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A central problem in the study of resource theories is to find functions that are
nonincreasing under resource conversions—termed monotones—in order to quantify
resourcefulness. Various constructions of monotones appear in many different concrete
resource theories. How general are these constructions? What are the necessary
conditions on a resource theory for a given construction to be applicable? To answer
these questions, we introduce a broad scheme for constructing monotones. It involves
finding an order-preserving map from the preorder of resources of interest to a distinct
preorder for which nontrivial monotones are previously known or can be more easily
constructed; these monotones are then pulled back through the map. In one of the
two main classes we study, the preorder of resources is mapped to a preorder of
sets of resources, where the order relation is set inclusion, such that monotones can
be defined via maximizing or minimizing the value of a function within these sets.
In the other class, the preorder of resources is mapped to a preorder of tuples of
resources, and one pulls back monotones that measure the amount of distinguishability
of the different elements of the tuple (hence its information content). Monotones
based on contractions arise naturally in the latter class, and, more surprisingly, so
do weight and robustness measures. In addition to capturing many standard monotone
constructions, our scheme also suggests significant generalizations of these. In order
to properly capture the breadth of applicability of our results, we present them within
a novel abstract framework for resource theories in which the notion of composition
is independent of the types of the resources involved (i.e., whether they are states,
channels, combs, etc.).
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1 Introduction

In physics there is a long tradition of taking a pragmatic perspective on physical phenomena, and
more specifically of focussing on how certain physical states or processes can constitute resources.
A prominent example is the study of heat engines and the advent of thermodynamics. Here, one
seeks to determine what work can be achieved given access to a heat bath and systems out of
thermal equilibrium, such as a compressed gas. It was eventually understood that resources of
thermal nonequilibrium could be of informational character. One of the most famous examples is
the Szilard engine [54], which uses information about the state of a system in order to perform
work. Resource-theoretic thinking has expanded with the development of information theory. The
pioneering work of Claude Shannon [48] is centered around questions regarding the convertibility
of communication resources. It is not surprising, therefore, that with the rising prominence of
information theory in physics in recent years, the application of resource-theoretic ideas in physics
has also been on the rise.

The most relevant of these efforts for us is the development of quantum information theory. Once
it was understood that entangled quantum states constitute a resource for communication tasks,
the property of entanglement began to be studied as a resource. Specifically, in circumstances
wherein quantum communication is expensive while local operations and classical communication
(LOCC) are free, one can conceptualize the distinction between entanglement and lack thereof in
terms of whether a state can be generated by LOCC. Furthermore, one can define an ordering over
all states wherein one state is above (and hence more entangled than) another if the first can be
converted to the second by LOCC. The resource theory of entanglement is now very well developed
and continues to find a variety of applications in quantum information theory [13, 25]. We return
to this theory in Example 8 (i) and other examples throughout the text.

The success of entanglement theory inspired researchers to study other properties of quantum
states and channels as resources relative to a set of operations considered to be free. For example,
symmetry-breaking states can be characterized as resources relative to symmetric operations
[37] and states of thermal nonequilibrium can be characterized as resources relative to thermal
operations [3]. These resource theories have led to surprising and important conceptual insights,
such as a generalization of Noether’s theorem [38] and a refinement of our understanding of the
second law of thermodynamics [4]. Many other examples of the use of resource theories within
quantum information theory have followed [6].

In the approach to conceptualizing resources that we have just outlined, a choice of free operations
defines a preorder relation on resource objects given by the existence of a conversion between the
resources in question by the free operations. Measures of resourcefulness can then be defined in
terms of monotones, that is, real-valued functions that respect the order relation. In earlier works,
researchers sometimes took the goal of the resource-theoretic endeavour to be the identification
of the correct measure of the resource, and worked under the mistaken impression that there was
“one measure to rule them all”. However, if the preorder is not a total order, then there will in
general be many independent measures. In our view, the preorder is the fundamental structure,
while any particular measure is typically a coarse-grained and incomplete description thereof.

One useful tool for characterizating the preorder is an algorithm which can solve the decision
problem associated to a particular ordering relation, that is, one which takes as input a description
of any pair of resources and outputs whether or not the first can be converted to the second by the
free operations. However, even if one has identified such an algorithm, it might still be difficult
to answer simple questions about the global structure of the preorder. For instance, the following
properties of the preorder cannot easily be determined in this way (as noted in [66]): its height
(cardinality of the largest chain), its width (cardinality of the largest antichain), whether or not
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it is totally ordered (i.e., fails to have any incomparable elements), whether or not it is weak (i.e.,
the incomparability relation is transitive), and whether or not it is locally finite (i.e., with finite
number of inequivalent elements between any two ordered elements). Monotones can provide a
better route to answering such questions. In order to learn all of these properties, it sometimes
suffices to find a few nontrivial monotones [66]. Another point in favour of looking for monotones
arises when these quantify the usefulness of resources for a given task in a direct manner [14, 56].
Consequently, constructing useful monotones is indeed a critical part of developing a concrete
resource theory. In this article, we approach the problem of devising schemes for constructing
useful monotones within an abstract framework for resource theories, designed to be sufficiently
general to capture a large variety of concrete resource theories of interest. The details of abstract
framework we use here (see Section 2) are chosen with two desiderata in mind, besides the obvious
requirement that the framework should be applicable to the study of resource theories. On the
one hand, the framework should only contain structure relevant to the monotone-construction-
schemes we study. That is why we deliberately do not use the language of quantum theory (or
process theories more broadly) and we do not assume the existence of convex combination (unless
necessary). On the other hand, we do not wish to obscure the concepts presented by needless
abstraction. A more general framework that aims to broaden the scope of future investigations of
resource theories is presented in the PhD thesis of one of the authors [16] instead. There, one can
also find an extensive analysis of the connection of our framework for resource theories presented
here to those of ordered commutative monoids [11, 15] and partitioned process theories [11].
One of the key simplifications we introduce is that we omit any explicit sequential information
about resource interactions. For example, in the context of partitioned process theories, we thus
model combining resources neither in terms of the parallel composition of processes (⊗) nor in
terms of their sequential composition (◦). This is because both are non-commutative operations
and therefore carry sequential information. A commutative operation that fits our purposes is one
called “universal combination” [11] and denoted by ⊠. It is called universal because it specifies
the combinations of processes in arbitrary fashion. Motivated by this connection, we refer to a
general commutative binary operation on resources as a universal combination and denote it by ⊠
throughout this article even if it no longer applies to resources that are processes in some process
theory.
Among the many process combinations, there are some that generate higher-order processes [65].
For instance, one may combine two channels, f and g, into a higher-order process that implements
the following map of channels to channels:

h 7→ h

f

g

(1)

The specific higher-order process is a 1-comb in this case and it is indicated by the blue background
in the above diagram. Universal combination thus naturally leads to many different types of
resources. Specifically, even if we are interested in the resources in the form of quantum states
(processes with trivial input), we will incorporate not just states, but also channels and quantum
combs [5] within the same theory.
The first motivation for such type-independence is that one is generally interested in more than
one type of resource. This becomes explicit if we interpret the tasks we want to use the resources
for just as another type of a resource. Whereas many monotones in quantum resource theories are
commonly defined for states only, the resourcefulness of channels [18, 33, 34] and combs is also of
interest. For instance, situations where combs play a central role include adaptive strategies in
quantum games [22] and algorithms for a measurement-based quantum computer [42]. Resource-
theoretic studies of these therefore require a framework that can handle more than just states and
channels.
Furthermore, type-independence is important because it allows one to consider conversions between
different types of resources (e.g., see [47]). In the context of quantum entanglement, for example,
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one may be interested in understanding the possibilities for interconversion between entangled
states and quantum channels (exemplified by the teleportation protocol). If one seeks to understand
the interplay between states and channels in terms of measures of resourcefulness, it is necessary
that these measures be applicable to both types of resources. This motivates our choice that
type-independence is built into the abstract framework for resource theories we use—schemes for
constructing monotones within such a framework necessarily yield type-independent monotones.

In spite of the attractiveness of resource theories with universal composition, a restriction on the
types of resources being considered is often helpful when we aim to answer concrete questions of
limited scope. For example, if we are only ever interested in transitions between states, it suffices
to use a resource theory of states that may be modelled as a partitioned process theory [11, Section
3.2] or a quantale module [16, Example 3.13], the latter of which is closer to the analysis presented
here. The key point is that answers to the questions that we investigate here do not hinge on the
assumption of universal composition. Indeed, one can develop them in the more general setting of
quantale modules [16] as well as other approaches. The minimal framework we use allows us to
describe the results in a clear manner devoid of unnecessary structures, but the ideas can equally
well be applied in the context of type-restricted resource theories such as resource theories of states.
In particular, any reasonable model of a resource theory that gives rise to a resource order relation
can accommodate the ideas we propound here.

We introduce a general scheme for constructing monotones, which we term the Broad Scheme and
which applies to any such notion of a resource theory with an order relation among the resources.
The idea is that the problem of finding monotones for the preordered set of resources can be
conceptualized as a two-step procedure that consists of identifying

• an order-preserving map from the set of resources to a distinct preordered set, and

• a monotone for the latter preorder which is then translated to the preorder of interest by
precomposition.

Details are provided in Section 2.2. We refer to the three elements in this Broad Scheme as the
mediating order-preserving map, the mediating preordered set, and the root monotone. Various
monotone constructions then correspond to different choices of these three elements. To cast an
existing monotone construction into the mold of the Broad Scheme, one merely identifies what
choices of each of these elements yield the given construction. Alternative constructions can be
obtained immediately by simply varying any of the elements. In this way, the Broad Scheme
provides a means of classifying the set of all such constructions as well as generalizing the known
ones.

Example 1 (translating measures of nonuniformity to measures of entanglement). As was shown
by Nielsen in [39], entanglement properties are connected to majorization that is well-understood
[35]. Specifically, the ordering of pure quantum states in the resource theory of entanglement (see
Example 8 (i)) is equivalent to the (reverse) ordering of probability distributions by majorization.
Majorization monotones are given by Schur-convex functions. It follows that all such measures of
“nonuniformity” of distributions (see Example 9 (ii)) can be translated to measures of entanglement
via the mediating map found by Nielsen, as pointed out in [10] where the mediating map was termed
a qualitative measure of entanglement.

Example 2 (translating measures of distinguishability to measures of asymmetry). In Lemma 1
of reference [37], it is shown that there is a mediating order isomorphism from the partial order of
quantum states, ordered with respect to convertibility under covariant operations (see Example 8
(ii)), to the partial order of tuples of quantum states (specifically, the orbits of a quantum state
under the symmetry group), ordered with respect to convertibility under arbitrary operations. In
this way, one can translate (root) monotones from the resource theory of distinguishability (see
Section 4.2) to the resource theory of asymmetry.

The art of constructing useful monotones, therefore, is not simply the art of finding specific order-
preserving functions for the resource theory of interest. It is also the art of identifying (mediating)
order-preserving maps from the theory under investigation to a distinct preorder for which the
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problem of finding good monotones is easier, or for which many good monotones are already
known.

The Broad Scheme provides a useful perspective on monotone constructions based on resource
yield (see Section 3.2). Yield constructions for some given function do not specify the value of the
function on the resource itself, but rather find the highest value that the function can take among
all resources achievable from the resource in question by the free operations. The perspective is
that there is a mediating order isomorphism between the partial order of resources and the partial
order of free images of resources, where the free image of a resource is the set of all resources
that can be obtained from it for free. Root monotones can then be easily defined on the latter
partial order, for instance in terms of the supremum of the given function over these sets. A similar
interpretation is possible for the dual notion of a cost construction. This perspective suggests many
natural generalizations of such cost and yield constructions, which are the subject of Section 3 of
this article.

If the mediating preorder itself arises from some resource theory, such as in Example 1, then
the Broad Scheme describes a method for translating monotones from one resource theory to
another. We explore similar situations in greater detail in Section 4. In particular, in Section 4.2,
we consider schemes wherein the mediating preordered set describes tuples of resources from the
original resource theory and their convertibility under processes that act identically on each element
of the tuple. Such a mediating preorder can be understood in terms of a resource theory of
distinguishability [62]. The order-preserving map from the partial order of asymmetric states to
the partial order of group orbits of these states, described in Example 2, is an instance of this
method. Among other instances of this scheme we show how standard monotone constructions,
such as weight, robustness and relative entropy based measures, can be reconceived in this way,
and this recasting leads us to propose natural generalizations thereof.

An overview of the most directly applicable ideas for constructing monotones from Sections 3 and 4
is presented as a table in Appendix B. Given basic familiarity with resource theories and some of
the notation introduced in Section 2, the table can be also understood prior to reading Sections 3
and 4.

Finally, in Section 5, we introduce an ordering among monotones that captures their relative
informativeness about the preorder of resources. Such an ordering relation could conceivably also
aid in the project of classifying monotone constructions, and we make some progress toward this
goal by proving Proposition 64, which asserts that “more informative functions generate more
informative monotones”.
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2 General Resource Theories

Before presenting our working abstract definition of a resource theory, we outline the features we
would like it to have. First of all, a resource theory should describe a collection R of resources—
the objects of study. Secondly, it should describe a way of combining these together, which we
model by an associative, binary operation ⊠ and call the universal combination. Finally, it must
incorporate a structure that specifies what conversions between the resources are possible and
under what conditions. This is achieved by specifying a subset Rfree of resources deemed to be
free.
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f ⊠ g = f g ∪
f

g
∪

g

f

f

g

∪

g

f

∪

Figure 1: Universal combination of two processes in a process theory. For simplicity, the input and output wires
of f and g are of the same type here. We can read the right-hand side as a set of five diagrams, the ∪ symbol
indicates union of sets and each diagram in the union is thought of as a singleton set of diagrams. The light
blue background indicates the type of the resulting process—a channel with two inputs and two outputs in
the first case, a channel with a single input and single output in the next two and a 1-comb for the last two
diagrams.

Example 3 (resource theory of universally combinable processes). In a resource theory of
universally combinable processes, defined in [11], R corresponds to the set of all processes of
interest and ⊠ describes the combination of these via wirings. In Figure 1, we illustrate the
universal combination of two processes, f and g (see Example 6 for more details). A concrete
resource theory is then given by specifying a set of free processes Rfree that is closed under the
⊠ operation. Recall that there are various types of processes: States are processes with trivial
inputs, channels are processes that have an input and an output, and combs are processes with
many inputs and many outputs, interleaved over ‘time’ (such as the last two elements in Figure 1).
In a theory of universally combinable processes, the set of resources R in general includes all of
these types of processes. Similarly, the set of free resources Rfree may include representatives of
each type.
Many concrete quantum resource theories have been studied in recent years [6]. For each of these,
one can hope to define a choice of Rfree which corresponds to the free operations that define the
resource theory. Note, however, that most previous work did not take universal combination as
the relevant notion of composition and often took the resources of interest to be processes of a
specific type (most commonly states). Processes that model the conversions between resources are
then typically of a different type (most commonly channels). The framework we use here presumes
universal combination and therefore does not require any distinction to be made a priori between
the resources and the processes achieving conversions—each object is conceptualized both as a
resource in its own right and as something that can be used to achieve a conversion of one resource
into another.

Our philosophy is that universal combination is a natural notion of combination in a resource theory,
which is why we introduce a binary operation ⊠ that satisfies properties of universal combination.
However, concrete resource theories that have been studied previously typically consider only
specific types of resources and are therefore not universally combinable in the sense of Definition 4
below. Rather, they are instances of frameworks in which there is a conceptual distinction between
the objects that constitute resources and those that constitute transformations. Such frameworks
include resource theories of states arising from partitioned process theories [11] as well as resource
theories defined through quantale modules [16]. Nonetheless, such concrete type-specific resource
theories can in general be embedded into a universally combinable one. Specifically, the embedding
makes sense if (in the case of a resource theory of states) both

• the set of free operations is the restriction of a set of free resources closed under some notion
of universal combination to channels, and

• the set of free states is the restriction of the same set of free resources closed under the same
notion of universal combination to states.

In such cases, the definition of the concrete type-specific resource theory is judged to be consistent
with our approach. This notion of embedding implies that results derived in the framework of
universally combinable resource theories can be carried over to address questions in concrete type-
specific resource theories. See [16, Chapter 4] for more details on these generalizations.
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Generically, processes can be wired together in multiple ways (see Figure 1). In order to capture
this feature, the object r ⊠ s that represents the universal combination of resources r and s is
not another resource. Rather, it is a collection of resources each describing a particular way of
combining r and s. We can thus view r⊠ s as an element of P(R), the power set of the underlying
set R of all individual resources.

The interpretation of r ⊠ s with respect to the individual resources r and s is that an agent has
access to both r and s (and they can be combined in various ways). On the other hand, the union
of {r} and {s}—the set {r, s} ∈ P(R)—represents an agent having access to either resource r or
resource s, but not both. Because of this interpretation, we require that the ⊠ operation distributes
over unions, just like conjunction distributes over disjunction. That is, for any two sets of resources
S, T ∈ P(R), we have

S ⊠ T =
⋃

s∈S,t∈T

s⊠ t, (2)

where s ⊠ t is a shorthand notation for {s} ⊠ {t}. As mentioned beforehand, in this article s ⊠ t
corresponds to all valid compositions of s with t, whence s ⊠ t = t ⊠ s for all s, t ∈ R. That
is, universal combination is commutative. Furthermore, we assume that there is a neutral set of
resources denoted by 0 ∈ P(R) that satisfies

0 ⊠ S = S = S ⊠ 0 (3)

for all S ∈ P(R). In the resource theories of universally combinable quantum processes from
example 3, the neutral set 0 consists of all identity processes. More generally, we would interpret
the neutral set as consisting of resources that cannot be used for non-trivial conversions.

Notice that the neutral set 0 differs from the empty set ∅ ∈ P(R), which satisfies

∅ ⊠ S = ∅ = S ⊠ ∅ (4)

and which is the bottom element of the complete Boolean lattice (P(R),∪). If r ⊠ s = ∅ holds,
then the interpretation is that the resources r and s are mutually incompatible—there is no way
to combine them. For example, in the context of deterministic computation, if r and s denote two
states of the same register, then they cannot coexist and therefore they cannot be combined. On
the other hand, if r ⊠ s ⊆ 0 holds, then we would say that any way to combine r and s produces
a resource in the neutral set, thus effectively discarding them.

Altogether, we get a commutative monoid (P(R),⊠, 0) with a monoidal operation ⊠ that
distributes over unions. A natural way to understand this structure is in terms of a quantale
[45]. However, in this article we avoid using the language of quantales since it is not necessary as
far as the results presented here are concerned.

When defining a resource theory, we also identify a distinguished subset of resources that are free,
denoted by Rfree. These resources are free in the sense that one can access them in unlimited
supply without restrictions, whence we impose that combining free resources together cannot yield
a non-free resource. That is, we require that

Rfree ⊠Rfree ⊆ Rfree. (5)

holds, leading to the following definition.

Definition 4. A universally combinable resource theory1 (in this article also referred to as
a resource theory for short) R = (Rfree, R,⊠) consists of a set of resources R, a subset of free
resources Rfree ⊆ R and a binary operation ⊠ : P(R) × P(R) → P(R) such that

(i) (P(R),⊠, 0) is a commutative monoid with a submonoid (P(Rfree),⊠, 0), and

(ii) the operation ⊠ distributes over the union operation ∪ as described by equation (2).

1Following [16], we use the terminology “universally combinable resource theory” in order to distinguish resource
theories considered here from a broader class of resource theories (cf. Section 3.3 of [16]).
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Since in Definition 4 we impose that neutral resources are free (i.e., 0 ⊆ Rfree) we can express the
closure property (5) as Rfree ⊠Rfree = Rfree.

The order relation between resources is induced by the choice of the submonoid of free resources.
The allowed conversions are those that arise via a composition with elements of the free set Rfree.
Given a resource theory (Rfree, R,⊠), we define the resource ordering, denoted ⪰, by

r ⪰ s ⇐⇒ s ∈ Rfree ⊠ r (6)

for any r, s ∈ R, where Rfree⊠r is a shorthand notation for Rfree⊠{r}. The order relation captures
whether r can be converted to s by means of composition with free resources. It can be used to
determine the value of resources with respect to the choice of the partition of R into free and
non-free resources. If r can be converted to s for free, i.e., if r ⪰ s holds, then we say that r is
better than (or equivalent to) s as a resource in the resource theory (Rfree, R,⊠). With this order
relation, the set of resources becomes a preordered set (R,⪰).
Similarly, we can define the ordering of sets of resources by

S ⪰ T ⇐⇒ T ⊆ Rfree ⊠ S (7)

for any S, T ∈ P(R). Again, (P(R),⪰) is a preordered set.

In the framework for resource theories in terms of ordered commutative monoids [15], one requires
a compatibility between the order relation and the monoidal operation as one of the axioms. Here,
we can derive a corresponding property from Definition 4.

Lemma 5 (compatibility of ⊠ and ⪰). Let (Rfree, R,⊠) be a resource theory with the corresponding
order relation ⪰ defined as in (7). For any three subsets S, T, U of R, we have

S ⪰ T =⇒ S ⊠ U ⪰ T ⊠ U. (8)

Proof. By the definition of ⪰, we have S ⪰ T ⇐⇒ Rfree ⊠ S ⊇ T , which implies

(Rfree ⊠ S) ⊠ U ⊇ T ⊠ U. (9)

Via the associativity of ⊠, we can then conclude that S ⊠ U ⪰ T ⊠ U must hold whenever S is
above T according to the order relation ⪰.

With respect to the preorder (R,⪰), two resources r and s are said to be equivalent (denoted r ∼ s)
if both r ⪰ s and s ⪰ r hold. Similarly, two sets of resources S and T are said to be equivalent if
both S ⪰ T and T ⪰ S are true, which we denote by S ∼ T . However, as we will see later, there
are multiple relevant order relations on P(R), each of which defines a distinct notion of equivalence
for sets of resources. One should therefore be careful to attach the right interpretation to S ∼ T ,
depending on the order relation used.

Equivalent resources can be freely converted one to another. Therefore, from the point of view of
resource convertibility, there is no need to distinguish them unless distinguishing them provides a
more convenient representation. When we remove this degeneracy we obtain a quotient resource
theory R/∼ wherein the resources are equivalence classes of resources in R. The quotient need not
be a universally combinable resource theory in the strict sense of Definition 4. It does, however,
fit into a more general framework in terms of quantale modules [16], which we can think of as
replacing the complete Boolean lattice (P(R),∪) in Definition 4 with an arbitrary suplattice.

2.1 Examples of General Resource Theories

A resource theory satisfying Definition 4 embodies the idea of resources without arbitrary
restrictions on the allowed combinations ⊠. It only has a restriction in the form of the set of
free resources that generate the resource ordering, representing a restriction on the capabilities of
certain agents or on the abundance of certain resources. As such, it can naturally accommodate
resource theories of universally combinable processes [11], which are defined in the same spirit.
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Example 6 (universally combinable processes). In a resource theory of universally combinable
processes, the set R corresponds to the set of all diagrams with no loops and for any two processes
f and g, their universal combination f ⊠ g is the set of all processes one can obtain by “wiring” f
and g together as depicted in Figure 1. In order to understand it better, we can consider processes,
not all of whose inputs and outputs coincide—e.g. by virtue of having multiple output wires:

= ∪
g

f
∪f g

g

f

∪

f

g

f ⊠ g

g

f

∪

∪ ∪

f

g

(10)

We can then infer the universal combination f ⊠g⊠h of three processes, as long as we also specify
the universal composition of a channel and a comb:

=f ⊠

g

h

f ⊠ g

h

∪

f ⊠ h

g

(11)

In Equation (11), the box labelled as f ⊠ g, for instance, does not refer to an individual diagram.
Instead, it is used as a shorthand for the collection of diagrams (both channels and combs) as
specified by f ⊠ g in Figure 1.

As we mentioned before, resource theories studied at present rarely follow the exact structure of a
universally combinable resource theory according to Definition 4. Remark 7 below explicates this
fact in a more concrete manner.

Remark 7 (Definition 4 excludes type-restricted theories). Note that in a resource theory of
universally combinable processes, the channel given by the sequential composition f ◦ h ◦ g is an
element of f⊠g⊠h. This fact can be established by a successive application of the equation shown
in Figure 1. However, if we impose the restriction that the set of resources R only includes channels
(and states as a special case) but not combs, then we reach a contradiction with the assumption
that ⊠ is an associative, commutative and binary operation. For instance, restricting the right-
hand side of Figure 1 to exclude the last two, higher-order, processes leads one to conclude that
f ◦ h ◦ g is not an element of (f ⊠ g) ⊠ h. This is despite the fact that it would be an element of
f ⊠ (g ⊠ h).

Nevertheless, type-restricted resource theories can be modelled similarly if we introduce a
distinction between objects representing resources and objects representing their transformations.
The resulting structure is one of quantale modules. It allows one to translate the results described
in this article to a setting closer to the practice of resource theories [16].

This article is inspired by the study of quantum information theory, which is why most of our
examples are of quantum resource theories and related ones. While we invite the reader to think
of examples they are familiar with and use them to understand the concepts presented, we also
provide short background material on quantum resource theories now.
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Example 8 (quantum resource theories). Whenever the underlying process theory that generates
R is quantum theory [9], we speak of a quantum resource theory [6]. More precisely, quantum states
are density operators—unit trace positive semi-definite operators on a given complex Hilbert space.
Pure states are those of rank 1, so that all other states arise as convex mixtures thereof. First-order
quantum processes are given by completele positive trace preserving (CPTP) maps. The input and
output types of these can be labelled by the relevant Hilbert spaces and are associated to a concrete
physical system. Quantum processes thus map quatum states of one system to quantum states of
another system. We can think of states themselves as processes with trivial input system I which
is given by the 1-dimensional Hilbert space.
There are many quantum resource theories that correspond to distinct choices of the set of free
resources Rfree. Let us mention two that feature repeatedly in our examples.

(i) One of the most studied is the resource theory of quantum entanglement [25]. There, each
resource type (i.e., a wire label in diagrams as above) specifies two systems of two distinct
agents respectively. One thus studies the entanglement between these two parties as a
property of bipartite states (and other processes).
Traditionally, free resources are generated through composition of local operations and
classical communications (LOCC) [7]. Local operation refers to an arbitrary bipartite
quantum process that factorizes into a tensor product of two independent processes for the
two parties. A communication channel is a process that maps system of one party to the
other party. It is classical if it is implemented by a (monopartite) channel E that acts on a
standard basis of operators in the “bra-ket” notation via

E
(
|i⟩⟨j|

)
= δij

∑
k

ϵik|k⟩⟨k| (12)

or any other one that can be obtained from it by applying arbitrary quantum pre- and
post-processing.

(ii) Given an unitary action of a group G on each quantum system (i.e., each Hilbert space
considered), one can define a quantum resource theory of asymmetry [36, 38]. A quantum
channel E : A → B is free in this resource theory if it is covariant with respect to these group
actions, i.e., if it satisfies:

E
(
UgρU

†
g

)
= VgE(ρ)V †

g (13)

for every state ρ : I → A and every g ∈ G, where Ug and Vg are the relevant representations
of G on A and B respectively. Consequently, free states are the G-invariant ones.

Example 9 (classical resource theories). Besides quantum resource theories, we also use examples
where the physical systems exhibit classical, stochastic, behavior. Quantum states are (in the
discrete case) replaced by probability distribution and quantum processes by stochastic maps.
While there are many interesting classical resource theories, in this article we only refer to the
following ones.

(i) Classical resource theory of athermality [3, 26] describes resources of thermal non-equilibrium.
Free states are those which are in thermal equilibrium with a given heat bath at a fixed
temperature, i.e., thermal states. Free processes can be characterized as those stochastic
maps that preserve thermal states. The resulting order of resources can be interpreted
as describing how far a given state is from the equilibrium, and thus how useful it is in
thermodynamic protocols for the purposes of work extraction for example.

(ii) A special case of the above in the case of infinite temperature bears the name of a resource
theory of nonuniformity [20, 24]. In the limit of infinite temperature, all thermal states
become uniform probability distributions. Thus the free processes with identical input and
output systems are the doubly stochastic maps, and the resource ordering is the famous
majorization preorder [35].
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2.2 Useful Order-Theoretic Notions

Note that Lemma 5 can be viewed as saying that the map S 7→ S ⊠ U is order-preserving with
respect to (P(R),⪰). Order-preserving functions are the key structure-preserving maps between
ordered sets.

Definition 10. Let (A,⪰A) and (B,⪰B) be two arbitrary preordered sets. A function M : A → B
is order-preserving if the implication

a1 ⪰A a2 =⇒ M(a1) ⪰B M(a2) (14)
holds for all a1, a2 ∈ A.

We can use order-preserving functions to learn about the preordered set of resources (R,⪰). One
of the most common practices is to find so-called resource monotones. They are order-preserving
maps from (R,⪰) to the totally ordered set of extended real numbers (R,⩾), by which we mean
the set R ∪ {−∞,∞} ordered as usual.

Definition 11. Let (Rfree, R,⊠) be a resource theory. A resource monotone (or monotone
for short) is a function M : R → R such that for all r, s ∈ R, we have

s ∈ Rfree ⊠ r =⇒ M(r) ⩾M(s). (15)
For the preorder (R,⪰) defined by (6), condition (15) can be expressed as r ⪰ s =⇒ M(r) ⩾M(s),
so that such an M is indeed an order-preserving map from (R,⪰) to (R,⩾).

Example 12. Since resource theories are traditionally studied with a particular focus of a certain
type of resources, which are most commonly states, examples of monotones from the literature are
typically type-specific—their domain consists of only certain resources.

(i) In the resource theory of quantum entanglement, there is a number of famous monotones with
domain restricted to pure bipartite quantum states ψAB . One is the Schmidt rank defined
as the rank of its reduced density matrix ψA := TrA(ψAB) obtained by partial trace. The
entanglement rank (introduced as Schmidt number in [57]) of an arbitrary bipartite quantum
state ρ is then defined as the largest integer k such that in any convex decomposition

ρ =
∑

j

λjψj (16)

of ρ in terms of pure states, there is a j such that the Schmidt rank of ψj is at least k.
(ii) An extensive overview of monotones for states in the classical resource theory of nonuni-

formity can be found in [20]. For instance, since uniform distributions maximize Shannon
entropy H, it is not surprising that it appears as a monotone under the name Shannon
nonuniformity. More precisely Shannon nonuniformity IH is a monotone defined as

IH(p) := ln(d) −H(p) (17)
where p is a probability distribution over sample space with d elements.

In this work, we study ways in which resource monotones can be constructed. We look at examples
of common constructions of monotones appearing in the literature on resource theories and identify
more general procedures, which they are instances of. This helps us organize various monotones,
understand the connections between them, and obtain generally applicable methods for generating
new interesting monotones in any resource theory of interest. All of the monotone constructions
we discuss fall within the following general scheme.

Broad Scheme. We identify a preordered set (A,⪰A) and two order-preserving maps σ1 and σ2:
σ1 : (R,⪰) → (A,⪰A) σ2 : (A,⪰A) → (R,⩾) (18)

Composing the two order-preserving maps gives a monotone (R,⪰) → (R,⩾). σ2 is called the
root monotone, (A,⪰A) is called the mediating preordered set (A being the mediating set
and ⪰A the mediating preorder) and σ1 is called the mediating order-preserving map. The
target monotone σ2 ◦ σ1 is said to be pulled back from the monotone σ2 through the mediating
map σ1.
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r

(a) Example of a downward closed set (brown
region) and the free image ↓(r) of a particular
resource r (turquoise) in a simple preordered set.

r

(b) Example of an upward closed set (brown) and
the free preimage ↑(r) of a particular resource r
(turquoise) in a simple preordered set.

Broadly speaking, the aim of this work is thus to illuminate which choices of (A,⪰A), σ1, and σ2
lead to monotones that are either prevalent in the literature or interesting for other reasons.
A concept that we will find useful is that of downward and upward closed sets. We make use of
these repeatedly.

Definition 13. Let (A,⪰A) be a preordered set. A set D ⊆ A is downward closed with respect
to ⪰A if for all a ∈ A and all d ∈ D the implication

d ⪰A a =⇒ a ∈ D (19)
holds. The set of all downward closed subsets of A is denoted by DC(A).
On the other hand, a set U ⊆ A is upward closed with respect to ⪰A if for all a ∈ A and all
u ∈ U the implication

a ⪰A u =⇒ a ∈ U (20)
holds. The set of all upward closed subsets of A is denoted by UC(A).

Note that in a resource theory, a set of resources D ⊆ R is downward closed if and only if
Rfree ⊠D = D, where the preorder ⪰ is the resource ordering defined by (6).
It follows from the definition above that (finite) unions and intersections of downward closed
sets are downward closed, and likewise (finite) unions and intersections of upward closed sets are
upward closed. There are two canonical examples of downward closed sets in any resource theory
(Rfree, R,⊠). They are R and Rfree. Since both are closed under ⊠ and contain Rfree, these two
sets of resources are always downward closed. Moreover, for any set of resources S, the set Rfree⊠S
is also downward closed. Therefore, we can express DC(R) as

DC(R) = {Rfree ⊠ S | S ∈ P(R)}. (21)

Example 14 (downward closed sets). Downward closed sets naturally appear in the study of
many resource theories.

(i) In the resource theory of bipartite quantum entanglement, the set of states with entanglement
rank at most k is a downward closed set. More precisely, there is a downward closed set (which
naturally contains processes of various types, not only states) in a universally combinable
resource theory of quantum entanglement, whose intersection with the set of all states gives
precisely the states with entanglement rank at most k. These sets for different values of k
form a total order under set inclusion.

(ii) Consider the resource theory of multipartite quantum entanglement with the free operations
given by the appropriate LOCC processes again. A partition of the m parties is said to have
radius at most k if each of its elements consists of at most k parties. Then, for any given
k, the set of states that are convex combinations of pure states separable with respect a
partition of radius at most k forms a downward closed set. In particular, the specific case
of m = 3 and k = 2 defines the set of states that are deemed to be not intrinsically 3-way
entangled, and so this set is downward closed.
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(iii) In a resource theory of G-asymmetry, the set of processes covariant w.r.t. a subgroup of G is
a downward closed set (see Proposition 3 of [37]). These sets are related by a partial order
under set inclusion that is anti-isomorphic to the partial order of the respective subgroups
under set inclusion.

(iv) Generalizing the downsets from (i), given any monotone f , the set of resources with the
value of f bounded above by some constant c is a downward closed set. For a fixed monotone
and varying c, these form a total order under set inclusion. More generally, given an order-
preserving map (R,⪰) → (A,⪰A), the preimage of any downward closed set in A is downward
closed in R.

Definition 15. Given a resource theory (Rfree, R,⊠), the free image map ↓ : R → DC(R) is
defined by

↓(r) = Rfree ⊠ r (22)

for any r ∈ R. Similarly, the free preimage map ↑ : R → UC(R) is defined by

↑(r) = {s ∈ R | r ∈ Rfree ⊠ s}. (23)

The maps ↓ and ↑ can be also extended to act on sets of resources by requiring compatibility with
unions. That is, we have

↓(S) := ∪s∈S↓(s) ↑(S) := ∪s∈S↑(s) (24)

for any S ∈ P(R). We can then express the fact that a set D is downward closed by ↓(D) = D,
while the fact that a set U is upward closed can be stated as ↑(U) = U . In the language of order
theory, we can identify ↓(S) as the downward closure of S ∈ P(R) and ↑(S) as the upward closure
of S with respect to the preordered set (P(R),⪰).

Notice that both DC(R) and UC(R) have a natural ordering in terms of subset inclusion which
makes ↑ and ↓ into order-preserving maps. In particular, we have partially ordered sets (DC(R),⊇)
and (UC(R),⊆). With this choice, both

↓ : (R,⪰) → (DC(R),⊇) and ↑ : (R,⪰) → (UC(R),⊆) (25)

are order-preserving, which we show explicitly in Lemma 24.

Consequently, monotones for the partial orders (DC(R),⊇) and (UC(R),⊆) can be pulled back
to monotones for (R,⪰) via the Broad Scheme. We investigate such constructions of resource
monotones in the following section, where the role of the mediating preordered set is associated
with either (DC(R),⊇) or (UC(R),⊆).

3 Generalized Resource Yield and Generalized Resource Cost

Now we are finally in good shape to start answering the main question posed in the abstract.
Namely, how general are the monotone constructions one finds in the literature on resource theories?
We have defined a somewhat minimal and abstract framework for resource theories, within which
we can investigate this question. In this section, we use the structure of downward and upward
closed sets to learn about the convertibility of resources through a generalization of yield-like and
cost-like monotones.

First of all, in Section 3.1, we describe a fairly trivial way of generating monotones for both posets
(DC(R),⊇) and (UC(R),⊆), given an arbitrary real-valued function on R. These can act as the
root monotone in the Broad Scheme and thus define monotones on R by precomposition with the
corresponding mediating order-preserving map. Then, in Section 3.2, we extend this root monotone
construction to the case when we are given a real-valued function that is only defined on a subset
of all resources. Lastly, in Section 3.3, we further generalize this construction by identifying other
order-preserving maps that can be used instead of ↓ and ↑ as the mediating order-preserving map.
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3.1 Yield and Cost Constructions Given a Function Defined on All Resources

Consider a (not necessarily order-preserving) function f : R → R, and define two functions f -max
and f -min by

f -max : DC(R) → R f -min : UC(R) → R
S 7→ sup f(S) S 7→ inf f(S)

where f(S) denotes the image of S under f . As a function from the partially ordered set (DC(R),⊇)
to the totally ordered set (R,⩾), f -max is clearly order-preserving. Similarly, f -min is an order-
preserving map between (UC(R),⊆) and (R,⩾).
With the maps ↓ and ↑ described in the previous section, we can pull f -max and f -min back to
monotones on R. In particular, we get real-valued functions on R defined by

f -yield(r) := f -max
(
↓(r)

)
= sup{f(s) | s ∈ ↓(r)} = sup{f(s) | s ∈ Rfree ⊠ r} (26)

f -cost(r) := f -min
(
↑(r)

)
= inf{f(s) | s ∈ ↑(r)} = inf{f(s) | r ∈ Rfree ⊠ s}, (27)

which are both resource monotones. The f -yield of r is the largest value of f among the resources
that can be obtained from r for free. On the other hand, the f -cost of r is the smallest value of f
among the resources one can use to obtain r for free.

Example 16 (monotones from dimension functions). Consider a resource theory of one-way
quantum communication, in which free resources include arbitrary pre- and post-processings as
well as one-way classical communication channels. Define the dimension, dim(Φ), of a quantum
channel to be the smaller of the Hilbert space dimensions of its input and output respectively. The
dim-cost(Φ), or dimension cost of a channel Φ, is then the smallest dimension of a channel from
which Φ can be obtained by composition with free resources. The dimension cost of a channel
is upper bounded by its dimension, but in general it can be strictly smaller. Similar dimension
cost and dimension yield monotones arise in any resource theory that can be embedded in vector
spaces, and thus in any quantum resource theory.

3.2 Yield and Cost Constructions Given a Function Defined on a Subset of Resources

It is often useful to be able to evaluate resources in terms of their cost or yield with respect to a
particular set of special resources that one could call a “gold standard”.

Let W ⊆ R denote a subset of resources, and consider a partial function fW : R → R with domain
W . It is not hard to see that one can accomodate constructions from the previous section to this
case by restricting all optimizations to be within W . Specifically, we can again define functions
fW -max and fW -min as

fW -max : DC(R) → R fW -min : UC(R) → R
S 7→ sup fW (S) S 7→ inf fW (S),

(28)

where sup ∅ := −∞ and inf ∅ := ∞ and fW (S) denotes the image of S under fW . As we show in
Corollary 39, both of these optimization maps are order-preserving. Therefore, we also get yield
and cost monotones on (R,⪰) defined by

fW -yield(r) := fW -max
(
↓(r)

)
fW -cost(r) := fW -min

(
↑(r)

)
(29)

which can be expressed as

fW -yield(r) = sup{fW (s) | s ∈ ↓(r) ∩W} = sup{fW (s) | s ∈ Rfree ⊠ r, s ∈ W} (30)
fW -cost(r) = inf{fW (s) | s ∈ ↑(r) ∩W} = inf{fW (s) | r ∈ Rfree ⊠ s, s ∈ W}. (31)

The fW -yield of r is now the largest value of fW among the resources within W that can be obtained
from r for free, while the fW -cost of r is the smallest value of fW among the resources within W
that one can use to obtain r for free. Allowing the domain of f to be smaller than R enables us to
see many more monotone constructions as special cases of the generalized cost and yield measures.
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Example 17 (yield and cost with respect to a chain). The “currencies” described in [29] are yield
and cost monotones, wherein W is a chain; i.e., a totally ordered set of resources. A concrete
example of this type—from entanglement theory—is the cost of an entangled state measured in
the number of e-bits (i.e., maximally entangled 2-qubit states) needed to produce it. It is called
the single-shot entanglement cost. In that case, W is the set of n-fold tensor products of e-bits
for different values of n and fW just returns the integer n. Another example—from the classical
resource theory of nonuniformity introduced in Example 9 (ii)—is the single-shot nonuniformity
yield2 of a probability distribution defined with respect to W that is the set of sharp states, and
fW is the Shannon nonuniformity from Example 12 (ii). Sharp states defined as distributions of
the form

p =
(
ν, ν, . . . , ν, 0, 0, . . . , 0

)
(32)

play a similar role to the e-bits in the sense that they include, for any fixed sample space, all states
with maximal nonuniformity.

Example 18 (axiomatic definitions of thermodynamic entropy). In the axiomatic approach to
thermodynamics [31], Lieb and Yngvason define the canonical entropy S—an essentially unique
monotone among equilibrium states—as a currency. Moreover, central to the study of non-
equilibrium states in this context are the monotones S− and S+, defined in [32] as the S-yield
and S-cost, where the domain of S (i.e., the set W in our notation) is the set of equilibrium states.
In [64], this approach to thermodynamics was directly related to the manifestly resource-theoretic
approach [3, 26], and it was shown that S, S−, and S+ correspond to versions of the Helmholtz
free energy introduced in [23].

Example 19 (entanglement rank as cost). In the resource theory of bipartite quantum states
with respect to LOCC operations, entanglement rank introduced in Example 12 (i) is a resource
monotone. As explained in detail in [17], it can be expressed as a fW -cost where W is the set of
pure bipartite quantum states and fW is the Schmidt rank.

Example 20 (yield and cost for nonclassical correlations). One of the resource theories where
cost and yield monotones as presented here have been used explicitly is the resource theory
of nonclassicality of common-cause boxes [66]. The resources are bipartite classical channels
(also known as “boxes” in this context) represented by a conditional probability distribution
P (X,Y |S, T ) and often depicted as a process

P

S T

X Y

(33)

and thought of as a stochastic map S ⊗ T → X ⊗ Y . X and Y represent the spaces of outcomes
for the two parties, while S and T are the respective settings. Moreover, the boxes are required
to be non-signalling, so that they can be conceivably interpreted as describing a common-cause
relationship between the two parties (with no direct causal influence S → Y or T → X mediating
their interaction). This is the set-up relevant for experiments demonstrating violations of Bell
inequalities. The free boxes are those that can be explained with a common cause mediated by a
classical variable. The resource theory then allows us to compare nonclassical behaviors by means
of their resourcefulness relative to free operations (see [66] for more details) that respect the causal
structure of the Bell scenario

X

S T

Y

Λ
(34)

2Both of the examples presented here also have their dual counterparts of course. They are called the single-shot
entanglement yield and single-shot nonuniformity cost respectively.
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and only use classical variables Λ as common causes.
The maximal amount by which a given box violates a Bell inequality is a resource monotone, as it
arises via the yield construction. For instance, one may use the violation of the famous Clauser–
Horne–Shimony–Holt (CHSH) inequality [8]. This gives a measure, which can be alternatively
expressed also as a weight or robustness monotone as well [66, Corollary 18]. While Bell inequalities
delineate the set of free resources precisely, thay are insufficient for the characterization of the
resource ordering via such yield constructions. However, as shown in [66, Section 7.1], even
a single additional monotone can help uncover a range of properties of the resource ordering
inaccessible by considering violations of Bell inequalities alone. The specific one used therein uses
the cost construction. Specifically, the gold standard resources (W ) are given by the chain of boxes
interpolating between a Popescu–Rohrlich (PR) box [41] at the top of the order and a classical box
that is a noisy version thereof. Notably, both of the monotones from [66], yield relative to CHSH
inequality violations and cost with respect to noisy PR boxes, have a closed-form expression as
shown in section 6.3 there. They may thus aid in discovering explicit formulas for yield and cost
monotones in a broader context.

Example 21 (changing the type of resources being evaluated). The general constructions of f -yield
and the f -cost allow one to extend monotones defined for a particular type of resources to other
types. A particularly useful example of such a translation is the extension of a monotones for
states to monotones for higher-order processes within the same resource theory; such as channels,
measurements, or combs. For instance, in entanglement theory, one can define a monotone for
channels from a monotone for states, such as the cost of implementing a given channel (measured
in the terms of number of e-bits used). Let us elaborate on this procedure in a resource theory of
universally combinable processes [11] as in Example 6. Let f : W → R be a function whose domain
W is the set of all states in the process theory. Then we can express f -yield for a particular channel
ϕ as

ϕf -yield = sup ϕf

ρ

ψ
ψ ∈ Rfree

ρ ∈ Rfree

(35)

The argument of f in the optimization on the right-hand side is the most general state which can
be obtained from ϕ for free. If furthermore f is a monotone on its domain so that it satisfies
f(ψ ◦ τ) ⩽ f(τ) for any state τ and any free channel ψ, we can simplify f -yield to

ϕf -yield = sup ϕ
f

ρ

ρ ∈ Rfree (36)

Likewise, we can express the f -cost as

ϕf -cost = inf f ρ ϕ = ψ

ρ

and ψ ∈ Rfree (37)

These kinds of constructions have appeared in the works on resource theories of quantum channels
[18, 33, 34], where the proposed monotones for channels are defined via channel divergences (see
Example 48). However, as Theorem 2 of [18] shows, they can be also equivalently seen as originating
from monotones for states (defined via state divergences). Channel divergences [30] themselves
arise from the generalized yield construction as they are defined by equation (36) in a resource
theory of pairs of resources, i.e., a resource theory of distinguishability [62]. More details on pairs
(and other tuples) of resources and in what way they constitute a resource theory can be found in
Section 4.2.1.
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3.3 Yield and Cost Constructions Relative to a Downward Closed Set

Apart from varying the root monotone from the Broad Scheme as we have done in Section 3.2,
one can also vary the mediating order-preserving map. In particular, ↓ and ↑ are not the only
order-preserving functions from (R,⪰) to (DC(R),⊇) and (UC(R),⊆) respectively.

Definition 22. Consider a set of resources D ⊆ R. We define the D-image map ↓D : R → DC(R)
by

↓D(r) := D ⊠ r (38)
for any r ∈ R, which can be also written as ↓D(r) = D ⊠ r. Similarly, the D-preimage map
↑D : R → UC(R) is defined by

↑D(r) := {s ∈ R | r ∈ D ⊠ s}. (39)

We can naturally extend them to act on sets of resources as well by compatibility with unions.
That is,

↓D(S) :=
⋃
s∈S

↓D(s) and ↑D(S) :=
⋃
s∈S

↑D(s) (40)

for any S ∈ P(R).

It is interesting to note that unlike for ↓ and ↑, there is not neccesarily a preorder on R for which
the maps ↓D and ↑D are the downward and upward closure operations respectively.
Composing image and preimage maps can be related to the image (preimage) maps of the
composition of the relevant sets of resources as follows.

Lemma 23. Let (Rfree, R,⊠) be a resource theory and let S and T be two subsets of R. The
S-image and T -image maps from Definition 22 satisfy

↓S ◦ ↓T = ↓S⊠T . (41)

Similarly, the S-preimage and T -preimage maps satisfy

↑S ◦ ↑T = ↑T⊠S . (42)

Proof. The first equality follows from the definition of ↓S and the associativity of ⊠. Namely, recall
that we have ↓S(U) := S ⊠ U for any U ∈ P(R).
We can prove the second equality as follows. Let U be an arbitrary set of resources. If v is an
element of ↑S ◦↑T (U), then there must exist a u ∈ U such that u ∈ T ⊠w holds for some w ∈ S⊠v.
Therefore, we have u ∈ T ⊠ S ⊠ v and thus v ∈ ↑T⊠S(U), so that

↑S ◦ ↑T (U) ⊆ ↑T⊠S(U) (43)

holds.
On the other hand, if v is an element of ↑T⊠S(U), then there exists a u ∈ U which is also an
element of T ⊠ S ⊠ v. Thus, there is a w ∈ S ⊠ v which is also in ↑T (u), which in turn implies
v ∈ ↑S ◦ ↑T (U) and

↑S ◦ ↑T (U) ⊇ ↑T⊠S(U). (44)
Consequently ↑S ◦ ↑T (U) is equal to ↑T⊠S(U) for all U ∈ P(R).

One can show that whenever D is a downward closed set of resources, both ↓D and ↑D are order-
preserving. With this notation, we can also see that ↓ coincides with ↓Rfree and ↑ coincides with
↑Rfree .

Lemma 24 (mediating maps for the generalized yield and cost constructions). Let D be a
downward closed subset of R, i.e., D ∈ DC(R). The two maps,

↓D : (R,⪰) → (DC(R),⊇) ↑D : (R,⪰) → (UC(R),⊆), (45)

are then both order-preserving.
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Proof. If r, s ∈ R are two resources such that r ⪰ s, then s ∈ Rfree ⊠ r = ↓(r) by definition.
Furthermore,

s ∈ ↓(r) =⇒ ↓D(s) ⊆ ↓D ◦ ↓(r)
⇐⇒ ↓D(s) ⊆ ↓D⊠Rfree(r)
⇐⇒ ↓D(s) ⊆ ↓D(r).

(46)

The first equivalence follows from Lemma 23 and the second one uses D ⊠ Rfree = D. Therefore,
↓D is order-preserving.
On the other hand, we also have

s ∈ ↑(r) =⇒ ↑D(s) ⊆ ↑D ◦ ↑(r), (47)

and ↑D ◦ ↑(r) = ↑D(r) by Lemma 23 and the fact that D is downward closed. The D-preimage
map ↑D is thus also order-preserving.

As a consequence of the order-preserving property of ↓D and ↑D, we have the following theorem.

Theorem 25 (generalized yield and cost constructions). Let (Rfree, R,⊠) be a resource theory,
let D be a downward closed subset of R, and consider a partial function fW : R → R with domain
W ⊆ R. The fW -yield relative to the D-image map, fW -yieldD : R → R, and the fW -cost relative
to the D-preimage map, fW -costD : R → R, defined as

fW -yieldD(r) := fW -max
(
↓D(r)

)
fW -costD(r) := fW -min

(
↑D(r)

)
(48)

are both resource monotones.

Proof. Both fW -costD and fW -yieldD are constructed as a composition of two order-preserving
maps, as proven by Lemma 24 and Corollary 39. They are therefore order-preserving functions
from (R,⪰) to (R,⩾), i.e., resource monotones.

By unpacking the definitions, we can express the generalized yield and cost monotones as

fW -yieldD(r) = sup
{
fW (w)

∣∣ w ∈ D ⊠ r and w ∈ W
}

(49)
fW -costD(r) = inf

{
fW (w)

∣∣ r ∈ D ⊠ w and w ∈ W
}
. (50)

The fW -yieldD of r is the largest value of fW among the resources within W that can be obtained
from r by composing it with a resource in D. On the other hand, the fW -costD of r is the smallest
value of fW among the resources within W that one can compose with a resource in D and obtain
the resource r.

There are two main reasons why one might want to use fW -yieldD (or fW -costD) instead of
fW -yield := fW -yieldRfree

(or fW -cost := fW -costRfree). On the one hand, a downward closed
set D different from Rfree can be easier to work with either algebraically or numerically when
evaluating the function explicitly. This is a common practice in many resource theories in which
Rfree is not straightforward to work with. For example, LOCC operations in entanglement theory
get replaced by separable operations, noisy operations in nonuniformity theory get replaced by
unital operations, and thermal operations in athermality theory get replaced by Gibbs-preserving
operations.

On the other hand, fW -yieldD and fW -costD can give us new interesting monotones distinct from
fW -yield and fW -cost. To our knowledge, none of the monotones introduced in the resource theory
literature to date are of this kind. Here we give a simple toy example of how one could use these
constructions for D ̸= Rfree in practice.

Example 26 (using fW -yieldD for D ̸= Rfree). Imagine a quantum resource theory in which
there are no free states. Such resource theories arise naturally when we consider multi-resource
theories [51] like the resource theory of work and heat [50]. Since a channel can only be converted
to a state by applying it to a state (either a state on the input system of the channel or a state
on a larger system which contains it), there is no way to convert a channel to a state for free in
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this case. Therefore, evaluating fW -yield for a function fW , defined on states only, would lead to a
trivial monotone for channels. One would not be able to use this construction to extend monotones
for states to monotones for channels. However, one can instead use a downward closed set D that
does include some states, in which case fW -yieldD becomes a non-trivial monotone for channels in
the resource theory. A choice of the set D that is guaranteed to be downward closed and include
some states is Rfree ⊠ r for a particular state r ∈ R. The set Rfree ⊠ r can contain more states
than just r of course. In particular, it contains any other state one could obtain from r for free.
An example of this sort of construction is illustrated in Figure 3.

ϕf -yield = sup ϕf

ρ

ψ
ψ ∈ D

ρ ∈ D

Figure 3: The fW -yield relative to D-image map of a channel ϕ given a function fW defined on states only.
Note that the right hand side is equal to −∞ if D contains no states.

Note that for any set of resources S, the set S ⊠ Rfree is downward closed. It need not be closed
under ⊠, in which case it is not a candidate for the set of free resources in a resource theory.
Nevertheless, we can use S ⊠ Rfree in generalized yield and cost constructions (Theorem 25) by
defining the image and preimage maps with respect to it. If the discarding operation is a free
resource (or else if S contains 0), we may to interpret taking the images and preimages with
respect to S ⊠Rfree is as follows. They specify what can be achieved by an agent who, in addition
to having access to the free resources in unlimited supply, also has access to a resource from S.
Of course, if S ⊠ Rfree is closed under ⊠, then we can think of S ⊠ Rfree as describing an agent’s
access to both Rfree and S in unlimited supply. In such case (S⊠Rfree, R,⊠) is a resource theory.

4 Translating Monotones Between Resource Theories

Let us now change the mediating preordered sets (A,⪰A) that we consider in constructing
monotones via the Broad Scheme. In Section 3, we looked at DC(R) and UC(R) as possible choices,
and we made use of the fact that the ordering on each is defined in terms of subset inclusion in
P(R). In the present section, we investigate what can be said about the case when the mediating
set A arises from a resource theory Q := (Qfree, Q,⊠) as the power set P(Q). The root monotones
will therefore be functions P(Q) → R. We will be interested in obtaining target monotones for a
resource theory R := (Rfree, R,⊠), possibly different from Q.

There are multiple choices of the mediating preorder ⪰A that one could consider. We investigate
two order relations on P(Q) in particular. They mirror the two choices of (DC(R),⊇) and
(UC(R),⊆) in Section 3. They are defined below as ⪰enh and ⪰deg.

4.1 Translating Monotones within a given Resource Theory

First of all, let us look at a particularly simple case in which the root and target resource theories
are identical, i.e., R = Q. In Section 4.1.1, we construct root monotones P(R) → R given an
arbitrary monotone (R,⪰R) → (R,⩾) and a choice of an ordering of sets of resources. Then, in
Section 4.1.2, we describe mediating order-preserving maps R → P(R). Together, these give us a
method to generate new monotones for R from existing ones. Later on, we extend this method to
a translation of monotones from Q to R when the two resource theories are not identical.
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4.1.1 Root Monotones for Sets of Resources from a Monotone for Individual Resources

Given a resource ordering (R,⪰) we are thus interested in comparing not just elements of R,
but also its subsets—elements of P(R). There is not a canonical way to do so. Whether two
subsets S, T of (R,⩾) should be ordered relative to each other or not depends on the intended
interpretation of the ordering.
Enhancement preorder.
We could say that S should be above T , denoted by S ⪰enh T , if every element of T lies below an
element of S. In the following toy example (in which nodes are elements of R and arrows depict
order relations)

s1 s2

t1 t2 t4t3

(51)

we would have that {s1, s2} is above {t3, t4}, but not above {t1, t2, t3}. Recall that an element of
P(R) is interpreted as specifying a set of resources, one of which an agent can choose to access
and manipulate. With respect to this interpretation,

S ⪰enh T means: For every element of T that an agent could make use of, there is an
element of S which is at least as valuable (according to the resource ordering ⪰).

This notion of ordering of subsets of (R,⩾) can be expressed via the existence of an enhancement
map, defined as follows.

Definition 27. Let (R,⩾) be a preordered set with two subsets S, T . A function enh : T → S is
termed an enhancement if we have

enh(t) ⩾ t ∀ t ∈ T. (52)

Definition 28. Given a preordered set (R,⪰), define the enhancement preorder ⪰enh on P(R)
by

S ⪰enh T :⇐⇒ there exists an enhancement T → S. (53)

Given S ⪰enh T , an agent that has access to resources in S can obtain access to resources in T
by ignoring elements of S outside the image of enh and applying the relevant free conversion to
elements of S within the image of enh. In this way we obtain a preordered set (P(R),⪰enh) from
the preordered set (R,⪰), such that the latter is isomorphic to the ordering of singletons in P(R).
The enhancement preorder can be equivalently expressed in terms of the downward closure
operator.

Lemma 29. Let S, T be two sets of resources in a resource theory with resource ordering (R,⪰).
Then the following are equivalent:

(i) S ⪰enh T ,
(ii) ↓(S) ⊇ ↓(T ), where the action of ↓ is given as in (24), and

(iii) S ⪰ T , where the ordering of sets of resources is given by (7).

Proof. Conditions (i) and (iii) are equivalent because S ⪰ T is defined as T ⊆ Rfree ⊠ S which
means that for each t ∈ T , there exists an st ∈ S such that t ∈ Rfree ⊠ st, i.e., the map t 7→ st is
an enhancement of type T → S.
If S ⪰enh T holds, then there is an enhancement enh : T → S. Denoting its image within S by
enh(T ), we have

↓(S) ⊇ ↓
(
enh(T )

)
= ↓↓

(
enh(T )

)
⊇ ↓(T ), (54)

since ↓
(
enh(T )

)
⊇ T follows from the definition of an enhancement. Thus condition (i) implies

condition (ii).
Finally, (ii) implies (iii) because T is a subset of Rfree ⊠ T = ↓(T ).
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Corollary 30. The map ↓ : (P(R),⪰enh) → (P(R),⊇) is order-preserving.

Degradation preorder.

On the other hand, we could also say that S should be above T , denoted by S ⪰deg T , if every
element of S lies above an element of T . Then we would have that {s1, s2} is above {t1, t2, t3},
but not above {t3, t4} in diagram (51).

Definition 31. Let (R,⩾) be a preordered set with two subsets S, T . A function deg : S → T is
termed a degradation if we have

s ⩾ deg(s) ∀ s ∈ S. (55)

Definition 32. Given a preordered set (R,⪰), define the degradation preorder ⪰deg on P(R)
by

S ⪰deg T :⇐⇒ there exists a degradation S → T. (56)

Degradation ordering does not necessarily have a meaningful resource-theoretic interpretation, at
least not in the same sense as the enhancement ordering does. Therefore, we do not think of it as
expressing that S is more valuable than T , even though such an interpretation may be viable in
specific contexts, one of which is as follows.
Imagine Alice and Bob play the following game. Alice has to choose a set of resources S ⊆ R,
while Bob receives a resource x ∈ R from the referee. If Bob can recover an element of S from x
(for free), he wins. Otherwise, Alice wins. The relation S ⪰deg T means that S is not worse than
than T from Alice’s point of view, for any distribution of referee’s choices. The fact that Alice can
always win this game by choosing the empty set justifies why ∅ is a maximal element of ⪰deg.
Regardless of its interpretation, the preordered set (P(R),⪰deg) is useful for constructing resource
monotones via the Broad Scheme. One way to understand it is via a dual version of Lemma 29.

Lemma 33. Let S, T be two subsets of a preordered set (R,⪰). Then we have

S ⪰deg T ⇐⇒ ↑(S) ⊆ ↑(T ) (57)

where the action of ↑ is given as in (24).

Proof. If S ⪰deg T holds, then there is a degradation deg : S → T . Denoting its image within T
by deg(S), we have

↑(T ) ⊇ ↑
(
deg(S)

)
= ↑↑

(
deg(S)

)
⊇ ↑(S), (58)

since ↑
(
deg(S)

)
⊇ S follows from the definition of a degradation.

Conversely, if ↑(S) ⊆ ↑(T ) holds, then we also have S ⊆ ↑(T ). That is, for every s ∈ S, there
exists some ts ∈ T such that s ⪰ ts. Thus, the function given by s 7→ ts is a degradation of type
S → T .

Corollary 34. The map ↑ : (P(R),⪰deg) → (P(R),⊆) is order-preserving.3

Root monotones for enhancement and degradation preorders.

Another way to get some intuition about the enhancement and degradation preorders is to look at
what they correspond to in the specific example of a total order of singletons.

Example 35. Specifically, the enhancement preorder for sets of extended real numbers is given
by the comparison of their suprema. That is, for S, T ∈ P(R) we have

S ⩾enh T ⇐⇒ supS ⩾ supT. (59)

On the other hand, the degradation preorder is given by infima. In this case, both ⩾enh and ⩾deg
are thus total preorders.

3Note the opposite direction of the ordering in the codomain relative to prior occurences. If we were to keep the
convention from earlier, we would instead say that ↑ is an order-reversing function.
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As an immediate consequence of this example, we conclude that

sup:
(
P(R),⩾enh

)
→

(
R,⩾

)
inf :

(
P(R),⩾deg

)
→

(
R,⩾

) (60)

are both monotones.

Lemma 36. Given a partial, order-preserving function fW : (R,⪰) → (Q,⪰) with upward closed
domain of definition W ∈ UC(R), the function fW : P(R) → P(Q) that maps each S to its image
under fW is order-preserving with respect to the corresponding enhancement preorders.

Proof. Consider S, T ∈ P(R) and an enhancement enh : T → S. If fW (T ) is non-empty, we can
construct an enhancement fW (T ) → fW (S) as follows. Given q ∈ fW (T ), pick an arbitrary element
t ∈ T such that fW (t) = q holds. Since t is in the upset A, fW is also defined for its enhancement
so that we can let the image of q be fW (enh(t)) ∈ fW (S). Since fW is order-preserving, we have

fW

(
enh(t)

)
⩾ fW (t) = r. (61)

Thus, any such function is an enhancement and we conclude that S ⪰enh T implies the desired
relation fW (S) ⩾enh fW (T ).

Lemma 37. Given a partial, order-preserving function hY : (R,⪰) → (Q,⪰) with downward closed
domain of definition Y ∈ DC(R), the function hY : P(R) → P(Q) is order-preserving with respect
to the corresponding degradation preorders.

Proof. The proof is analogous to that of Lemma 36; replacing enh with a degradation deg : S → T
yields a degradation hY (S) → hY (T ).

Corollary 38. Given partial monotones fW , hY : (R,⪰) → (R,⩾) defined on upward (downward)
closed subsets of R respectively, the two maps

fW -max :
(
P(R),⪰enh

)
→

(
R,⩾

)
hY -min :

(
P(R),⪰deg

)
→

(
R,⩾

) (62)

given by the composites sup ◦ fW and inf ◦ hY respectively are both monotones.

The two functions from (62) constitute candidate root monotones for constructions that translate
monotones from one resource theory to another.
In the case of a trivial preorder on R, under which any two distinct elements are incomparable, the
corresponding enhancement and degradation preorders are just ⊇ and ⊆ respectively. Moreover,
every subset of R is both downward and upward closed. Thus, we get the following special case.

Corollary 39. Given a partial function fW : R → R, the two maps

fW -max :
(
P(R),⊇

)
→

(
R,⩾

)
fW -min :

(
P(R),⊆

)
→

(
R,⩾

) (63)

are both monotones.

4.1.2 Mediating Order-Preserving Maps Between Individual Resources and Sets of Resources

We also need to find mediating order-preserving maps in order to be able to use both f -max and
f -min as root monotones in the Broad Scheme.

Example 40 (copying is order-preserving). Consider the map Copy2 : (R,⪰) → (P(R),⪰enh)
defined by

Copy2(r) := r ⊠ r. (64)
Given that s ∈ Rfree ⊠ r implies s⊠ s ∈ (Rfree ⊠ r) ⊠ (Rfree ⊠ r) = Rfree ⊠ (r ⊠ r), it follows that
s ⪰ r implies s⊠ s ⪰ r ⊠ r, and consequently Copy2 is an order-preserving map. The same works
for the map Copyn : R → P(R) defined by Copyn(r) = r⊠n (i.e., the n-fold universal combination).

Accepted in Compositionality on 2022-08-29. Click on the title to verify. 22



Volume 5 Issue 7 ISSN 2631-4444

Example 41 (adding a catalyst is order-preserving). Given a resource c ∈ R, consider the map
Augc : (R,⪰) → (P(R),⪰enh) termed the augmentation by c4 that is defined for any resource r
by

Augc(r) := c⊠ r. (65)

This map is always order-preserving, since the implication r ⪰ s =⇒ c⊠r ⪰ c⊠s follows from the
definition of a resource theory and the resource ordering for any r, s, c ∈ R. The same construction
also works when c is not just a single resource, but a set of resources.

Both Augc and Copyn are thus examples of order-preserving maps from (R,⪰) to (P(R),⪰enh) and
can be used to obtain monotones f -max◦Augc and f -max◦Copyn for any monotone f , any resource
c and any integer n. These monotone constructions differ from the ones we have seen in Section 3
in that the optimization is generally restricted to range over a much smaller set of resources. This
is a consequence of the monotonicity of f , which allows us to use the root monotones for P(Q)
from Corollary 38 in order to remove the free image and free preimage maps as compared to cost
and yield constructions.

As a mild generalization of Example 41 from using a single catalyst c to a set U , we obtain the
following result.

Proposition 42. For any subset U of the set R of all resources, the U -image map

↓U :
(
P(R),⪰enh

)
→

(
P(R),⪰enh

)
(66)

as introduced in Definition 22 is order-preserving.

Proof. Using Lemma 29, this statement reduces to that of Lemma 5 (compatibility of ⊠ and ⪰).

In particular, restricting ↓U to individual resources provides a valid mediating map for the
translation of monotones via the enhancement ordering. That is, for any set of resources U and
any partial monotone fW with an upward closed domain W , we get a target monotone via the
composition

(R,⪰)
(
P(R),⪰enh

)
(R,⩾)↓U fW -max (67)

There is a similar result for preimage maps, which can be used to generate mediating maps for the
degradation ordering.

Proposition 43. For any subset U of the set R of all resources, the U -preimage map

↑U :
(
P(R),⪰deg

)
→

(
P(R),⪰deg

)
(68)

as introduced in Definition 22 is order-preserving.

Proof. By Lemma 33, we have

S ⪰deg T ⇐⇒ ↑(S) ⊆ ↑(T ) =⇒ ↑U ◦ ↑(S) ⊆ ↑U ◦ ↑(T ). (69)

Note that for arbitrary sets of resources V and W the respective preimage maps commute,

↑V ◦ ↑W = ↑W ◦ ↑V , (70)

since ⊠ is commutative. In fact, they are both equal to ↑V ⊠W by Lemma 23. Therefore, choosing
V to be the U from the proposition statement and choosing W = Rfree gives

↑ ◦ ↑U (S) ⊆ ↑ ◦ ↑U (T ). (71)

By Lemma 33 again, this implies ↑U (S) ⪰deg ↑U (T ), which is what we aimed to establish.

4We can think of the action of Augc as combination of resources with a catalyst c [16, Section 3.2.4].
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As before, restricting ↑U to individual resources yields a mediating map for the translation of
monotones via the degradation ordering. That is, for any set of resources U and any partial
monotone fW with a downward closed domain W , we get a target monotone via the composition

(R,⪰)
(
P(R),⪰deg

)
(R,⩾)↑U fW -min (72)

We will see further examples of this kind in Section 4.2.3, but the source and target resource
theories differ there.

4.2 Translating Monotones from a Resource Theory of Distinguishability

Many resource theories of interest either have an information-theoretic flavour or are explicitly
about informational resources. It is no surprise then, that in these resource theories, measures of
information often crop up as monotones or as building blocks for resource monotones. As we will see
below, to any resource theory (Rfree, R,⊠), it is possible to associate an information theory where,
roughly speaking, the set R of resources constitutes the alphabet for the encoding of a classical
message. This association can then be used to understand such results in greater generality.

We now provide a couple of examples of monotone constructions based on contractions that we
aim to understand and generalize here.

Consider a quantum resource theory of states, where R contains all quantum states, and Rfree
contains states considered to be free (we need not stipulate which maps of states are considered
free operations in the resource theory because the construction will work regardless of this choice).
A contraction in such a resource theory is a real-valued function f of pairs of quantum states that
satisfies the data processing inequality

f(ρ, σ) ⩾ f
(
Φ(ρ),Φ(σ)

)
(73)

for all states ρ and σ (of the same system) and all CPTP maps Φ.

Example 44 (monotones as distance from the free set). Given a contraction, it is well-known that
one can obtain a monotone by minimizing over the set of all free states in one of its arguments.
That is, the function M : R → R given by

M(ρ) = inf
{
f(ρ, σ)

∣∣ σ ∈ Rfree
}

(74)

is a resource monotone. Various monotones based on distance measures such as the trace distance,
relative Rényi entropies [40], and many others arise in this way. An extensive overview of these
kinds of monotones can be found in [6].

Example 45 (monotones from operations that commute with the free operations). Consider
the quantum resource theory of asymmetry with respect to a symmetry group G introduced in
Example 8 (ii). It is one where the free processes are those that are covariant with respect to a
group action of G on quantum states. Given a contraction f and a twirling map Gp weighted by a
distribution p over the group, that is,

Gp(·) =
∫

dg p(g) Ug(·)U†
g , (75)

the following function is a monotone [36]:

M(ρ) := f
(
ρ,Gp(ρ)

)
. (76)

The proof of monotonicity relies on the fact that any free operation mapping ρ to σ also maps
Gp(ρ) to Gp(σ). This is because a twirling map commutes with each of the free operations in
this resource theory. It is worth considering some special cases of this monotone. If p is a point
distribution on some nonunit element of the group, g0, so that M(ρ) = f(ρ, Ug0ρU

†
g0

), then the
monotone quantifies how distinguishable ρ is from its image (or “rotation”) under g0. If p is a
uniform distribution over the group, so thatM(ρ) = f(ρ,

∫
dgUgρU

†
g ), then the monotone quantifies
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how distinguishable ρ is from its “uniformly twirled” counterpart. One can then understand the
monotonicity of these functions intuitively as the statement that more asymmetric states are more
distinguishable from their rotated and uniformly twirled counterparts. Note, furthermore, that
one can define a monotone from a contraction and a pair of distributions, p and q, given by
M(ρ) = f(Gq(ρ),Gp(ρ)) [36].

4.2.1 Resource Theory of Distinguishability

In order to understand monotones constructed from contractions (Examples 44 and 45) as special
cases of the Broad Scheme and to thereby generalize them, we study a resource theory of tuples of
resources in which contractions are resource monotones. In the context of quantum states, a related
notion has been studied recently (for the special case of pairs of states), namely, the resource theory
of asymmetric distinguishability [62].

Definition 46. Let k be a natural number and let R ≡ (Rfree, R,⊠) be a resource theory in which
r ⊠ s is a singleton set of resources for all r, s ∈ R; i.e., resources can be combined in exactly
one way so that we can think of ⊠ as a binary operation R × R → R. The resource theory of
(unconstrained) k-distinguishability associated to R is a resource theory (R(k)

cons, R
(k),⊠),

where

(i) R(k) = R×R× . . .×R is the set of all k-tuples of resources from R,

(ii) R(k)
cons ⊆ R(k) is the set of all constant k-tuples; i.e., those of the form (r, r, . . . , r); and

(iii) the composition of k-tuples is given by

(r1, r2, . . . , rk) ⊠ (s1, s2, . . . , sk) := (r1 ⊠ s1, r2 ⊠ s2, . . . , rk ⊠ sk). (77)

One can construct a similar resource theory even if one relaxes the assumption that any two
resources can be combined in exactly one way. However, the construction becomes more
complicated and therefore we forego considering it here in order to avoid obscuring the main
ideas. The more general construction of a resource theory of k-distinguishability can be found in
[16]. All the results mentioned here also have their counterparts in the more general case.

A natural way to view the resource theory (R(k)
cons, R

(k),⊠) is to think of the k-tuples as encodings
of a classical hypothesis. Namely, if Hk is a set of cardinality k representing a classical hypothesis,
a k-tuple of resources (r1, . . . , rk) can be conceptualized as a function Hk → R taking each value
h ∈ Hk to a resource rh ∈ R. The free k-tuples are the constant ones because they can be
constructed with no information about the value of Hk. That is, if the k-tuple in question is from
R(k)

cons, so that every value of Hk is associated to the same resource, then learning the identity of the
resource teaches one nothing about the value of Hk. Note that the resource theory (R(k)

cons, R
(k),⊠)

doesn’t distinguish between valuable and free resources in the original theory R. It is purely about
the information content of the encodings.

If we now look back at the definition of a contraction for quantum states via data processing
inequality, we can see that monotones in the resource theory (R(2)

cons, R
(2),⊠) provide a suitable

generalization of this notion. We thus refer to monotones in the resource theory (R(2)
cons, R

(2),⊠)
as contractions. Analogously, a monotone in the resource theory (R(k)

cons, R
(k),⊠) is termed a k-

contraction.

Remark 47. In several monotone constructions throughout Section 4, we will also make use of
a variant of resource theories of unconstrained k-distinguishability associated to R. It is one that
combines the two restrictions—one given by Rfree ⊆ R and the other by R(k)

cons ⊆ R(k). More
specifically, we define

R(k)
cons,free := R(k)

cons ∩ R(k)
free, (78)

and consequently obtain a resource thery (R(k)
cons,free, R

(k),⊠) termed the resource theory of
constrained k-distinguishability. Note that this notion subsumes the one from Definition 46
if one takes Rfree := R so that R is just (R,R,⊠).
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Example 48 (yield applied to pairs of resources). Generalized channel divergences [30] arise from
the generalized yield construction when thinking about the resource theory of pairs of resources,
i.e., a resource theory of distinguishability [62]. More details on pairs (and other tuples) of resources
and in what way they constitute a resource theory can be found in Section 4.2.1.

4.2.2 Monotones from Functions That Commute with the Free Operations

We now describe a generalization of the monotone construction in Example 45 to a general
resource theory R = (Rfree, R,⊠). Let (R(2)

cons, R
(2),⊠) be the resource theory of 2-distinguishability

associated to R, as in Definition 46. We take its resource ordering (R(2),⪰) to be the mediating
preordered set in the Broad Scheme. A root monotone is therefore a particular contraction
f : R(2) → R, i.e., a monotone in the resource theory (R(2)

cons, R
(2),⊠).

Consider a function Φ: R → R which commutes with the free operations in the sense that for any
t ∈ Rfree and r ∈ R, we have

Φ(t⊠ r) = t⊠ Φ(r). (79)

Take the mediating order-preserving map in the Broad Scheme to be r 7→ (r,Φ(r)). The proof
that the latter map is indeed order-preserving is strightforward. If r ⪰ s, so that there is a free
resource t satisfying s = t⊠ r, then we have

(t, t) ⊠
(
r,Φ(r)

)
=

(
t⊠ r, t⊠ Φ(r)

)
=

(
s,Φ(s)

)
(80)

and therefore the images of r and s are ordered in the resource theory of 2-distinguishability:

(r,Φ(r)) ⪰ (s,Φ(s)). (81)

It then follows that we can construct a monotone for resources in R, for any given contraction f
and any function Φ that commutes with free operations, as follows:

M(r) := f
(
r,Φ(r)

)
(82)

This construction clearly applies to resource theories which are not universally combinable, since
the argument does not make use the commutativity of the ⊠ operation (see [16] for more details).
Moreover, it also applies to any f that is merely a monotone in a resource theory of unconstrained
k-distinguishability from Remark 47.

Besides twirling operations in the resource theory of asymmetry, there are functions in other
resource theories, which commute with the free operations.

Example 49. In the resource theory of athermality introduced in Example 9 (i), one can take Φ to
be the discarding map followed by a preparation of the thermal state for the system just discarded.
Monotones constructed in this way describe the thermo-majorization order [23], a special case of
relative majorization first introduced in [61]. They arise by translating the matrix majorization
order (which, in the case of a binary hypothesis, boils down to zonotope inclusion [12]) through the
mediating map r 7→ (r,Φ(r)). For the special case of resource theory of nonuniformity, if we choose
the root monotone to be the relative entropy (a.k.a. Kullback-Leibler divergence), we obtain the
Shannon nonuniformity from Example 12 (ii).

Example 50. A similar example arises in resource theories wherein the free operations are local,
i.e., those which are of tensor product form with respect to some prespecified partition. The map
that sends every state to the tensor product of its marginals commutes with the free operations and
thus can be used in the above monotone construction. If ρ denotes a bipartite state on the joint
system α ⊗ β and ρα ⊗ ρβ is the tensor product of its projections (or “marginals”), the resulting
monotone is

M(ρ) = f(ρ, ρα ⊗ ρβ). (83)

Choosing f to be the relative Von Neumann entropy, for instance, gives rise to the mutual
information I(α ; β) as a measure of correlation strength.
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4.2.3 Minimal Distinguishability as a Monotone

We now turn to the question of generalizing the monotone construction in Example 44, which
expresses the distance of a resource from the set of free resources in terms of the smallest
distinguishability between the given resources and a free resource. Because of the optimization
over all free resources in equation (74), which occurs at the level of sets of 2-tuples of resources, we
use the power set P(R(2)) as the mediating set in order to cast this construction as an instance of
the Broad Scheme. This is in contrast to the mediating set R(2) that is sufficient for our discussion
of monotones obtained from functions that commute with free operations.

Given any contraction f , we can obtain two root monotones for P(R(2)) using the scheme described
in Section 4.1.1. They are f -max and f -min as defined in Corollary 38. The root monotone f -max
can be used for translating monotones from a resource theory of distinguishability by virtue of
mediating maps that generalize the functions that commute with free operations from Section 4.2.2.
These mediating maps are called oplax equivariant maps in [16]. On the other hand, the root
monotone f -min is the one that allows us to understand the monotone construction of Example 44
as an instance of the Broad Scheme. The latter is the one we focus on hereafter.

According to the Broad Scheme, in order to generate a resource monotone by pulling back f -min,
we need an order-preserving map from (R,⪰) to (P(R(2)),⪰deg). Consider the map ERfree defined
by

ERfree(r) :=
{

(r, s)
∣∣ s ∈ Rfree

}
. (84)

This map is a valid candidate for the mediating order-preserving map to pull f -min through.
The fact that it is order-preserving follows from a general result that we prove in Section 4.3 (in
particular, see Lemmas 57 and 58).

Following the Broad Scheme, the monotone f -min on (P(R(2)),⪰deg) obtained from the 2-
contraction f on R(2), can be pulled back to a monotone M on (R,⪰) via M := f -min ◦ ERfree .
Given the definitions of f -min and ERfree , this can be unpacked to

M(r) = f -min (ERfree(r))
= inf f

(
{(r, s) | s ∈ Rfree}

)
= inf

{
f(r, s)

∣∣ s ∈ Rfree
}
.

(85)

This expression is clearly very close to the construction of monotones from contractions in
Example 44. The only difference that remains is that the optimization in equation (74) is specific
to quantum states while the one given here implements an optimization over resources s that can
be of any type. This is relevant because in the proof that f -min is order-preserving, in Lemma 38,
it is assumed that the domain of f is downward closed and thus it typically includes resources of
all types. Nevertheless, we can still use a type-specific contraction in the Broad Scheme as long as
the mediating order-preserving map preserves the types of resources. In the case of Example 44,
we need to ensure that the mediating map Efree sends states to sets of pairs of states. The Broad
Scheme then generates a target monotone, which is non-trivial for states only.5 These particular
issues regarding resource types disappear in the context of quantale modules [16].

We have shown how to recast the monotone construction of Example 44 as an instance of the Broad
Scheme. We now turn to the question of how this abstract perspective on monotone constructions
based on contractions leads to generalizations of the types of such monotone constructions
considered previously.

The Broad Scheme stipulates that any order-preserving map from (R,⪰) to (P(R(2)),⪰deg)
generates a monotone for (R,⪰) from f -min. A natural alternative to the order-preserving map
ERfree defined by equation (84) is one of the same form but where the free set Rfree is replaced by
any downward closed set Rdc ∈ DC(R); namely, the map ERdc defined by

ERdc(r) :=
{

(r, s)
∣∣ s ∈ Rdc

}
. (86)

The order-preserving property of this function for the relevant domain and codomain follows by
the same argument as for ERfree . The reason why Rdc has to be downward closed is essentally the
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same as the reason why the set Y in Corollary 38 has to be downward closed. Consequently, we
obtain a monotone

f -min ◦ ERdc(r) = inf
{
f(r, s)

∣∣ s ∈ Rdc
}
. (87)

The upshot of this discussion is that for every 2-contraction f : R(2) → R and every downward
closed subset Rdc of R, the function f -min ◦ ERdc is a monotone on (R,⪰). For every concrete
example of a downward closed set distinct from the free set, therefore, one obtains a corresponding
variation on a monotone expressing the minimal “f -distance” from the free set—one that quantifies
the minimal distinguishability from the chosen downward closed set according to f .

Example 51 (examples of monotones quantifying the distance to a downward closed set).

(i) Consider the resource theory of bipartite quantum entanglement from Example 8 (i). For
any contraction f of quantum states, the f -distinguishability between a state and the set
of separable states is a popular entanglement monotone. Recall that the set of states with
entanglement rank at most k is obtained from a downward closed set in this resource theory
by intersecting with the set of states (as noted in Example 14 (i)).6 Thus, for every k, the
f -distinguishability between a state and the set of states with entanglement rank at most k
is also an entanglement monotone.

(ii) Resource theories of quantum coherence [53] describe resources of “quantum superposition”
relative to a given basis of the Hilbert space, so that the free states are those given by
diagonal density matrices. Besides these, there are downsets of bounded “coherence number”.
In particular, a pure state is k-incoherent if it is block-diagonal with blocks of size no larger
than k × k. For general states, we can take the convex hull of these to obtain all the k-
incoherent states [27]. The coherence number k introduced in [52] plays the analogous role
of Schmidt number from entanglement theory [28, 44]. Indeed, k-incoherent states form a
downward closed set for any k and can be thus used to generate monotones via equation (87).

(iii) In the resource theory of tripartite quantum entanglement, the set of states that are not
intrinsically 3-way entangled form a downward closed set (as noted in Example 14 (ii)).
Consequently, for any contraction f of quantum states, the f -distance between a state and
this set is an entanglement monotone that quantifies intrinsic 3-way entanglement.

(iv) Resource theories of G-asymmetry provide another illustrative example. In particular, the
set of states that are symmetric under a subgroup H of G form a downward closed set (as
noted in Example 14 (iii)). Therefore, the minimal f -distinguishability between a state and
the states symmetric under H is also an asymmetry monotone. Roughly speaking, of all
the ways that a state may break G-symmetry, the extent to which it does so by breaking
H-symmetry is quantified by this monotone.7

4.2.4 Monotones from k-Contractions in General

We can repeat the construction from Section 4.2.3 for f that is a k-contraction instead of a 2-
contraction. Specifically, given a k-contraction f , we have monotones

f -max : (P(R(k)),⪰enh) → (R,⩾), f -min : (P(R(k)),⪰deg) → (R,⩾), (88)

which can be used as root monotones in the Broad Scheme.

Notice that we can view E ≡ ER from Section 4.2.3 as mapping r to its preimage under the
projection Π1 : R(2) → R given by (r, s) 7→ r. When we replace pairs of resources with k-tuples, we
have k such projections Πi : R(k) → R given by (r1, r2, . . . , rk) → ri, one for each i ∈ {1, 2, . . . , k}.

6This result can be found in [63, Theorem 6.23] and it has been first shown in [57] where entanglement rank has
been introduced under the name “Schmidt number”.

7If the contraction f is the relative entropy, then this monotone becomes S(ρ||GH(ρ)) and is equivalent to the
Holevo asymmetry monotone S(GH(ρ)) − S(ρ) associated to the uniform twirling GH over H. This equivalence
follows from [19, Proposition 2]. Note that the simplest case of such a monotone, S(G(ρ)) − S(ρ), was introduced
in [59].
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Let us describe the case of i = 1 here. The preimage map E := Π−1
1 of the projection Π1 is given

by

E(r) =
{

(r, r2, r3, . . . , rk)
∣∣ rj ∈ R for all j ∈ {2, 3, . . . , k}

}
, (89)

and it is order-preserving as a map (R,⪰) → (P(R(k)),⪰deg), which follows from Lemma 57.

For any fixed downward closed set Wdc of R(k), we can then restrict each E(r) to its intersection
with Wdc and retain the order-preserving property with respect to ⪰deg. In particular, the map
given by

EWdc : (R,⪰) → (P(R(k)),⪰deg)
r 7→ E(r) ∩Wdc

(90)

is order-preserving, which follows from Lemma 58. Writing EWdc(r) in this way, as an intersection of
E(r) andWdc, is instructive because it more readily connects to the general results from Section 4.3.
Note that we can recover the map ERdc from the previous section via the choice of Wdc = R×Rdc.
The fact that R×Rdc is downward closed follows from the following lemma.

Lemma 52 (product of downward closed sets is downward closed). For any family of k sets of
resources {Si}k

i=1, downward closed in the resource theory (Rfree, R,⊠), the set

S := S1 × S2 × · · · × Sk (91)

is downward closed in (R(k)
cons,free, R

(k),⊠). Similarly, if each Si is upward closed in (Rfree, R,⊠),
then S1 × S2 × . . .× Sk is upward closed in (R(k)

cons,free, R
(k),⊠).

Proof. Note that the set of constant tuples consisting of free resources, R(k)
cons,free, is a subset of all

tuples that consist of free resources, R(k)
free. Therefore, we have

S ⊠ R(k)
cons,free ⊆ S ⊠ R(k)

free

= (S1 ⊠Rfree) × (S2 ⊠Rfree) × · · · × (Sk ⊠Rfree)
⊆ S1 × S2 × · · · × Sk,

(92)

so that S is indeed downward closed if each Si is downward closed in the original resource theory.
Similarly, if each Si is upward closed, then we have

↑(S1 × S2 × · · · × Sk) ⊆ ↑(S1) × ↑(S2) × · · · × ↑(Sk)
⊆ S1 × S2 × · · · × Sk.

(93)

It follows that S is a subset of R(k) that is upward closed in (R(k)
cons,free, R

(k),⊠).

However, not all the downward closed sets in the resource theory of k-distinguishability are of this
kind. For example, there is generally no family {Si} of subsets of R, downward closed or not, such
that R(k)

cons (or indeed R(k)
cons,free) is equal to S1 ×⊔ S2 ×⊔ . . . ×⊔ Sk.

Sections 4.2.3 and 4.2.4 can be thus summarized by the following theorem.

Theorem 53 (generalized construction of monotones from k-contractions). Consider a resource
theory (Rfree, R,⊠) and let f : R(k) → R be a k-contraction. For any subset Wdc of R(k), downward
closed in (R(k)

cons,free, R
(k),⊠), the function f -min ◦ EWdc is a monotone in the resource theory

(Rfree, R,⊠).

Proof. Note that we have the following equality

f -min ◦ EWdc = fWdc-min ◦ E (94)

where fWdc denotes the partial function with domain Wdc which coincides with f , whenever it is
defined. The theorem then follows by combining Corollary 38, which establishes that fWdc-min is
a monotone, and Lemma 57, which shows that the map E is order-preserving.
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4.2.5 Resource Weight and Robustness as Monotones Obtained from a 3-Contraction

As an example of how the generalized construction of monotones from k-contractions (Theorem 53)
appears in a more concrete setting, we examine arguably two of the most ubiquitous monotones—
resource weight [1, 2] and resource robustness [6]—within the context of resource theories with a
linear structure. By connecting them to a monotone in the resource theory of distinguishability, we
complement the results of [55], [49], and [14]. In the first two, robustness measures are connected
to discrimination tasks, while the latter article describes a similar connection between the weight
measure and the state exclusion task.
Let’s consider a resource theory (Rfree, R,⊠) with a convex-linear structure on R that is preserved
by ⊠. The elements of R can thus be represented as vectors, and convex combinations are preserved
by the composition of resources ⊠. Furthermore, just like in the previous section, we assume that
r ⊠ s is a single resource for all r, s ∈ R, so that ⊠ is a bilinear map R×R → R. A more general
scenario corresponding to a broader idea of convex-linear resource theories is treated in [16].
We can construct the resource theory of 3-tuples (R(3)

cons, R
(3),⊠) as described in Section 4.2.1 and

define the following function.

Definition 54. The convex alignment is a function cva : R(3) → R defined by

cva(r, s, t) :=
{
λ if r = λs+ (1 − λ)t for λ ∈ [0, 1].
1 otherwise.

(95)

Lemma 55 (convex alignment is a 3-contraction). Let (Rfree, R,⊠) be a resource theory with a
convex-linear structure as described at the start of this section. The convex alignment, cva, is a
monotone in the resource theory (R(3)

cons, R
(3),⊠).

Proof. Let (r, s, t) ∈ R(3) and (u, u, u) ∈ R(3)
cons. We aim to show that

cva(r, s, t) ⩾ cva(r ⊠ u, s⊠ u, t⊠ u) (96)

holds for all r, s, t, u ∈ R.
If cva(r, s, t) = 1, then its value cannot increase. Otherwise, if cva(r, s, t) = λ is strictly less than
1, then r = λs+ (1 − λ)t. By the convex-linearity of ⊠, we have(

λs+ (1 − λ)t
)
⊠ u = λs⊠ u+ (1 − λ)t⊠ u. (97)

Therefore, cva(r, s, t) = cva(r ⊠ u, s ⊠ u, t ⊠ u) whenever cva(r, s, t) < 1. Consequently, convex
alignment is a 3-contraction.

Now we can use the generalized construction of monotones from k-contractions (Theorem 53) to
get monotones for (Rfree, R,⊠) by optimizing the convex alignment in various ways. Let us focus
on a construction of cva-min ◦ EWdc with Wdc that is of form as in (91). Specifically, we use
Wdc = S1 × S2 × S3 ∈ DC(R(3)), where each Si is itself a downward closed subset of R. There are
many downward closed sets one could use for each Si, but here we restrict our attention to the two
most obvious choices—Rfree and R. Even with this restriction, one can obtain 12 constructions of
the form cva-min ◦ EWdc . Specifically, there are three possible choices of the projection Πi, which
then determines E . For each of them we let the corresponding Si be R without loss of generality,
which leaves 4 choices for the other two downward closed sets. Out of these 12 constructions in
total, eight produce a constant monotone and are therefore uninteresting. The other four are the
following.

(i) The resource weight (also known as the resource fraction) Mw : R → R is defined as
cva-min ◦ EWdc for E = Π−1

1 and Wdc = R × R × Rfree. Explicitly, its value for any resource
r ∈ R is

Mw(r) := inf
{

cva(r, s, t)
∣∣ s ∈ R, t ∈ Rfree

}
= inf

{
λ

∣∣ r ∈ λR+ (1 − λ)Rfree
}
.

(98)

It corresponds to the smallest weight of a resource that can be used to form r by convex
mixture with some free resource.
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(ii) The resource robustness Mrob : R → R is defined as cva-min ◦ EWdc for E = Π−1
3 and

Wdc = Rfree ×R×R. Explicitly, its value for any resource t ∈ R is

Mrob(t) := inf
{

cva(r, s, t)
∣∣ r ∈ Rfree, s ∈ R

}
= inf

{
λ

∣∣ λs+ (1 − λ)t ∈ Rfree, s ∈ R
}
.

(99)

It is the smallest weight of a resource that one needs to convexly mix with t in order to obtain
a free resource.

(iii) The free robustness Mf. rob : R → R is defined as cva-min ◦ EWdc for E = Π−1
3 and

Wdc = Rfree ×Rfree ×R. Explicitly, its value for any resource t ∈ R is

Mf. rob(t) := inf
{

cva(r, s, t)
∣∣ r ∈ Rfree, s ∈ Rfree

}
= inf

{
λ

∣∣ λs+ (1 − λ)t ∈ Rfree, s ∈ Rfree
}
.

(100)

It is the smallest weight of a free resource that one needs to convexly mix with t in order to
obtain another free resource.

(iv) The resource non-convexity Mnc : R → R is defined as cva-min ◦ EWdc for E = Π−1
1 and

Wdc = R×Rfree ×Rfree. Explicitly, its value for any resource r ∈ R is

Mnc(r) := inf
{

cva(r, s, t)
∣∣ s ∈ Rfree, t ∈ Rfree

}
= inf

{
λ

∣∣ r ∈ λRfree + (1 − λ)Rfree
}
.

(101)

It is trivial if all the sets of free resources happen to be convex. Otherwise it tells us about
the ordering of resources that are within the convex hull of the free resources, but are not
free themselves. It quantifies the relative distance of a resource from the set of free resources
in terms of its convex decompositions into free resources. Its value is set to 0 if the resource
in question is free itself, and 1 if it is outside of the convex hull of the free resources.

a

b

c

d

R

Rfree

Figure 4: A pictorial depiction of the optimal convex decompositions for each of the four monotones mentioned
in this section: (a) resource weight Mw, (b) resource robustness Mrob, (c) free robustness Mf. rob, and (d)
resource non-convexity Mnc. Grey disc represents the set R of all resources, while the yellow “hourglass” witin
represents the free resources among them. In order to illustrate each of the four optimal decompositions, we
select a distinct resource (element of X), depicted by a green node. These demopositions are given by the three
points along one of the line segments with an orange and purple portion. The value of each of the monotones for
these; Mw(a), Mrob(b), Mf. rob(c), and Mnc(d); can be read off as the length of the respective orange segment
divided by the total lenth of the orange and purple segments combined.

As a consequence of Lemma 52, Theorem 53 and Lemma 55, all four functions above are
monotones. However, being able to prove the monotonicity of these four functions is not where
the value of the generalized construction of monotones from contractions lies. What they provide
is an understanding of the assumptions required in order for these functions to be monotones.
Furthermore, they give us a unified picture, within which we can adjust various elements of the
monotone constructions according to the question we are interested in. In this case, there are many
more monotones one can obtain from cva in this way, since R or Rfree in the optimization can be
replaced by any other downward closed set.
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4.3 General Ways of Translating Monotones Between Resource Theories

In Section 4.1 we investigated how one can translate monotones from a resource theory Q given by
(Qfree, Q,⊠Q) to a resource theory R = (Rfree, R,⊠) when the two are in fact identical. Then, in
Section 4.2, we looked at the choice of Q in the form of a resource theory of distinguishability. Here,
we would like explore what can be said in general. Can the methods introduced in Sections 4.1
and 4.2 be extended to the case of arbitrary Q?

We consider two choices of the mediating preordered set (A,⪰A): (P(Q),⪰enh) and (P(Q),⪰deg).
For any monotone f on Q, we again have corresponding root monotones f -max and f -min as
introduced in Corollary 38. In order to find out which maps can be used as the mediating order-
preserving map (R,⪰) → (P(Q),⪰enh), we can use the following sufficient conditions.

Lemma 56 (mediating maps for ⪰enh). Let (Rfree, R,⊠) and (Qfree, Q,⊠Q) be resource theories
and let F : R → P(Q) be a function with an extension F : P(R) → P(Q) obtained from the original
F by requiring that it commutes with unions.8 If for all r ∈ R we have

F (Rfree ⊠ r) ⊆ Qfree ⊠Q F (r), (102)

i.e., if F
(
↓(r)

)
⊆ ↓

(
F (r)

)
holds, then F : (R,⪰) → (P(Q),⪰enh) is order-preserving.

Proof. We need to show that for F as above, the implication r ⪰ s =⇒ F (r) ⪰enh F (s) holds for
any r, s ∈ R. This fact can be broken down as follows:

r ⪰ s ⇐⇒ s ∈ Rfree ⊠ r

=⇒ F (s) ⊆ F (Rfree ⊠ r)
=⇒ F (s) ⊆ Qfree ⊠Q F (r)
⇐⇒ F (r) ⪰ F (s),

(103)

where the second implication follows from property (102). The statement of the lemma then follows
by recognizing that ⪰ and ⪰enh are identical as preorders on P(Q).

Lemma 56′ (mediating maps for ⪰enh). Alternatively, if we have

F (r ⊠ s) = F (r) ⊠Q F (s) ∀r, s ∈ R, and (104a)
F (Rfree) ⊆ Qfree ⊠Q F (0), (104b)

then F : (R,⪰) → (P(Q),⪰enh) is order-preserving. Finally, if instead F satisfies

F (r ⊠ s) ⊆ F (r) ⊠Q F (s) ∀r, s ∈ R, and (105a)
F (Rfree) ⊆ Qfree, (105b)

then F : (R,⪰) → (P(Q),⪰enh) is order-preserving.

Proof. Conditions (104) imply condition (102) via

F (Rfree⊠r) = F (Rfree)⊠QF (r) ⊆ Qfree⊠QF (0)⊠QF (r) = Qfree⊠QF (0⊠r) = Qfree⊠QF (r), (106)

so that the first part of Lemma 56’ follows from Lemma 56.
Conditions (105) imply condition (102) via

F (Rfree ⊠ r) ⊆ F (Rfree) ⊠Q F (r) ⊆ Qfree ⊠Q F (r), (107)

so that the second part of Lemma 56’ also follows from Lemma 56.

8The extension F : P(R) → P(Q) maps a set S to the union of images of elements of S under F : R → P(Q). It
is the unique extension of F : R → P(Q) to a suplattice homomorphism P(R) → P(Q).
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Example 41′ (adding a catalyst is order-preserving). The augmentation map AugC : R → P(R)
from Example 41, defined for any C ⊆ R by

AugC(r) := C ⊠ r, (108)

satisfies condition (102), since we have

AugC(Rfree ⊠ r) = C ⊠Rfree ⊠ r = Rfree ⊠ AugC(r). (109)

Lemma 56 thus provides a way to prove that the function AugC is order-preserving as a map of
type (R,⪰) → (P(R),⪰enh). However, it satisfies neither condition (104a) nor condition (105b) in
general.

Example 40′ (copying is order-preserving). The copy map, Copyn : R → P(R) was defined in
Example 40 as the combination of n copies of a resource,

Copyn(r) := r ⊠ r ⊠ . . .⊠ r ≡ r⊠n. (110)

The image of a set of resources S by Copyn cannot in general be expressed as S⊠n. Nevertheless,
one can show that Copyn(r⊠s) ⊆ Copyn(r)⊠Copyn(s) and Copyn(Rfree) ⊆ Rfree, which corresponds
to conditions (105).

However, the map E defined in Section 4.2.4 doesn’t satisfy these conditions. In general, only
conditions (104a) and (105a) hold for E . In particular, E is not order-preserving as a function
(R,⪰) → (P(Q),⪰enh). The function E is, nonetheless, an example of an order-preserving map
(R,⪰) → (P(Q),⪰deg). How could we generalize this fact? Recall that for k = 2, E maps r to its
preimage under the projection Π1 : (r, s) 7→ r. The following lemma provides sufficient conditions
for such functions to be order-preserving in general.

Lemma 57 (mediating maps for ⪰deg). Let (Rfree, R,⊠) and (Qfree, Q,⊠Q) be resource theories
and let F : R → P(Q) be a function. If there exists a map G : Q → R satisfying

F (r) = G−1(r), (111a)
G(p⊠Q q) ⊇ G(p) ⊠G(q) ∀p, q ∈ Q, and (111b)
G(Qfree) ⊇ Rfree, (111c)

then F : (R,⪰) → (P(Q),⪰deg) is order-preserving.

Proof. We want to show that for any r, s ∈ R such that r ⪰ s, there exists a degradation
D : F (r) → F (s). Firstly, note that the fact that the image of Qfree under G contains Rfree
(property (111c)) means that there is function G† : Rfree → Qfree such that

G ◦G† = IdRfree , (112)

where IdRfree is the canonical embedding of Rfree in R. That is, G† is a partial right inverse of G.
If r ⪰ s holds, then there is an x ∈ Rfree such that s ∈ r ⊠ x. For all s ∈ F (r) = G−1(r), we then
have

s ∈ r ⊠ x = G(s) ⊠G(G†(x)) = G(s⊠Q G†(x)), (113)

so that there exists a resource t in the set s⊠Q G†(x) such that t is also in G−1(s) = F (s). If we
let D : F (r) → F (s) be defined by D(s) := t, then D is clearly a degradation since G†(x) is an
element of Qfree.

An alternative way to prove Lemma 57 would be to show that conditions (111) imply

F
(
↑(q)

)
⊆ ↑

(
F (q)

)
∀ r ∈ Q, (114)

which, by an argument analogous to the proof of Lemma 56, is a sufficient condition for the
function F : (R,⪰) → (P(Q),⪰deg) to be order-preserving. One can check that E indeed satisfies
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conditions (111) if G is chosen to be the projection Πi : R(k) → R. In fact, (111b) becomes an
equality in this case.

Lemma 57 cannot be used, however, to show that the map ERdc introduced in Section 4.2.3 is
order-preserving. As we have seen explicitly in the proof of Theorem 53, proving this fact is not
necessary when all we care about is the resulting monotone obtained from the root monotone f -min
by the Broad Scheme. This is because we can incorporate the restriction of the image of E to a
downward closed set such as Wdc = R × Rfree into the root monotone by restricting the domain
of the contraction f . Corollary 38 can then still be used to show that the function fWdc-min is a
monotone.

For completenes, we nevertheless include the following lemma which, when combined with the
other results in this section, shows that the map ERdc is itself order-preserving.

Lemma 58 (mediating maps with intersections). Let (Rfree, R,⊠) and (Qfree, Q,⊠Q) be resource
theories and let Wuc ∈ UC(Q) and Wdc ∈ DC(Q) be upward and downward closed subsets of Q,
respectively.

(i) If F : (R,⪰) → (P(Q),⪰enh) is an order-preserving map, then the map FWuc defined by

FWuc(r) := F (r) ∩Wuc (115)

is also order-preserving as a map (R,⪰) → (P(Q),⪰enh).

(ii) If F : (R,⪰) → (P(Q),⪰deg) is an order-preserving map, then the map FWdc defined by

FWdc(r) := F (r) ∩Wdc (116)

is also order-preserving as a map (R,⪰) → (P(Q),⪰deg).

Proof. This lemma is basically saying that the maps

(P(Q),⪰enh) → (P(Q),⪰enh) (P(Q),⪰deg) → (P(Q),⪰deg)
S 7→ S ∩Wuc S 7→ S ∩Wdc

are both order-preserving. The first one is order-preserving, because for any S, T ∈ P(R), we have

S ⪰enh T ⇐⇒ ↓(S) ⊇ ↓(T )
=⇒ Wuc ∩ ↓(S) ⊇ Wuc ∩ ↓(T )
=⇒ ↓

(
Wuc ∩ ↓(S)

)
⊇ ↓

(
Wuc ∩ ↓(T )

)
⇐⇒ ↓(Wuc ∩ S) ⊇ ↓(Wuc ∩ T )
⇐⇒ Wuc ∩ S ⪰enh Wuc ∩ T.

(117)

The first equivalence follows from Lemma 29 and the penultimate one is a consequence of Lemma 59
presented below. All in all, this concludes the proof of the first part of Lemma 58.
The second part can be shown in an analogous way. In particular, the fact that the map
S 7→ S ∩Wdc is order-preserving follows by

S ⪰deg T ⇐⇒ ↑(S) ⊆ ↑(T )
=⇒ Wdc ∩ ↑(S) ⊆ Wdc ∩ ↑(T )
=⇒ ↑

(
Wdc ∩ ↑(S)

)
⊆ ↑

(
Wdc ∩ ↑(T )

)
⇐⇒ ↑(Wdc ∩ S) ⊆ ↑(Wdc ∩ T )
⇐⇒ Wdc ∩ S ⪰deg Wdc ∩ T,

(118)

The first equivalence follows from Lemma 33 and the penultimate one is again a consequence of
Lemma 59.

Lemma 59. Let (A,⪰) be a preordered set and let S and T be two subsets of A. Then we have

↓
(
↑(S) ∩ ↓(T )

)
= ↓

(
↑(S) ∩ T

)
, (119a)

↑
(
↓(S) ∩ ↑(T )

)
= ↑

(
↓(S) ∩ T

)
. (119b)
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Proof. First, let us prove equation (119a). The set on the right hand side is clearly a subset
of the one on the left, so let’s argue why also ↓

(
↑(S) ∩ ↓(T )

)
⊆ ↓

(
↑(S) ∩ T

)
holds. For any

x ∈ ↓
(
↑(S) ∩ ↓(T )

)
, there exists a y ∈ ↑(S) ∩ ↓(T ) such that y ⪰ x. Therefore, there is a t ∈ T ,

such that t ⪰ y and t ∈ ↑(S). Since t ⪰ x, this means that x ∈ ↓
(
↑(S) ∩ T

)
, thus proving

equation (119a).
Equation (119b) is the dual statement to (119a) and therefore it follows by reversing ⪰.

Given the choice of (Qfree, Q,⊠Q) := (R(k)
cons, R

(k),⊠) and F := E in Lemma 58, we thus recover the
fact that EWdc : (R,⪰) → (P(R(k)),⪰deg) is order-preserving.

Corollary 60 (translating monotones between resource theories). Consider two resource theories
(Qfree, Q,⊠Q) and (Rfree, R,⊠) Given

• a monotone f : Q → R,

• a function F : R → P(Q) that satisfies condition (102), and

• an upward closed set Wuc ∈ UC(Q),

we get a monotone f -max ◦ FWuc : R → R given by

f -max ◦ FWuc(r) = sup
{
f(q)

∣∣ q ∈ F (r) ∩Wuc
}
. (120)

Similarly, given

• a monotone f : Q → R,

• a function F : R → P(Q) that satisfies conditions (111), and

• a downward closed set Wdc ∈ DC(Q),

we get a monotone f -min ◦ FWdc : R → R given by

f -min ◦ FWdc(r) = inf
{
f(q)

∣∣ q ∈ F (r) ∩Wdc
}
. (121)

Remark 61. Note that the generalized yield and cost constructions (Theorem 25) can be applied
in succession with those from Corollary 60. However, neither of these commute in general. For
example, for generic f and F , composing the constructions that use infima give

(f -min ◦ FWuc)-cost(q) = inf f
(
Wuc ∩ F (↑(q))

)
̸= inf f

(
↑(Wuc ∩ F (q))

)
= (f -cost)-min ◦ FWuc(q).

(122)

5 Assessing Informativeness of Monotones in General Resource Theories

The general monotone constructions (Theorem 25 and Corollary 60) have several inputs that need
to be specified to obtain a single resource monotone. In this section, we would like to address
the question of which choices of these input parameters are good in the sense that they yield a
useful resource monotone. In order to assess the usefulness of monotones as far as characterizing
a preordered set (A,⪰A) is concerned, we define a preorder ⊒A on the set of monotones itself.
We denote this set by Mon(A). It is just the collection of all order-preserving maps from (A,⪰A)
to (R,⩾). In this context, we consider a monotone f to be more “useful” than a monotone g if it
contains all of the information about (A,⪰A) that g does and possibly more. We now formalize
what we mean by the amount of inforamtion a monotone has about a preordered set.

A function f : A → R is a monotone if and only if for all pairs (a, b) ∈ A × A, the following
implication holds:

f(a) < f(b) =⇒ a ̸⪰A b. (123)
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That is, monotones contain information about the order relation ⪰A⊆ A×A insofar as they witness
when pairs of elements of A are not related by ⪰A. Of course, if f(a) ⩾ f(b), the implication
above doesn’t let us learn anything about the order relation ⪰A. Given a monotone f , a pair (a, b)
is henceforth called f -interesting if f(a) < f(b) holds. The f -interesting pairs are those, for which
we can learn that a ̸⪰A b holds from the fact that f is a monotone.

The set of all f -interesting pairs for a monotone f is denoted by

f -Interesting (A,⪰A) :=
{

(a, b) ∈ A × A
∣∣ f(a) < f(b)

}
. (124)

We also refer to f -Interesting (A,⪰A) as the f -interesting relation on A.

Definition 62. Let (A,⪰A) be a preordered set and let Mon(A) be the set of order-preserving
maps (A,⪰A) → (R,⩾). We define a preorder ⊒A on Mon(A) by

f ⊒A g ⇐⇒ f -Interesting (A,⪰A) ⊇ g-Interesting (A,⪰A) (125)

and we say that f is more informative about (A,⪰A) than g is if f ⊒A g holds. If
the preordered set is (R,⪰) arising from some resource theory (Rfree, R,⊠), we denote the
informativeness order relation by ⊒ instead of ⊒R.

For functions f and g which are monotones, we can express f ⊒A g also as

f ⊒A g ⇐⇒ ∀a, b ∈ A : g(a) < g(b) =⇒ f(a) < f(b) (126a)
⇐⇒ ∀a, b ∈ A : f(a) ⩾ f(b) =⇒ g(a) ⩾ g(b). (126b)

We would like to compare the constructions of monotones appearing in Sections 3 and 4 in terms
of how useful they are depending on the input elements thereof. One of the input elements for cost
and yield constructions is a partial function fW : R → R. Although it need not be a monotone on
its domain W , it can still be understood as witnessing nonconvertibility between some resources
within W . In Proposition 64 below we prove that whenever a partial function fW witnesses all
the pairs of nonconvertible resources that gW ′ does, then fW is at least as useful as gW ′ is, when
thought of as an input to the generalized yield and cost constructions (Theorem 25). That is, in
such case fW -yieldD is more informative about (R,⪰) than gW ′ -yieldD is and likewise for the cost
construction. In order to make these kinds of statements more precise, we now formalize the notion
of the amount of resource nonconvertibility that a partial function witnesses.

Let fW : R → R be a partial function with domain W . We say that fW witnesses the
nonconvertibility of a pair of resources (r, s) if both f(r) < f(s) and r ̸⪰ s hold. As far as
this property is concerned, we call such a pair of resources (r, s) fW -interesting.

The set of all fW -interesting pairs for a partial function fW is denoted by

fW -Interesting (R,⪰) :=
{

(r, s) ∈ W ×W
∣∣ f(r) < f(s) ∧ r ̸⪰ s

}
(127)

We also refer to fW -Interesting (R,⪰) as the fW -interesting relation on R. Note that this definition
coincides with the f -interesting relation for a monotone f given by equation (124), whenever fW

is indeed a monotone. That is why we use the same notation for both of these relations.

Definition 63. Let (R,⪰) be a preordered set and let fW , gW ′ : R → R be partial functions with
domains W and W ′ respectively. We say that fW witnesses more resource nonconvertibility
in (R,⪰) than gW ′ does if fW ⊒ gW ′ holds, where

fW ⊒ gW ′ ⇐⇒ fW -Interesting (R,⪰) ⊇ gW ′ -Interesting (R,⪰) . (128)

Proposition 64 (more informative monotones from more informative functions). Let (Rfree, R,⊠)
be a resource theory with an associated preordered set (R,⪰) and let D be a downward closed subset
of R. Furthermore, let fW : R → R and gW ′ : R → R be two partial functions with domains W
and W ′ respectively.
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If fW witnesses more resource nonconvertibility in (R,⪰) than gW ′ does, then fW -yieldD is more
informative about (R,⪰) than gW ′ -yieldD is and also fW -costD is more informative about (R,⪰)
than gW ′ -costD is. That is, we have

fW ⊒ gW ′ =⇒ fW -yieldD ⊒ gW ′ -yieldD, (129a)
fW ⊒ gW ′ =⇒ fW -costD ⊒ gW ′ -costD. (129b)

Moreover, if fW and gW ′ are monotones on their respective domains and their domains coincide;
i.e., W = W ′; and if D = Rfree, then the converse of both implications holds as well. That is, in
such case we have

fW ⊒ gW ⇐⇒ fW -yieldD ⊒ gW -yieldD, (130a)
fW ⊒ gW ⇐⇒ fW -costD ⊒ gW -costD. (130b)

Proof. In order to prove claim (129a), we need to show that gW ′ -yieldD(r) < gW ′ -yieldD(s) implies
fW -yieldD(r) < fW -yieldD(s) for all r, s ∈ R such that r ̸⪰ s. This follows via
gW ′ -yieldD(r) < gW ′ -yieldD(s) (131a)

⇐⇒ ∀r2 ∈ W ′ ∩ ↓D(r), ∃s2 ∈ W ′ ∩ ↓D(s) : gW ′(r2) < gW ′(s2) and r2 ̸⪰ s2
(131b)

=⇒ ∀r2 ∈ W ∩ ↓D(r), ∃s2 ∈ W ∩ ↓D(s) : fW (r2) < fW (s2) and r2 ̸⪰ s2 (131c)
⇐⇒ fW -yieldD(r) < fW -yieldD(s). (131d)

In the first (and last) equivalence, we could restrict s2 to be such that r2 ̸⪰ s2 because r2 ⪰ s2
(together with r2 ∈ ↓D(r)) implies that s2 is an element of ↓D(r), which is a subset of ↓ ◦ ↓D(r)
whenever D is downward closed, as we prove in Lemma 23. This in turn implies that gW ′(s2) is
bounded above by gW ′ -yieldD(r). Since gW ′ -yieldD(s) is strictly larger than gW ′ -yieldD(r), there
must be such s2 outside ↓D(r).
The implication (131b) =⇒ (131c) follows from the assumption that fW witnesses more resource
nonconvertibility in (R,⪰) than gW ′ does.
In order to prove claim (129b), we need to show the analogous statement for cost monotones.
gW ′ -costD(r) < gW ′ -costD(s) (132a)

⇐⇒ ∀s2 ∈ W ′ ∩ ↑D(s), ∃r2 ∈ W ′ ∩ ↑D(r) : gW ′(r2) < gW ′(s2) and r2 ̸⪰ s2
(132b)

=⇒ ∀s2 ∈ W ∩ ↑D(s), ∃r2 ∈ W ∩ ↑D(r) : fW (r2) < fW (s2) and r2 ̸⪰ s2 (132c)
⇐⇒ fW -costD(r) < fW -costD(s). (132d)

In the first (and last) equivalence, we can again restrict r2 to be such that r2 ̸⪰ s2 because
r2 ⪰ s2 (together with s2 ∈ ↑D(s)) implies that r2 is an element of ↑D(s) ⊆ ↑ ◦ ↑D(s) as we
show in Lemma 23. In turn, this implies that gW ′(r2) is bounded below by gW ′-costD(s). Since
gW ′-costD(r) is strictly smaller than gW ′ -costD(s), there must be such r2 outside ↓D(s). The
implication (132b) =⇒ (132c) follows from the assumption that fW ⊒ gW ′ holds. This concludes
the proof of the first half of Proposition 64.
Finally, in order to obtain claim (130), we can show that fW ̸⊒ gW implies both fW -yield ̸⊒ gW -yield
and fW -cost ̸⊒ gW -cost, under the assumption that fW and gW are monotones on W . The
statement fW ̸⊒ gW can in such case be expressed as

∃r, s ∈ W : gW (r) < gW (s) and fW (r) ⩾ fW (s). (133)
By Proposition 65 proved below, the values of fW -yieldD and fW -costD coincide with the value of
fW on W , and similarly for gW . Therefore, fW ̸⊒ gW implies the following two statements

∃r, s ∈ W : gW -yieldD(r) < gW -yieldD(s) and fW -yieldD(r) ⩾ fW -yieldD(s) (134)
∃r, s ∈ W : gW -costD(r) < gW -costD(s) and fW -costD(r) ⩾ fW -costD(s). (135)

Since the yields and costs are also monotones, these imply that fW -yieldD ̸⊒ gW -yieldD and
fW -costD ̸⊒ gW -costD. Consequently, the proof of the second half of Proposition 64 is also
complete.
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Proposition 65. Let fW : W → R+ be a monotone. Then for all r ∈ W , we have
fW -yield(r) = fW (r) = fW -cost(r). (136)

Proof. Since r ∈ ↓(r) and r ∈ ↑(r), we have fW -cost(r) ⩾ fW (r) ⩾ fW -yield(r) for all r ∈ W . On
the other hand, f being a monotone on W implies that for each s, t ∈ W such that t ⪯ r ⪯ s, we
have fW (t) ⩽ fW (r) ⩽ fW (s). Performing a supremum of the left inequality over all t ∈ W ∩ ↓(r)
yields fW -cost(r) ⩽ fW (r), while taking the infimum of the right inequality over all s ∈ W ∩ ↑(r)
gives fW (r) ⩽ fW -yield(r), so that the result follows.

Corollary 66. As a consequence of Proposition 64, sufficient and necessary conditions for the
ordering (by ⊒) of generalized yields and costs relative to Rfree

9 are given by the ordering (by ⊒)
of their restrictions to W ∪ W ′. These facts can also be expressed in terms of the order relation
with respect to informativeness about (W ∪W ′,⪰) as:

fW -yield ⊒W ∪W ′ gW ′ -yield ⇐⇒ fW -yield ⊒ gW ′ -yield (137a)
fW -cost ⊒W ∪W ′ gW ′ -cost ⇐⇒ fW -cost ⊒ gW ′ -cost (137b)

Therefore, if one wishes to characterize the resource preorder (R,⪰) by virtue of monotones
generated by the generalized yield and cost constructions (Theorem 25), then using functions
W → R which are more informative about (R,⪰) according to ⊒ should be preferred.
A function fW cannot witness more resource nonconvertibility than a complete set of monotones
because such a set captures all the information in the preordered set (W,⪰). Nonetheless, a
function fW can witness more resource nonconvertibility than any single monotone. The simplest
example is provided by W with 4 elements, two pairs of which are ordered as in the following Hasse
diagram.

r1 s1

r2 s2

(138)

If we let fW be defined as follows

fW (r1) = 0
fW (r2) = 1

fW (s1) = 0
fW (s2) = 1

(139)

then it clearly fails to be a monotone. Note that fW witnesses nonconvertibility for the two pairs
of resources, (r1, s2) and (s1, r2), while no single monotone can do so simultaneously. The proof
of the latter claim is that the order-preserving property of a monotone implies that it must satisfy
M(r1) ⩾ M(r2) and M(s1) ⩾ M(s2). If it witnesses the nonconvertibility of the pair (r1, s2),
then M(r1) < M(s2) holds and these three inequalities together imply that M(s1) is greater than
M(r2), so that M then cannot witness the nonconvertibility of the pair (s1, r2). The function fW

is capable of witnessing the nonconvertibility of both pairs of resources precisely because it fails to
be order-preserving.

Remark 67. Note that this function has another interesting property in that both fW -yield and
fW -cost are constant; i.e., they are least informative about (W,⪰) among all monotones W → R.
fW can thus serve as a counterexample to conjectures regarding conditions under which the yield
and cost constructions generate useful monotones.

Example 68 (chains admit a most informative function). If W is a chain; that is, a totally
ordered subset of R; then there is a single monotone fW that forms a complete set of monotones
by itself. Therefore, it is more informative about (W,⪰) than any other function W → R. As a
consequence, for each downward closed set D ∈ DC(R), there are unique most informative yield
and cost monotones with respect to W , namely fW -yieldD and fW -costD. Given the choice of
D = Rfree, these correspond to currencies defined in [29], as we mentioned earlier.

9In fact, the same result holds for generalized yields and costs relative to any downward closed set D. However,
this does not follow directly from Proposition 64. One needs to use the fact that fW -yieldD and fW -costD preserve
not only the convertibility relation with respect to Rfree (i.e., ⪰), but also the convertibility relation with respect
to D. Note that the latter relation is not in general transitive, since D may not be closed under ⊠.
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6 Conclusions

To summarize, in this manuscript we introduced a somewhat minimal framework for describing
(universally combinable) resource theories, within which we investigated various ways of construct-
ing monotones through the lens of the Broad Scheme.

Firstly, we looked at generalized resource yield and generalized resource cost constructions. An
extensive (but definitely not exhaustive) list of examples of such constructions in the literature
has been provided. We also showed how the generalized constructions of this kind can be used to
obtain monotones that cannot be conceptualized as standard yield and cost constructions.

Secondly, we looked at monotones which can be seen as arising from another monotone by virtue
of a translation via a mediating order-preserving map. After introducing a resource theory of
k-distinguishability, we described a translation of measures of distinguishability to other resource
theories, which generalizes the familiar concept of constructing monotones from contractions. As
an application of this construction, we unified resource weight and resource robustness as arising
from a single root contraction for 3-tuples of resources. Moreover, by varying the parameters in
the general construction, we showed how one can obtain other related monotones from the same
measure of 3-distinguishability. General methods to translate monotones between resource theories
were then presented, culminating with Corollary 60 that summarizes the results on translation of
monotones.

The two main themes of the paper, generalizing yield and cost constructions and generalizing
the translation of monotones, are intricately linked. We investigate these connections further in
Appendix A, by showing how the corresponding mediating preordered sets are related to each
other. One of the main features that distinguishes the two kinds of constructions is that the
partial function f , a starting point in both cases, is assumed to have different properties. The
scheme for translating monotones is targeted to functions f which are monotones themselves,
while yield and cost constructions work for functions f which are not monotones, for example by
virtue of a restricted domain of applicability. One could think that the generalized yield and cost
constructions are therefore superior. However, their disadvantage is the optimization over all free
resources inherent in the construction. Moreover, even though f has to be a monotone if we want
to translate it, a seemingly insipid one (like the convex alignment) can still generate interesting
target monotones (like weight and robustness).

Finally, we also explored the structure of the set of all resource monotones. The monotone
constructions presented here are very general and widely applicable, but using them in practice
as a method for generating monotones involves several choices. For example, a priori it is not
clear which choices of the downward closed set of resources D, the valuation function f , and its
domain W in the generalized yield and cost constructions are the best ones. These are the kinds
of questions we made progress on by “assessing informativeness of monotones”. In particular, we
compared them in terms of how good they are in capturing the resource ordering. With this
criterion, we investigated what are the best ways to use the monotone costructions introduced
earlier in order to get the most informative monotones.

Our work advances the studies of general structures appearing in resource theories and has potential
applications to any area where the resource-theoretic point of view is of some use. These include
the study of information theory, both quantum and classical, but also of thermodynamics, of
renormalization, and of various other parts of physics where resource-theoretic questions are
tackled. We believe, however, that similar questions in more distant fields can also be analyzed
with the resource-theoretic mindset, which is one of the main reasons why we choose to work in
a framework that does not presuppose the resources to be quantum processes. Indeed, one of
the benefits of working within an abstract framework for resource theories is that there is the
potential for cross-fertilization of ideas between very different fields of study. This was one of the
motivations for previous attempts at abstract formalisms for resources theories [11, 15], which can
describe situations well beyond the scope of physics. To name a few, we can use them to study
the theory of chemical reactions, but also a kind of proof theory wherein the free operations are
compass and straight-edge and the nontrivial resources are geometrical constructions that cannot
be achieved by compass and straight-edge. In this vein, Fritz has further shown how the framework
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of ordered commutative monoids has interesting applications in fields as diverse as graph theory
and game theory [15].

There are many possible future directions for extending this work.

(i) One might aim to determine how the mathematical structures presented here relate to other
mathematical structures used in physics, mathematics, and computer science. The study of
their relation to some of the other mathematical frameworks for resource theories can be
found in [16], but other connections are yet to be developed.

(ii) One might try to devise general techniques for constructing monotones by considering
resource theories that have more structure than we have presumed here. One way to do so
would be by strenghtening the assumptions of our central results in order to arrive at stronger
conclusions. There are many possibilities in this direction, one of which is to assume a linear or
convex structure of resources as we did when we studied the weight and robustness measures
here. It is clear that these results will then be connected to ideas from convex geometry [43]
and convex optimization [58].
Related to this is the aim of reexpressing the results presented here in a framework which
is closer to the structure of a resource theory that one would use in practical applications.
A framework like that would capture partitioned process theories with a restriction on the
allowed types of resources for example, which, as we argued in Example 7, cannot be expressed
as a universally combinable resource theory in the sense of Definition 4. This is what we do
in [16].

(iii) Last, but not least, one would hope to be able to not only unify and generalize existing
concrete results about resource theories as we have done here, but also to find novel
applications of monotones with the help of the conceptual clarity arising from the abstract
point of view.
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Appendix

A Ordering Sets of Resources

In this appendix, we show the following isomorphisms of preordered sets:

(P(R),⪰) ∼ ≃ (P(R),⪰enh) ∼enh ≃ (DC(R),⊇) (140)
(P(R),⪰deg) ∼deg ≃ (UC(R),⊆) (141)

When restricted to singletons and the free images/preimages of individual resources, all five
partially ordered sets are isomorphic. In fact, it is immediate from the definitions that {r} ⪰enh {s}
if and only if {r} ⪰deg {s}, whence the preorders ⪰, ⪰enh and ⪰deg are themselves identical when
restricted to singletons.

Theorem 69 (first isomorphism theorem for preordered sets [21]). Let (A,⪰A) and (B,⪰B) be two
preordered sets and let ϕ : A → B be an order-preserving map. The kernel of ϕ is an equivalence
relation ∼ϕ on A defined by

a ∼ϕ a
′ ⇐⇒ ϕ(a) ∼B ϕ(a′), (142)

where ∼B is the standard equivalence relation on B induced by ⪰B. Then, there is a canonical
isomorphism

ϕ̃ : (A,⪰A) ∼ϕ → (ϕ(A),⪰B) ∼B. (143)

Proof. (A,⪰A)/∼ϕ consists of the set of equivalence classes A/∼ϕ and the corresponding order
relation ⪰A defined as

[a1]∼ϕ
⪰A [a2]∼ϕ

⇐⇒ a1 ⪰A a2 (144)

for any a1, a2 ∈ A, where [a1]∼ϕ
is the equivalence class of a1 with respect to ∼ϕ. Since ϕ is an

order-preserving map, ⪰A is a well-defined partial order.
We can then construct ϕ̃ as

ϕ̃([a]∼ϕ
) := [ϕ(a)]∼B , (145)

for any a ∈ A. Again, ϕ̃ is well-defined and order-preserving because ϕ is order-preserving.
Furthermore, the fact that it is injective follows from the definition of ∼ϕ.

Lemma 70. The kernel of ↓ : (P(R),⪰enh) → (DC(R),⊇) is ∼enh and consequently the kernel of
↓ : (R,⪰) → (DC(R),⊇) is ∼.

Proof. Follows directly from Lemma 29.

Corollary 71. The partially ordered sets (P(R),⪰enh)/∼enh and (DC(R),⊇) are isomorphic.

Lemma 72. The kernel of ↑ : (P(R),⪰deg) → (UC(R),⊇) is ∼deg and consequently the kernel of
↑ : (R,⪰) → (UC(R),⊇) is ∼.

Proof. Follows directly from Lemma 33.

Corollary 73. The partially ordered sets (P(R),⪰deg)/∼deg and (UC(R),⊆) are isomorphic.
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B Overview of Monotone Constructions

Name Yield and cost for f defined on R Text reference
f -yield(r) sup{f(s) | s ∈ Rfree ⊠ r} Equation (26)
f -cost(r) inf{f(s) | r ∈ Rfree ⊠ s} Equation (27)

for f : R → R • e.g. f = channel dimension in a RT of
communication.

Example 16

Yield and cost, f defined on a subset
fW -yield(r) sup{fW (s) | s ∈ Rfree ⊠ r, s ∈ W} Equation (30)
fW -cost(r) inf{fW (s) | r ∈ Rfree ⊠ s, s ∈ W} Equation (31)

where fW : R → R Currencies [29] for W a chain:
has domain W ⊆ R • W = the set of n-fold products of e-bits in

the RT of bipartite entanglement [25].
Example 17

• W = the set of sharp states in the RT of
nonuniformity [20].

Example 17

• W = a chain of boxes between the PR box
and a free box in the RT of nonclassicality of
common-cause boxes [66].

Example 20

W as convexly extremal resources:
• W = pure quantum states in the RT of
entanglement.

Example 19

W as processes of particular type:
• W = the set of states of arbitrary dimen-
sion in any RT of channels [18].

Example 21

Yield and cost w.r.t. a downset D
fW -yieldD(r) sup{fW (s) | s ∈ D ⊠ r, s ∈ W} Equation (49)
fW -costD(r) inf{fW (s) | r ∈ D ⊠ s, s ∈ W} Equation (50)

where D ⊆ R is Downsets with D ⊠D = D:
s.t. D ⊠Rfree = D • D = separable operations in the RT of

LOCC-entanglement
• D = Gibbs-preserving operations in the
RT of athermality [3].
• D = processes covariant w.r.t. a subgroup
of G in a resource theory of G-asymmetry
[38].

Example 14 (iii)

Adding non-free resources to Rfree:
• D = Rfree ⊠ ρ for a state ρ and for W the
set of states, thus extending a monotone fW

from states to other processes.

Example 26

• D = Rfree ⊠ S for S the states with
bounded entanglement rank.

Example 14 (i)

• S = the set of states that are not intrinsi-
cally 3-way entangled.

Example 14 (ii)

• S = one-way quantum communication
channels in either direction in the RT of
LOCC-entanglement.
• S = one-way classical communication
channels in either direction in the RT of
LOSR-entanglement [46].
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Name Monotones from 2-contractions Text reference
Mf (r) inf

{
f(r, s)

∣∣ s ∈ Rfree
}

Equation (85)
Mf,D(r) inf

{
f(r, s)

∣∣ s ∈ D
}

Equation (87)
for f : R(2) → R • D is any downset as above. Example 51
a 2-contraction • For f = relative entropy in the RT of

entanglement, Mf is the relative entropy of
entanglement [60].

Monotones from functions that
commute with Rfree

MΦ,f (r) f
(
r,Φ(r)

)
Equation (82)

for Φ: R → R s.t. • Φ = twirling map in a RT of asymmetry. Example 45
Φ(t⊠ r) = t⊠ Φ(r) • Φ = constant map to the thermal state in

RT of athermality.
Example 49

for all t ∈ Rfree • Φ = a map sending a bipartite state
to the product of its marginals in the RT
of correlations where Rfree consists of local
processes w.r.t. the bipartition.

Example 50

Monotones from 3-contractions
Mf,D1,D2(r) inf

{
f(r, s1, s2)

∣∣ si ∈ Di

}
Theorem 53

for f : R(3) → R e.g. D1 = R, D2 = Rfree and f = cva gives Definition 54
a 3-contraction, and • the resource weight Mw(r) given by

downsets D1, D2 inf
{
λ

∣∣ r ∈ λR+ (1 − λ)Rfree
}
, Equation (98)

while choosing f(r, s1, s2) = cva(s2, s1, r)
instead gives
• the robustness Mrob(r) given by

inf
{
λ

∣∣ λs+ (1 − λ)r ∈ Rfree, s ∈ R
}

. Equation (99)
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