degree 2 grow to become of degree 4 and 6, and nodes of degree
4 grow to become of degree 6 and 8. The urn gives a fine ramification of nodes of a degree like 4,
distinguishing their virtual nodes (by colors) as virtual nodes of color 2 (initially attached to nodes
of degree 4), and virtual nodes of color 3 (attached to nodes initially of color 1 and recruited once).
The total number of nodes of degree 4, regardless of their history, is a combination of both counts.

The replacement matrix is an mk × mk matrix represented in m2 blocks. That is, we have
A = [Hi,j ]1≤i,j≤m, and each block Hi,j is of size k × k. The foregoing discussion specifies the top
left block:

Hk = H1,1

= m



n1 − 1 n2 . . . ni−1 ni − 1 ni+1 . . . nk

n1 n2 − 1 . . . ni−1 ni − 1 ni+1 . . . nk

...
...

. . .
...

...
...

. . .
n1 n2 . . . ni−1 − 1 ni − 1 ni+1 . . . nk

n1 n2 . . . ni−1 ni − 2 ni+1 . . . nk

n1 n2 . . . ni−1 ni − 1 ni+1 − 1 . . . nk

...
...

. . .
...

...
...

. . .
n1 n2 . . . ni−1 ni − 1 ni+1 . . . nk − 1


.
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When a virtual node of color j ∈ [k] is taken for the next hooking, we replace m virtual nodes
of that color with m − 1 virtual nodes of color j + k, and make no other changes. Hence, we have
the blocks

H1,2 = (m − 1)Ik, H1,r = 0k, for r = 3, . . . , m.

If a virtual node of color j = r + sk > k, for r ∈ [k], s ∈ [m − 1] is the insertion position,
we add mnj virtual nodes of color j, for j ̸= i (they come with the hooked seed), and add only
mni − m virtual nodes of color i, as the extended seed loses its m virtual node upon hooking. So,
the blocks H2,1, H3,1, . . . , Hm,1 are all the same, and all equal to a matrix which we call H′

k. The
matrix H′

k is identical to Hk, except that its diagonal entries have an extra m. That is, we have
H′

k = Hk + mIk.
If a ball of color j, for j = 1, . . . , k is drawn, we adjust the ball count of such a color according

to the block H1,1. In addition, we increase the number of balls of color j + k by m − 1 as the
remaining virtual nodes that are siblings of the one taken now have a history of recruiting once.
In other words, the block H1,k is set to (m − 1)Ik.

After recruiting s times, for 1 ≤ s ≤ m − 1, a node of original degree dj has m − s external
nodes attached to it. These balls receive the color j + sk. When a ball of this color is drawn from
the urn, the node it belongs to has now recruited s + 1 times. We have one more insertion position
taken, leaving only m − s − 1 insertion positions (virtual nodes) attached to the owning node. The
remaining insertion positions change colors to reflect the fact that the node they belong to has
recruited (s + 1) times. The action in the urn is to put the drawn ball back, take out m − s balls
of color j + sk and add to the urn m − s − 1 balls of color j + (s + 1)k. We have explained how
the blocks Hi,j , for i = 2, . . . m − 1, j = 2, . . . m are formed.

When a node recruits its mth seed, it becomes inactive. So, a node recruiting its last seed, gets
lost. This is reflected as a −1 in the replacement matrix. Thus, the bottom-right k ×k block is the
negative of a k × k identity matrix, any other block that is not named explicitly in the preceding
explanation is set to 0k.

The full replacement matrix is

A =

Hk (m − 1)Ik 0k 0k · · · 0k 0k

H′
k −(m − 1)Ik (m − 2)Ik 0k · · · 0k 0k

H′
k 0k −(m − 2)Ik (m − 3)Ik · · · 0k 0k

H′
k 0k 0k −(m − 3)Ik · · · 0k 0k

...
...

...
...

. . .
...

...

H′
k 0k 0k 0k · · · 2Ik 0k

H′
k 0k 0k 0k · · · −2Ik Ik

H′
k 0k 0k 0k · · · 0k -Ik

.

Note that an urn scheme with such a replacement matrix is balanced. Hence, (3) applies for the
calculation of covariances.

Example 3.1. Consider a ternary network (m = 3) built from the seed in Figure 2. The associated
replacement matrix is 

3 3 2 0 0 0
6 0 0 2 0 0
6 3 −2 0 1 0
6 3 0 −2 0 1
6 3 0 0 −1 0
6 3 0 0 0 −1

 .
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3.1 Eigenvalues
To find the eigenvalues of AT (which are the same as those of A), we solve for the roots of
the characteristic polynomial |A − λImk| = 0. Some block operations help us get through. We
determine a rectangular block in A by specifying the position of its top left cell and bottom right
cell—the block (i, j)–(k, ℓ) is comprised of all the cells (p, q), with i ≤ p ≤ k and j ≤ q ≤ ℓ. For
example, A itself is the block (1, 1)–(mk, mk). Multiply each entry of the bottom m × mk block
by −1 and add this block to all the blocks above it. More precisely, multiply each entry of the
block ((m − 1)k + 1, 1)–(mk, mk) by −1, then add the ith row of that block to row i + rk, for
r = 0, . . . , (m − 1). This produces the matrix

Hk − H′
k − λIk (m − 1)Ik 0k · · · 0k Ik + λIk

0k −(m − 1)Ik − λIk (m − 2)Ik · · · 0k Ik + λIk

0k 0k −(m − 2)Ik − λIk · · · 0k Ik + λIk

...
...

...
. . .

...
...

0k 0k 0k . . . 2Ik Ik + λIk

0k 0k 0k . . . −2Ik − λIk 2Ik + λIk

H′
k 0k 0k . . . 0k −Ik − λIk

,

which has the same characteristic polynomial as A. Recall the relation Hk − H′
k = −mIk, and so

the top left block of the latter matrix is a diagonal matrix as well. Now add the sum of the first
m − 1 column-blocks to the mth to get the matrix

−mIk − λIk (m − 1)Ik 0k · · · 0k 0k

0′
k −(m − 1)Ik − λIk (m − 2)Ik · · · 0k 0k

0k 0k −(m − 2)Ik − λIk · · · 0k 0k

...
...

...
...

...
...

0k 0k 0k . . . −2Ik − λIk 0k

H′
k 0k 0k . . . 0k H′

k − Ik − λIk

,

which has the same characteristic polynomial as A. Expanding the determinant by the mth column
of blocks, we get the characteristic polynomial

|H′
k − λIk − Ik| (−m − λ)k(−(m − 1) − λ)k · · · (−2 − λ)k = 0.

So, −r, for r = 2, 3, . . . , m, are eigenvalues, each with multiplicity k.
Additional eigenvalues come from the equation

|H′
k − λIk − Ik| = 0.

These eigenvalues are determined by a method similar to the one used for the block matrices. In
two steps we get a diagonal matrix, first by multiplying the bottom row by −1 and adding it to
all the blocks above it, then adding the first k − 1 columns to the last:

|H′
k − λIk − Ik|

=

∣∣∣∣∣∣∣∣
−1 − λ 0 0 · · · 0 0 0 · · · 0 λ + 1

0 −1 − λ 0 · · · 0 0 0 · · · 0 λ + 1
...

...
...

. . .
...

...
...

. . .
...

...
0 0 0 · · · 0 0 0 · · · −1 − λ λ + 1

mn1 mn2 mn3 . . . mni−1 mni − m mni+1 . . . mnk−1 mnk − 1 − λ

∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣
−1 − λ 0 0 · · · 0 0 0 · · · 0 0

0 −1 − λ 0 · · · 0 0 0 · · · 0 0
.
.
.

.

.

.
.
.
.

. . .
.
.
.

.

.

.
.
.
.

. . . 0 0
0 0 0 · · · 0 0 0 · · · −1 − λ 0

mn1 mn2 mn3 . . . mni−1 mni − m mni+1 . . . mnk−1
∑k

j=1
mnj − m − 1 − λ

∣∣∣∣∣∣∣∣.

Accepted in Compositionality on 2023-06-02. Click on the title to verify. 8



Volume 5 Issue 6 ISSN 2631-4444

Expanding the determinant by the last column, we get the polynomial

(−λ − 1)k−1
(

m

k∑
j=1

nj − m − 1 − λ
)

= 0, (4)

so the additional eigenvalues are −1 (with multiplicity k−1) and m
∑k

j=1 nj −m−1 = mτ0 −m−1
(with multiplicity 1). To summarize, the eigenvalues of AT are the same as those of A which are
shown in Table 1.

Table 1: The eigenvalues and their multiplicities.

Eigenvalue multiplicity
λ1 = mτ0 − m − 1 1
λ2, . . . , λk = −1 k − 1

λk+1, . . . , λ2k = −2 k
λ2k+1, . . . , λ3k = −3 k

...
...

λ(m−1)k+1, . . . , λmk = −m k

3.2 The principal eigenvector
Let v1 = (x1, . . . , xmk)T . To deal with the matrices at the level of blocks, let us consider v1 as
m vectors, y1, . . . , ym, (each of k components) stacked atop of each other. That is, ys+1 is the
segment (x1+sk, . . . , xk+sk)T , for s = 0, . . . , m − 1. We now solve

HT
k (H′

k)T (H′
k)T (H′

k)T · · · (H′
k)T

(m − 1)Ik −(m − 1)Ik 0k 0k · · · 0k

0k (m − 2)Ik −(m − 2)Ik 0k · · · 0k

0k 0k (m − 3)Ik 0k · · · 0k

...
...

...
...

. . .
...

0k 0k 0k 0k . . . -Ik


y1
y2
...

ym

 = λ1


y1
y2
...

ym

 .

For r = 2, . . . , m, the rth row of blocks gives us the equation

(m − r + 1)yr−1 − (m − r + 1)yr = λ1yr,

which is the same as
yr = m − r + 1

m − r + 1 + λ1
yr−1.

Thus, recursively, we get all the segments in terms of y1. Namely, we have

yr = (m − 1)r−1
(m − 1 + λ1)r−1

y1 = (m − 1)r−1
(mτ0 − 2)r−1

y1. (5)

We can then get y1 from the first row of blocks as the solution to

HT
k y1 + (H′

k)T y2 + · · · + (H′
k)T ym = λ1y1.

The ith row (corresponding to an active raw hook that has not yet recruited) of this matricial
equation reads

(mni − m)x1 + (mni − m)x2 + · · · + (mni − m)xi−1 + (mni − 2m)xi

+ (mni − m)xi+1 + · · · + (mni − m)xmk = λ1xi.

Using the fact that ||v1||1 is normalized to 1, we rearrange to get

m(ni − 1)
mk∑
j=1

xj − mxi = m(ni − 1) − mxi = λ1xi.
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Plugging in the value of the principal eigenvalue, we obtain

xi = m(ni − 1)
mτ0 − 1 .

We next turn to the jth row, for j ∈ [k], and j ̸= i to find

mnjx1 + · · · + mnjxj−1 + m(nj − 1)xj + mnjxj+1 + · · · + mnjxmk = λ1xj .

By manipulation similar to the case of xi, we conclude that

xj = mnj

mτ0 − 1 .

We have determined the segment y1. It is

y1 = m

mτ0 − 1



n1
n2
...

ni−1
ni − 1
ni+1

...
nk


. (6)

4 Strong laws and joint Gaussian distributions
Let Dn,dj+sh be the number of nodes that are originally of degree dj , and experience latching s
times in an m-ary network at age n, for j ∈ [k], s = 0, 1, . . . , m. The urn scheme is associated only
with the active nodes. An active node of degree dj + sh has m − s virtual nodes attached to it.
Therefore, we have Dn,dj+sh = Xn,j+sk/(m − s), with 0 ≤ s < m, where Xn,j+sk is the number
of balls of color j + sk in the urn after n draws. Inactive nodes cannot recruit any more and do
not have corresponding balls in the urn. Some extra work is needed to determine a strong law for
inactive nodes.

As we shall see in later examples, the matrix AT may not be invertible.∗ When (AT )−1 exists,
we call the network invertible.

Theorem 4.1. Let Dn,dj+sh be the number of nodes that are originally of degree dj, and experience
latching s times in an invertible m-ary network at age n, for j ∈ [k], s = 0, 1, . . . , m, and let Dn

be the vector with these components. Suppose the principal eigenvector of the urn associated with
the network is v1 = (x1, . . . , xmk)T . The degree vector follows the strong law

1
n

Dn = 1
n



Dn,d1

Dn,d2
...

Dn,dk

Dn,d1+h

Dn,d2+h

...
Dn,dk+mh


a.s.−→ D∗ := αm



(m−1)0
(mτ0−2)0

y1
(m−1)1

(mτ0−2)1
y1

...
(m−1)m−1

(mτ0−2)m−1
y1

(m−1)m−1
αm(mτ0−2)m−1

y1


,

where αm = mτ0 − m − 1, and y1 is given in (6).

∗Invertability excludes only the case λ1 = 0, which means m(τ0 − 1) = 1. This can only happen, if m = 1 with
τ0 = 2.
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Proof. Let Xn,r be the number of virtual nodes of color r ∈ [mk] in the extended network Gn at
time n (balls of color r in the urn after n draws), and denote by Xn the vector with these mk
components.

By (1), we have
1
n

Xn
a.s.−→ λ1v1 = (mτ0 − m − 1)v1.

We determine the principal eigenvector v1 by the recursive algorithm in (5), with (6) at the basis
of the induction.

The vector of color counts relates to the degrees in the following way. For each active node in
the graph of degree dj + sh, for j ∈ [k] and s = 0, . . . , m − 1, there are m − s virtual nodes of color
j + sk attached to it. So, Dn,dj+sh is Xn,j+sk/(m − s), specifying the first mk components of Dn,
as in the statement of the theorem.

For the inactive nodes, of degrees d1 + mh, . . . , dk + mh, their counts relate to the principal
eigenvector in the following way. Let Yn,j be the number of times a ball of color j ∈ [mk] is drawn
from the urn by time n, and let Yn be the vector with these components. A pick from color r ∈ [k]
(with r ̸= i) contributes mnj balls of color j in the urn, except at r = j, or r = i, where the
contribution is reduced by m, owing to the hooking. This gives us the relation

Xn,j =
k∑

r=1
r ̸=j,r ̸=i

mnjYn,r + (mni − m)Yn,i + (mnj − m)Yn,j + X0,j .

Arguing similarly, when j = i, we obtain

Xn,i =
k∑

r=1
r ̸=i

mnjYn,r + (mni − 2m)Yn,i + X0,i.

Collected in matrix notation, these relations are

Xn = AT Yn + X0. (7)

When the inverse of AT exists, we can invert the relation into

Yn = (AT )−1(Xn − X0), (8)

and a strong law for Yn ensues:

1
n

Yn = 1
n

(AT )−1(Xn − X0) a.s.−→ (AT )−1(λ1v1) = (AT )−1(AT v1) = v1.

Note that Yn,j+mk = Dn,dj+mh. Therefore, the last k components of Dn are the last k compo-
nents of the principle eigenvector:

1
n


Dd1+mh

Dd2+mh

...
Ddk+mh

 a.s.−→


x(m−1)k+1
x(m−1)k+2

...
xmk

 .

Remark 4.1. Theorem 4.1 requires the invertibility of AT . If AT is not invertible, the associated
urn gives us only strong laws for the degrees of active nodes and determining the number of inactive
nodes requires some other reasoning.

Example 4.1. An example of noninvertible networks in Remark 4.1 is a degenerate unary network
(m = 1) grown out of a path of length 1. This is a degenerate network that grows as a path and
the only active nodes in it are the two vertices at the two ends of the path. In this instance, we
have A = [0], and AT has no inverse. The urn argument gives us the strong law Dn,1/n

a.s.−→ 0.
Here, we have the relation Dn,2 = nYn,1, and Dn,2/n → 1.
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The urn scheme associated with an m-ary network is a generalized scheme in the sense discussed
in Section 2. In particular, we have ℜ λ2 < 1

2 ℜ λ1. So, when all the components of the principal
eigenvector are positive, the central limit theorem in (2) applies to the active nodes. When one
of the components of v1 is 0, we call the network degenerate. In the present work, a sufficient
condition for nondegeneracy is ni > 1. Note the distinction between degeneracy and invertibility.

Theorem 4.2. Let Dn,dj+sh be the number of nodes that are originally of degree dj, and experience
latching s times in a nondegenerate m-ary network at age n, for j ∈ [k], s = 0, 1, . . . , m. Let Dn

be the vector with these components, and D∗ be the almost-sure limit in Theorem 4.1. As n → ∞,
we have

1√
n

(Dn − nD∗) D−→ N (0mk, Σmk),

where Σmk is an mk × mk covariance matrix.

Proof. We have proved that a central limit theorem applies to the active nodes. By (8), the
components of Yn are linear combinations of the components of Xn. It follows that Yn also
asymptotically follows a multivariate Gaussian law. In particular, the vector of the numbers of
inactive nodes (the last k components of Yn) follows a multivariate Gaussian law and the mk
components of Dn are together asymptotically Gaussian.

5 Specific instances with small m

The calculations outlined in the previous sections are tractable for small m. We consider the unary
and binary cases.

5.1 Unary hooking networks
Consider the case m = 1. As a corollary to Theorem 4.1, we get a strong law for the degrees in a
random unary hooking network.

Corollary 5.1. Let Dn,dj+sh be the number of nodes that are originally of degree dj, and experience
latching s times in a nondegenerate unary network at age n, for j ∈ [k] and s = 0, 1. Then, we
have

1
n



Dn,d1

Dn,d2
...

Dn,dk

Dn,d1+h

Dn,d2+h

...
Dn,dk+h


a.s.−→ 1

τ0 − 1



(τ0 − 2)n1
...

(τ0 − 2)ni−1
(τ0 − 2)(ni − 1)

(τ0 − 2)ni+1
...

(τ0 − 2)nk

n1
...

ni−1
ni − 1
ni+1

...
nk



.

Note the degenerate case ni = 1. In this case, the ith component of the limiting vector is 0.
So, G0 has one node of degree di (the degree of the hook in the seed), and sooner or later it will
progress by fusing to become an inactive node of degree 2di.
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hook

1

11

2

Figure 4: An extended seed for a unary network.

5.2 A concrete nondegenerate unary case
Let the seed be the one shown in Figure 4. The figure shows the extended seed, with virtual nodes
at the insertion positions colored white (color 1) and blue (color 2).

In this example, we have k = 2, d1 = 3, d2 = 7, and τ0 = 4. There are n1 = 3 nodes of degree
3 and only n2 = 1 node of degree 7. The admissible degrees are 3, 6, 7, 10. Nodes of degree d3 = 6
and d4 = 10 are inactive—they do not recruit after they appear. The only active nodes are of
degrees 3 and 7. We need only two colors, one (white, color 1) to correspond to nodes of degree 3
and another (blue, color 2) to correspond to nodes of degree 7. The replacement matrix is

A =
(

1 1
2 0

)
.

This is a nondegenerate invertible unary case, as (AT )−1 exists. By Corollary 5.1, we have

1
n


Dn,3
Dn,7
Dn,6
Dn,10

 a.s.−→ 1
3


4
2
2
1

 .

In this instance, the replacement matrix is small and amenable to straightforward variance
calculation. In fact, this type of urn is known in the literature as a Bagchi–Pal urn, first analyzed
in [2]. That paper gives a simple formula for the variance of the number of white balls. According
to [2], Var[Dn,3] = Var[Xn,1] = 1/9. We add two balls after each drawing, and we have

Xn,1 + Xn,2 = Dn,3 + Dn,7 = 2n + 4.

The linear dependence tells us that Var[Dn,3] = Var[Dn,7] and Cov[Dn,3, Dn,7] = −Var[Xn,1] =
−1/9. Further, by (7), we have

Dn,3 = Yn,1 + 2Yn,2 + 3 = Dn,6 + 2Dn,10 + 3,

Dn,7 = Yn,1 + 1 = Dn,6 + 1.

With these relations, we complete the covariance matrix for the central limit theorem:

1√
n




Dn,3
Dn,7
Dn,6
Dn,10

 − 1
3


4
2
2
1


 D−→ N




0
0
0
0

 ,
1
9


1 −1 −1 1

−1 1 1 −1
−1 1 1 −1
1, −1 −1 1


 .

Accepted in Compositionality on 2023-06-02. Click on the title to verify. 13



Volume 5 Issue 6 ISSN 2631-4444

5.3 A case with degeneracy
Consider the extended seed shown in Figure 5, from which we build a unary network. In this
example, we have k = 3 distinct degrees in the seed, which are d1 = 1, d2 = 2, and d3 = 3. There
are n1 = 1 node of degree 1, n2 = 2 nodes of degree 2, and n3 = 1 node of degree 3. We need three
colors for the active nodes, with a ball of color j corresponding to an active node of degree j, for
j = 1, 2, 3.

The replacement matrix is

A =

−1 2 1
0 1 1
0 2 0

 .

hook

1 3
2

2

Figure 5: A seed leading to a degenerate unary network.

By (1), we obtain

1
n

Xn,1
Xn,2
Xn,3

 a.s.−→ 1
3

0
4
2

 .

Let us distinguish nodes of degree 2 as active, with the count D̂n,2, and inactive with count
D̃n,2. Likewise, we distinguish nodes of degree 3 as active, with the count D̂n,3, and inactive
with count D̃n,3. All nodes of degree 4 are inactive. The actual number of nodes of degree 2 is
Dn,2 = D̂n,2 + D̃n,2, and the actual number of degree 3 is Dn,3 = D̂n,3 + D̃n,3.

The network in this example has τ0 = 4. By Corollary 5.1, we have the strong convergence

1
n



Dn,1
D̂n,2
D̂n,3
D̃n,2
D̃n,3
Dn,4


a.s.−→ 1

3


0
4
2
0
2
1

 ,

from which we find the limiting vector of degrees:

1
n


Dn,1
Dn,2
Dn,3
Dn,4

 a.s.−→ 1
3


0
4
4
1

 .

As one of the components of v1 is 0, the central limit theorem in Smythe [28] does not apply.
However, by an alternative formulation in Janson (Theorem 3.22 in [18]) we still get a central limit
theorem.

For the inactive nodes (of degrees 2, 3 and 4), we use the construction in (8). Specialized to
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the unary network at hand, the limiting covariance of the vector on the left of (8) follows:

1
n
Cov

Yn,1
Yn,2
Yn,3

 → (AT )−1 lim
n→∞

( 1
n
Cov[Xn]

)(
(AT )−1)T

= 1
9

0 0 0
0 1 −1
0 −1 1

 .

For notational convenience, we refer to the elements of the matrix on the right as yr,s, for
r, s ∈ {1, 2, 3}.

The three components of the vector on the left-hand side of (8) are Yn,1 = D̃n,2, Yn,2 = D̃n,3
and Yn,3 = D̃n,4. So, the last matrix is the bottom right 3 × 3 block in the full 6 × 6 limiting
covariance matrix among all the nodes (active and inactive). Let us call that latter 6 × 6 matrix
G, and refer to its elements by gr,s, for r, s ∈ [6].

As we can only have at most one inactive node of degree 1, and at most one inactive node of
degree 2, we have 1

n Dn,1
a.s.−→ 0, and 1

n D̃n,2
a.s.−→ 0. So,

1
n
Var[Dn,1] → 0,

1
n
Var[D̃n,2] → 0.

Also any limiting covariances involving these degrees are 0. Reading off (7) component-wise, we
get three separate equations:

Xn,1 = −Yn,1 + 1, (9)
Xn,2 = 2Yn,1 + Yn,2 + 2Yn,3 + 2, (10)
Xn,3 = Yn,1 + Yn,2 + 1. (11)

From these three equations, we can get the top left 3 × 3 block of the full 6 × 6 limiting covariance.
For instance, by taking the variance of (10), and scaling by n−1, we get

1
n
Var[Xn,2] → 4y1,1 + y2,2 + 4y3,3 + 4y1,2 + 8y1,3 + 4y2,3 = 1

9;

recall that y1,1 = 0, y1,2 = 0, and y1,3 = 0.
Adding any two of the equations (9)–(11), gives us one covariance in the top left 3 × 3 block of

the full 6 × 6 matrix G.
Reorganize (10) in the form

Xn,2 − Yn,2 = 2Yn,1 + 2Yn,3 + 2,

and take the variance, to get

Var[Xn,2] + Var[Yn,2] − 2Cov[Xn,2, Yn,2]
= 4Var[Yn,1] + 4Var[Yn,3] + 8Cov[Yn,1, Yn,3].

Taking the limit at a scale of n−1, we get

1
n
Cov[D̂n,2, D̃n,3] → g2,5 = −1

2(4y1,1 + 4y3,3 + 8y1,3 − y2,2 − g2,2) = −1
9 ;

recall that y1,1 = 0 and y1,3 = 0.
Reorganize (10) in a form separating 2Yn,3 on the left, a similar computation gives Cov[D̂n,2, Dn,4].

Taking the limit at a scale of n−1, we get

1
n
Cov[D̂n,2, Dn,4] → g2,5 = −1

4(4y1,1 + y2,2 + 4y1,2 − 4y3,3 − g2,2) = 1
9 ;

recall that y1,1 = 0 and y1,2 = 0.
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The trickiest elements of G are g3,5 = g5,3 and g3,6 = g6,3. No individual equation among (9)–
(11) has sufficient information to determine these elements, but a combination of (10) and (11)
gives us what we want. Add these two equations, with 2Yn,2 written on the left of (10), scale by
n−1 and take the limits, to get

g2,2 + g3,3 + 2g2,3 + 4y2,2 − 4g2,6 − lim
n→∞

4
n
Var[D̂n,2, D̃n,3] = 9y1,1 + 4y3,3 + 12y1,3;

recall that y1,1 = 0 and y1,3 = 0. The remaining limit is g3,5 = − 1
9 . A similar manipulation, with

2Yn,3 on the left, gives us g3,6 = 1
9 . The complete covariance matrix is

G = lim
n→∞

1
n
Cov





Dn,1
D̂n,2
D̂n,3
D̃n,2
D̃n,3
Dn,4



 = 1
9


0 0 0 0 0 0
0 1 −1 0 −1 1
0 −1 1 0 −1 1
0 0 0 0 0 0
0 −1 −1 0 1 −1
0 1 1 0 −1 1

 .

The graph theory point of view does not distinguish node degrees by history. A network analyst
may wish to make decisions based on the plain degrees. For instance, for the unary network grown
from the seed in Figure 5, in a social context all nodes of degree 3 may mean three friends. The
analyst is only interested in the limiting value of 1

nCov[Dn]. The entries of this matrix are related
to G. For example Dn,2 = D̂n,2 + D̃n,2, giving us the limiting covariance relation

lim
n→∞

1
n
Var[Dn,2] = g2,2 + g4,4 + g2,4 = 1

9 .

Completing the computations for all the entries of limn→∞
1
nCov[Dn], we get the central limit

theorem

lim
n→∞

1√
n




Dn,1
Dn,2
Dn,3
Dn,4

 − 1
3


0
4
4
1


 D−→ N




0
0
0
0

 ,
1
9


0 0 0 0
0 1 −2 1
0 −2 0 0
0 1 0 1


 .

Remark 5.1. Curiously, 1
nVar[Dn,3] → 0. A moment of reflection leads us to see that active and

inactive nodes of degree 3 appear together in every step, once the initial hook becomes inactive and
the node of degree 3 in the seed copy latched into it also recruits. That is, after the latter event,
Dn,3 = D̂n,3 + D̃n,3 behaves deterministically.

5.4 A binary case
Consider the extended seed shown in Figure 2. It is the same seed we considered in the first
example on unary networks but now we build a random binary network out of it. In this binary
example, we have k = 2 distinct degrees in the seed, which are d1 = 3, and d2 = 7. There are
n1 = 3 nodes of degree 3 and n2 = 1 node of degree 7. We need four colors for the active nodes,
with color 1, 2, 3, 4 respectively corresponding to the active nodes of degrees 3, 7, 6, 10.

The replacement matrix is

A =


2 2 1 0
4 0 0 1
4 2 −1 0
4 2 0 −1

 .

According to Theorem 4.1, we get

1
n

D∗
n = 1

n


Dn,3
Dn,7
Dn,6
Dn,10
Dn,9
Dn,13


a.s.−→ 1

21


60
30
10
5
2
1

 =: D∗.
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The limiting covariance matrix is computed in the appendix. The corresponding central limit
theorem is

1√
n




Dn,3
Dn,7
Dn,6
Dn,10
Dn,9
Dn,13

 − 1
21


60
30
10
5
2
1



 D−→ N




0
0
0
0
0
0

 ,
5

882


24 −16 −27 11 3 5

−16 20 11 −19 5 −1
−27 11 40 −8 −13 −3
11 −19 −8 24 −3 −5
3 5 −13 −3 10 −2
5 −1 −3 −5 −2 6



 .

6 Concluding remarks
We studied random m-ary networks that grow from a seed, and each node in the network has m
hooking positions. The degrees in the network evolve over time. Via a connection to the composi-
tion of certain Pólya urns, we are able to extract theorems for the degrees in the m-ary network.
Namely a strong law (Theorem 4.1) and a multivariate central limit theorem (Theorem 4.2) were
developed for m-ary networks.

Appendix
We illustrate the procedure in (3) on the binary network in Section 5.4. The limit Σc is 4×4, with
the elements qij , for i, j ∈ [4].

The urn associated with this network has λ1 = θ = 5, and the principal eigenvector is
(x1, x2, x3, x4)T = 1

21 (12, 6, 2, 1)T . We wish to solve the matricial equation

AT Σ4 + Σ4A + λ1AT Diag(x1, x2, x3, x4)A − λ1AT v1vT
1 A − λ1Σ4 = 04.

We extract elements from the left-hand side and equate them to 0. It is enough to extract the
10 elements on and above the diagonal, since Σ4 = [qi,j ]1≤i,j≤4 is symmetric. Going through this
extraction, we get

−q1,1 + 8q1,2 + 8q1,3 + 8q1,4 + 240
49 = 0,

2q1,1 + 2q1,3 + 2q1,4 − 3q1,2 + 4q2,2 + 4q2,3 + 4q2,4 − 160
49 = 0,

q1,1 − 4q1,3 + 4q2,3 + 4q3,3 + 4q3,4 − 440
147 = 0,

q1,2 − 4q1,4 + 4q2,4 + 4q3,4 + 4q4,4 + 200
147 = 0,

4q1,2 + 4q2,3 + 4q2,4 − 5q2,2 + 200
49 = 0,

q1,2 − 6q2,3 + 2q1,3 + 2q3,3 + 2q3,4 + 200
147 = 0,

q2,2 − 6q2,4 + 2q1,4 + 2q3,4 + 2q4,4 − 320
147 = 0,

2q1,3 − 7q3,3 + 970
441 = 0,

q2,3 − 7q3,4 + q1,4 − 250
441 = 0,

2q2,4 − 7q4,4 + 610
441 = 0.

This is a standard system of linear equations, with the solution

lim
n→∞

1
n
Cov




Xn,1
Xn,2
Xn,3
Xn,4


 = 5

441


48 −32 −27 11

−32 40 11 −19
−27 11 20 −4
11 −19 −4 12

 .
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We remind the reader that colors 1, 2, 3, 4 correspond to degrees 3, 7, 6, 10 respectively and that
Yn,3 and Yn,4 correspond to Dn,9 and Dn,13. Additionally, with

Dn,3 = 1
2Xn,1, Dn,7 = 1

2Xn,2, Dn,6 = Xn,3, Dn,10 = Xn,4,

we have the variances and covariances in the top left 4 × 4 block:

1
n
Var[Dn,3] = 1

4n
Var[Xn,1] → 20

147 ,
1
n
Var[Dn,7] = 1

4n
Var[Xn,2] → 50

441 ,

1
n
Var[Dn,6] = 1

n
Var[Xn,3] → 100

441 ,
1
n
Var[Dn,10] = 1

n
Var[Xn,4] → 20

147 ,

1
n
Cov[Dn,3, Dn,7] = 1

4n
Cov[Xn,1, Xn,2] → − 40

441 ,

1
n
Cov[Dn,3, Dn,6] = 1

2n
Cov[Xn,1, Xn,3] → −15

98 ,

1
n
Cov[Dn,3, Dn,10] = 1

2n
Cov[Xn,1, Xn,4] → 55

882 ,

1
n
Cov[Dn,7, Dn,6] = 1

2n
Cov[Xn,2, Xn,3] → 55

882 ,

1
n
Cov[Dn,7, Dn,10] = 1

2n
Cov[Xn,2, Xn,4] → − 95

882 ,

1
n
Cov[Dn,6, Dn,10] = 1

n
Cov[Xn,3, Xn,4] → − 20

441 .

By the symmetry of a covariance matrix, we can complete the top left 4 × 4 block of the full
6 × 6 limiting covariance matrix among all the degrees.

For the inactive nodes (of degrees 9 and 13), we use the construction in (8). Specialized to the
binary network at hand, we have

Yn = (AT )−1




Xn,1
Xn,2
Xn,3
Xn,4

 −


6
2
0
0


 .

The limiting covariance of the vector on the left, at the scale of n−1, follows:

1
n
Cov




Yn,1
Yn,2
Yn,3
Yn,4


 → (AT )−1 lim

n→∞

( 1
n
Cov[Xn]

)(
(AT )−1)T

= 5
882


24 −16 −3 −5

−16 20 −5 1
−3 −5 10 −2
−5 1 −2 6

 .

The bottom two components of the vector on the left-hand side are Yn,3 = Dn,9 and Yn,4 =
Dn,13. So, the bottom 2 × 2 block in the last matrix are the bottom right 2 × 2 block of the full
6 × 6 limiting covariance matrix among all the degrees.

We determine the rest of the full 6 × 6 matrix from relation (7), which in this instance becomes
Xn,1
Xn,2
Xn,3
Xn,4

 =


2Yn,1 + 4Yn,2 + 4Yn,3 + 4Yn,4 + 6

2Yn,1 + 2Yn,3 + 2Yn,4 + 2
Yn,1 − Yn,3
Yn,2 − Yn,4

 . (12)

Extract the third component and write Yn,3 on the left-hand side. Taking the variance, we get

Var[Xn,3] + Var[Yn,3] + 2Cov[Dn,6, Dn,9] = Var[Yn,1].
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After scaling, we get

1
n
Cov[Dn,6, Dn,9] = 1

2n
Var[Yn,1] − 1

2n
Var[Yn,3] − 1

2n
Var[Xn,3]

→ 1
2

( 20
147 − 25

441 − 100
441

)
= − 65

882 .

The fourth component in (12) can be handled similarly to give the limit limn→∞
1
nCov[Dn,10, Dn,13] =

− 25
882 . Another equation comes from the top component in (12). Upon reorganization, we write

Xn,1 − 4Yn,4 = 2Yn,1 + 4Yn,2 + 4Yn,3 + 6.

Taking the variance and using Xn,1 = 2Dn,3, Yn,4 = Dn,13, we can solve for limn→∞
1
nCov[Dn,3, Dn,13] =

25
882 .

With a different reorganization of the top components in (12), bringing 4Yn,3 = 4Dn,9 to the
left-hand side, we obtain the limit limn→∞

1
nCov[Dn,3, Dn,9] = 5

294 .
Coming from the second equation from the top in (12), the relation

Xn,2 = 2Yn,1 + 2Yn,1 + 2Yn,1 + 2

can be handled in a similar manner in two steps, once with 2Yn,3 on the left, and a second time
with 2Yn,4 on the left, to respectively produce the limits

lim
n→∞

1
n
Cov[Dn,7, Dn,9] = 25

882 , lim
n→∞

1
n
Cov[Dn,7, Dn,13] = − 5

882 .

No single equation taken from (12) gives us the remaining elements. We combine the third and
the fourth in the form

Xn,3 + Xn,4 = Yn,1 + Yn,2 − Yn,3 − Yn,4.

With Yn,3 written on the left, we get limn→∞
1
nCov[Dn,9, Dn,10] = − 5

294 . The calculation needs
the limiting value limn→∞

1
nCov[Dn,6, Dn,9], and this has already been determined. A reorga-

nization with Yn,4 written on the left, we get limn→∞
1
nCov[Dn,6, Dn,13] = − 5

294 . The cal-
culation needs the limiting value limn→∞

1
nCov[Dn,10, Dn,13], and this has already been deter-

mined.
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