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This paper generalises the treatment of compositional game theory as introduced by
Ghani et al. in 2018, where games are modelled as morphisms of a symmetric monoidal
category. From an economic modelling perspective, the notion of a game in the work
by Ghani et al. is not expressive enough for many applications. This includes stochastic
environments, stochastic choices by players, as well as incomplete information regarding
the game being played. The current paper addresses these three issues all at once.

1 Introduction
In [13] the first compositional treatment of economic game theory was introduced. Following the
literature on categorical open systems [7], open games are modelled as morphisms of a symmetric
monoidal category.

A distinctive and non-obvious feature of this approach is that the Nash equilibrium condition
[30], one of the central concepts in classical game theory to analyse rational behaviour of agents
(cf. [12, Chapter 1.2] and [33, Chapter 2]), is itself compositional.

While an important first step, the treatment in [13] has two severe limitations:

1. Games are deterministic and as a consequence, there are no chance elements in the games
and players have to choose deterministically.

2. Players have complete information about all relevant data of the game such as payoffs, number
of players etc.

Many interesting strategic situations feature chance elements. Poker is one example – already
discussed in the ground-breaking work of von Neumann and Morgenstern [31]. In an economic
context, the environment also often is non-deterministic. Two competing companies face uncertain
demand, exchange rates, lawsuits etc.

More subtle but also important is that players may need and may want to randomise their
actions. There are well known situations like Matching Pennies (see, for instance, [12, p. 16])
where playing deterministically means being ‘beaten’ all the time. Conceptually, from a game
theory perspective, this means that there are games where equilibria do not exist when players are
limited to deterministic strategies (known as ‘pure strategies’) whereas they do exist when players
can choose stochastically (known as ‘mixed strategies’).

Lastly, it is a crude approximation to assume that players have complete information. Examples
abound. A used-car dealer knows how good the car is that he is trying to sell to you. You may
not know. Banks sitting on toxic assets know how little value they actually have. The government
trying to buy these assets in order to save the financial system from collapse may not know. An
agent bidding in an auction may not know how many other bidders he competes with. In most
situations incomplete information is the norm and not the exception.
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The above limitations restrict the applicability of compositional game theory to economic phe-
nomena. And it restricts its usefulness for economists. After all, classical game theory already
deals with these complications.

In this paper we provide a generalisation of open games which solves the three problems above
in one go. We adapt the core definition of compositional game theory such that the environment
can be stochastic and players can also choose in a non-deterministic fashion. Doing so, we also
introduce a way to deal with incomplete information. Essentially we are lifting the same ‘trick’,
which has been introduced in classical game theory to deal with games of incomplete information
by John Harsanyi [17–19], to compositional game theory.

Harsanyi argued that instead of dealing with games of incomplete information directly, which
poses formidable conceptual problems, we can transform such games into games of imperfect infor-
mation by introducing the notion of (game) types. Players have access to probability distributions
characterising these games as well as partial access to this information. For instance, in an auction
a player may know how much he values the good to be auctioned. However, he may not know how
other agents value the good. Assuming that players update information according to Bayes’ rule
and adapting the equilibrium notion of Nash, to what is called Bayesian Nash equilibrium, game
theorists can work with such interactions no differently to how they deal with chance elements in
Poker. Thus by transforming the problem, Harsanyi essentially opened the path to using tools
that were more or less already introduced by von Neumann and Morgenstern [31].

We are applying the same strategy. By introducing stochastic environments and adapting
the equilibrium notion from Nash to Bayesian Nash we show that our compositional framework
captures exactly Bayesian Games and thus allows to deal with stochastic environments as well
as with situations of incomplete information. This distinguishes our work also from [15] which
addresses the issue of deterministic players in isolation.

1.1 Technical introduction
Contrary at least to our own initial beliefs, addressing these issues requires some significant adap-
tions of open games as defined in [13].

The recent understanding of open games has been based on lenses, which consist of a pair of
functions X → Y and X × R → S packaged into a single morphism (X, S) → (Y, R) of a category.
Here, the function X → Y is the play function, which plays out a given strategy by taking an
initial state to a final state of the open game. The function X × R → S, known as the coplay
function or coutility function, is more subtle: It ‘backpropagates’ payoffs into the past, given an
initial state. This operation is ‘counterfactual’, and the composition of lenses (which is not trivial
to define, nor is obvious to see is associative) intertwines ordinary forward and counterfactual (or
‘teleological’) information flow.

An open game can then be viewed as a family of lenses indexed by a set of strategy profiles,
together with another component describing which strategy profiles are Nash equilibria in a given
context. A context for an open game consists of an initial state (X) and a function from final
states to payoffs (Y → R). Contexts turn out also to be intimately connected to lenses, and indeed
this was the initial hint that viewing open games in terms of lenses is a deep idea rather than a
coincidence.

To someone trained in thinking about processes with side effects, it is entirely natural to begin
by inserting a (finite support) probability monad D, and take the components of the lenses to be
Kleisli morphisms X → D(Y ) and X ×R → D(S), or equivalently to use lenses over the category of
sets and (finite support) stochastic functions. This allows the strategies of an open game to describe
probabilistic behaviours, which are known as behavioural strategies in game theory. Unfortunately
this doesn’t work: In order to prove that lenses form a category (i.e. are associative and unital) it
is necessary that the forwards maps X → Y are homomorphisms of copying, and in the category
of stochastic processes this characterises those processes that are actually deterministic.

Fortunately this problem has already been solved in the theory of lenses, although the solution
is far from obvious. We use the existential lenses or coend lenses as developed by Riley [36]. This
means we replace the pair or functions X → D(Y ) and X ×R → D(S) with three things: A choice
of set A, a function X → D(A×Y ) and a function A×R → D(S). Moreover a certain equivalence
relation needs to be imposed, and this is precisely given by the following coend [27] (one of the
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universal constructions of category theory):∫ A

(X → D(A × Y )) × (A × R → D(S)).

The proofs in this paper make heavy use of a diagrammatic language for existential lenses developed
in [36].

The second question is what should be considered a context of a Bayesian open game, i.e. a
replacement for the pair X × (Y → R). There is an existing characterisation of these contexts
in terms of deterministic lenses, namely as a ‘state’ lens (1, 1) → (X, S) and a ‘costate’ lens
(Y, R) → (1, 1). However this turns out to be a red herring: in Section 3.4 we show that generalising
from this causes the category of open games to fail to be monoidal in an unexpected way.

It turns out that the appropriate notion of context consists of three things: a set Θ of un-
observable states, a joint distribution on Θ × X (i.e. an element of D(Θ × X)) and a function
Θ × Y → D(R). Again we need to impose a certain equivalence relation, which again turns out
to be precisely a coend. Remarkably this is equivalent to a state in the category of double lenses,
i.e. lenses over the category of lenses. This brings an unexpected theoretical unity to Bayesian
open games, and means that the graphical language of [36] can be used throughout.

2 Concrete open games
We begin with a self-contained introduction to deterministic open games. In essence, we will
introduce the necessary machinery so that we can represent simple classical games with diagrams
as depicted below.

A

X

B
Y ck

This diagram displays an interaction between two agents, A and B. Player A moves first;
player B observes the choice by A and then moves afterwards. Both moves are consumed by an
environment ck which provides the payoff for both players.

To get to a full understanding of this diagram (and deterministic open games), in this section
we introduce several building blocks. Roughly, they can be classified in two kinds.

First, we need a way to architecture the information flow. As we will see in Sections 2.1 to
2.3, lenses play a crucial role by providing us with a categorical structure on which to build open
games.

Second, we need to flesh out the internals of the boxes in the diagram. Specifically, how
does strategic reasoning actually take place? Central here is the notion of an agent who makes
observations and chooses a course of action. As we will see in Section 2.5 and Section 2.6, the key
insight is to model an agent as choosing against a context which comprises how the environment
reacts to an agent’s choices. The context is also the glue that keeps the outside information flow
and the internal reasoning together.

Once we have introduced all the relevant parts, we will come back to the example above.
Note: The exposition in this section slightly deviates from previous work. We believe this eases

the way for the generalisations to come in Section 3 and thereafter.

2.1 Lenses
The history of mathematical lenses is complicated, involving many independent discoveries and
fresh starts across numerous areas of mathematics and computer science [2, 5, 9, 26, 32, 34]. An
in-depth description of this history can be found at [25]. We use lenses to describe the flow of
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information through a game. A lens for a given game describes which players have access to what
information when making a strategic decision, and also how information about players’ strategic
decisions is ultimately fed into the outcome function for the game. For example, it may specify
an order of play, or whether two players are playing in parallel, or even whether some players are
privy to certain information in the environment that other players are not.

In general, lenses can be thought of as processes that perform some computation and then
propagate some resulting feedback from the environment backwards through a system of which they
are a part. In particular, this means that lenses have both covariant and contravariant components.
The covariant component carries out the initial computation and the contravariant component
propagates the resulting feedback back through the system. Crucially, lenses are also compositional
in the sense that they admit both sequential and parallel composition and, consequently, form a
symmetric monoidal category.

The lenses used in this paper are direct descendants of the lenses of database theory. Given
some data x of type X we may want to view some part of it y of type Y . This is encapsulated by
a view function v : X → Y . From this ‘close-up’ view of the database we may want to edit the
database by updating y. Given an update of the view y we then need to know how this update
propagates to an update of the original data x. That is, given initial data x and an updated view
y′ : Y , we should specify some updated x′ : X given by some update function u : X × Y → X. The
pair (v, u) is a lens with type X → Y . The connection to our previous abstract definition of lenses
is as follows:

• The covariant computation associated with the lens is the view function v : X → Y ,

• the resulting feedback from the environment is the update made to the subdatabase returned
by the view function, and

• this feedback is propagated back to the whole database via the update function u : X × Y →
X.

Abstracting away from databases, there is no reason to demand that the feedback generated by the
environment will have the same type as the output of the lens computation. Similarly, we may be
interested in cases where the update function is not-so-literally an ‘update’ function, but merely a
function that propagates some kind of feedback back through the system. As such, the lenses we
will be using will have types of the form (X, S) → (Y, R) where the covariant component of the
lens is of type X → Y and the contravariant component is of type X × R → S.

In game theory, we can regard players as ‘lenses that care about the feedback they receive from
the environment’. In a game with sequential play, players make some play (computation), receive
some utility (feedback) from the outcome function, and then pass some feedback to earlier players in
the game (their outcome function given the moves that the later players chose). Moreover, given
that lenses admit parallel composition as well as sequential composition, we obtain a nuanced
notion of information flow in a game.

In the next subsections we describe a symmetric monoidal category of concrete lenses. ‘Con-
crete’ here refers to the fact that the view and update functions are functions in Set. We then
come to the core of this section, the definition of a concrete open game.

2.2 The category of concrete lenses
Definition 2.2.1 (Concrete lens). Let X, S, Y and R be sets. A concrete lens l : (X, S) → (Y, R)
is a pair of functions (lv : X → Y, lu : X × R → S).

As a trivial first example, there is an obvious mapping that takes a morphism of Set × Setop

and returns a concrete lens.

Example 2.2.2. Let f : X → Y and g : R → S. Define a concrete lens ⟨f, g⟩ : (X, S) → (Y, R) by

⟨f, g⟩v = f

⟨f, g⟩u(x, r) = g(r).
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Definition 2.2.3 (Sequential composition of concrete lenses). Let l : (X, S) → (Y, R) and t :
(Y, R) → (Z, Q) be concrete lenses. The sequential composite t ◦ l : (X, S) → (Z, Q) is given by(
(t ◦ l)v : X → Z, (t ◦ l)u : X × Q → S

)
where

(t ◦ l)v = tv ◦ lv

and (t ◦ l)u is given by

X × Q X × X × Q X × Y × Q X × R S.
∆X × idX idX × lv × idQ idX × tu lu

As a string diagram (t ◦ l)u is given by

tu

lu

R

Slv
Y

X

Q

Lemma 2.2.4 (Sequential composition of concrete lenses is associative). Suppose we have concrete
lenses

(X, S) (Y, R) (Z, Q) (W, T )l m n

Then n ◦ (m ◦ l) = (n ◦ m) ◦ l.

Theorem 2.2.5 (Concrete lenses form a category). There is a category CL with pairs of sets as
objects and concrete lenses as morphisms.

2.3 The monoidal structure of concrete lenses
Definition 2.3.1 (Tensor composition of concrete lenses). Let l1 : (X1, S1) → (Y1, R1) and l2 :
(X2, S2) → (Y2, R2) be concrete lenses. The tensor composition l1 ⊗ l2 : (X1 × X2, S1 × S2) →
(Y1 × Y2, R1 × R2) is given by

(
(l1 ⊗ l2)v, (l1 ⊗ l2)u

)
where

(l1 ⊗ l2)v = l1v
× l2v

and (l1 ⊗ l2)u is given by

X1 × X2 × R1 × R2 X1 × R1 × X2 × R2 S1 × S2.
∼= l1u × l2u

In a diagram, (l1 ⊗ l2)u is

l1u

l2u

S1

S2

X1

X2

R1

R2

Lemma 2.3.2. ⊗ is a functor.

Theorem 2.3.3. There is a symmetric monoidal category CL where the objects are pairs of sets
and the morphisms are concrete lenses. Sequential composition and the monoidal tensor are as in
the above definitions. The monoidal unit is I = ({∗}, {∗}).
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The following observations about states and effects in CL will be useful in the remainder of
this section.

Lemma 2.3.4. CL
(
I, (X, S)

) ∼= X.

Proof. This is easily seen, as a state l ∈ CL
(
I, (X, S)

)
is given by a pair(

s : {⋆} → X, e : {⋆} × S → {⋆}
)
.

Lemma 2.3.5. CL
(
(Y, R), I

) ∼= (Y → R)

Proof. An effect l ∈ CL
(
(Y, R), I

)
is given by a pair(

v : Y → {⋆}, u : Y × {⋆} → R
)
.

2.4 Concrete open games
Now we have the necessary prerequisites in place to introduce the notion of a concrete open game.
A concrete open game consists of a set of strategy profiles; a family of concrete lenses indexed by
the set of strategy profiles; and a best-response function.

Definition 2.4.1 (Concrete open game). Let X, S, Y, and R be sets. A concrete open game
G : (X, S) → (Y, R) is given by

1. A set of strategy profiles Σ;

2. A play function P : Σ → CL
(
(X, S), (Y, R)

)
; and

3. A best-response function B : X × (Y → R) → Rel(Σ).

Here Rel(Σ) = P(Σ × Σ) is the set of binary relations on Σ. In this paper we will usually
specify a relation in terms of its forward images Σ → P(Σ).

The type X is the type of observations made by the game; the type Y is the type of actions that
can be chosen; the type R is the type of outcomes; and the type S is the type of co-outcomes. Of the
four types associated with a concrete open game, the type S is the most mysterious. Succinctly, its
purpose is to relay information about outcomes to games acting earlier. In a sequential composite
H ◦ G of open games (we will define sequential composition of concrete open games shortly), the
co-outcome type of H is also the outcome type of G. We think of H as receiving some outcome
which is then acted upon by the contravariant component of a concrete lens given by H’s play
function before being passed back to G as G’s outcome.

The best-response function of an open game is an abstraction from the utility functions of
classical game theory. Recall that a Nash equilibrium for a normal-form game is a strategy profile
in which no player has incentive to unilaterally deviate. We can instead think of a relation on the
set of strategy profiles for a normal-form game where strategy profiles σ and τ are related if τ is the
result of players unilaterally deviating from σ to their most profitable unilateral deviation. Nash
equilibria are then the fixed points of this relation. For convenience, in the definition of a concrete
open game we work directly with a best-response relation rather than preference relations.

The play function takes a strategy as argument and returns a concrete lens that describes an
open play of the game G (‘open’ here means ‘lacking a particular observation and outcome function’
and is explained in the next paragraph). To justify this interpretation, recall that a concrete lens
l : (X, S) → (Y, R) consists of v : X → Y and u : X × R → S. The view function v describes how
a game decides on an action given an observation (similar to how strategies for sequential games
work). The update function u describes precisely how games relay information about outcomes to
other games acting earlier.

As the name suggests, concrete open games are open to their environment. The appropriate
notion of a context for a concrete open game is given in the following definition. A concrete open
game together with a context can be thought of as a full description of a game.
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Definition 2.4.2. Let G : (X, S) → (Y, R). A history for G is an element x of X, an outcome
function for G is a function k : Y → R, and a context for G is a pair (x, k) : X × (Y → R).

We are now in a position to justify the type of the best-response function. The best response
functions takes a context as argument, and a context is precisely the information required for
resolving the ‘openness’ of a concrete open game. Given a context, the best response function then
returns the set of best deviations from a strategy profile σ.

We represent a concrete open game G : (X, S) → (Y, R) using the diagram

G
Y

RS

X

This diagrammatic notation emphasises the point that information flows both covariantly
through G from observations to actions, and contravariantly through G from outcomes to co-
outcomes. These diagrams constitute a bona fide diagrammatic calculus for the category of concrete
open games defined in the remainder, as detailed in [21].

Notation 2.4.3. String diagrams in the category of open games will always be drawn with ar-
rowheads on wires, whilst string diagrams in the ambient category will always be drawn without
arrowheads.

Atomic concrete open games are an important class of concrete open games, and are the basic
components out of which more complex games are constructed. Whilst concrete open games can,
in general, represent aggregates of agents responding to each other (in a way that will be made
precise in 2.7 and 2.8), atomic concrete open games describe games in which there is no strategic
interaction. Examples are simple computations in which no decisions are made whatsoever, and
single agents that are sensitive only to a given context.

Definition 2.4.4 (Atomic concrete open game). A concrete open game a : (X, S) → (Y, R) is
atomic if

1. Σa ⊆ CL
(
(X, S), (Y, R)

)
;

2. For all l ∈ Σa, PG(l) = l; and

3. For all contexts c : X × (Y → R), Ba(c) : Σa → P(Σa) is constant.

We sometimes refer to an atomic concrete open game simply as an atom.

Note that an atom a : (X, S) → (Y, R) is fully determined by a subset Σa ⊆ CL
(
(X, S), (Y, R)

)
and a selection function1 ε : X × (Y → R) → P(Σa).

Given f : X → Y and g : R → S, as in CL, the pair (f, g) ∈ Set × Setop can be represented
as a concrete open game. We refer to such games as computations, as no strategic choice is being
made.

Example 2.4.5 (Computation). Let f : X → Y and g : R → S. The atom ⟨f, g⟩ : (X, S) → (Y, R)
is given by

1. Σ = {⟨f, g⟩}; and

2. For all c : X × (Y → R), ε(c) = {⟨f, g⟩}.

Similar to CL, the following computations will turn out to be the underlying structural maps
for the symmetric monoidal category of concrete open games.

1Selection functions have been studied in a game-theoretic context in other form. See, e.g. [6] or [24].
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Definition 2.4.6 (Structural computations). Define identity, associator, swaps, and left/right
unitor computations to be the atomic concrete open games given by

id(X,S) = ⟨idX , idS⟩
αX⊗(Y ⊗Z),A⊗(B⊗C) = ⟨αX,Y,Z , α−1

A,B,C⟩

s(X,A),(Y,B) = ⟨s(X,Y ), s−1
(A,B)⟩

ρ(X,Y ) = ⟨ρX , ρ−1
Y ⟩

λ(X,Y ) = ⟨λX , λ−1
Y ⟩

where the Set functions on the right-hand side of the equalities are the obvious Set isomorphisms.

Counit games are an interesting class of atoms that reverse the direction of information flow in
a concrete open game.

Definition 2.4.7 (Counit). Let f : X → S. Define an atomic concrete open game cf : (X, S) →
({⋆}, {⋆}) by

1. Σcf
= {⟨!, f⟩}; and

2. For all c : X × ({⋆} → {⋆}), ε(c) = Σcf
.

We are being slightly relaxed with notation here as the update function for cf has type X ×
{⋆} → S while f has type X → S. We represent cf as follows.

f
X

S

2.5 Agents
So far we have only seen open games for which the set of strategies is a singleton, describing games
with no strategic decisions. Our first examples of a concrete open game with non-trivial strategy
set are agents. These can be used to represent the utility maximising agents of traditional game
theory or, more generally, to represent players trying to influence the outcome of a game.

Definition 2.5.1 (Agent). An agent A : (X, {⋆}) → (Y, R) is an atom whose set of strategies is
Σ = CL

(
(X, {⋆}), (Y, R)

)
.

Recall that a concrete lens l : CL
(
(X, {⋆}), (Y, R)

)
is a pair (v : X → Y, u : X × R → {⋆}) and,

hence, is uniquely determined by a function of type X → Y . Consequently, a strategy for an agent
specifies how an agent map chooses an action of type Y given an observation of type X. Given
a context c : X × (Y → R), BA(c) picks out the set of strategies A considers acceptable in the
context c. Agents are represented diagrammatically by

A
Y

R

X

We can specialise the definition above to model the utility-maximising agents of traditional
game theory.

Example 2.5.2 (Utility maximising agent). The utility maximising agent A : (X, {⋆}) → (Y,R)
is given by

ε(x, k) =
{

σ : X → Y
∣∣ σ(x) ∈ arg max(k)

}
.

There are other decision criteria one could use. For instance, MinMax and regret minimisation
would be candidates. We could also consider models from behavioural game theory such as prospect
theory. The only (very weak) requirement is that the decision criterion can be described by a
selection function [23, 24]. In this paper we focus on utility-maximising agents as a simplification
and in order to match traditional game theory.
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2.6 Best-response with concrete lenses
Recall from 2.3.4 and 2.3.5 that CL

(
I, (X, S)

) ∼= X and that CL
(
I, (Y, R)

) ∼= Y → R. Using
these facts we can rephrase the type of best response for a concrete open game G : (X, S) → (Y, R)
as

BG : CL
(
I, (X, S)

)
× CL

(
(Y, R), I

)
→ Rel(ΣG).

This formulation allows for a concise and natural definition of sequential composition for con-
crete open games where it would otherwise seem ad hoc. To make matters clear, we write x when
talking about elements of X and x⋆ when talking about concrete lenses with type CL

(
I, (X, S)

)
.

Similarly, we write k : Y → R when talking about functions in Set and we write k⋆ when talking
about effects in CL

(
(Y, R), I

)
.

2.7 Sequential composition of concrete open games
In this section we specify how to define the sequential composite H ◦ G : (X, S) → (Z, Q) of two
concrete open games G : (X, S) → (Y, R) and H : (Y, R) → (Z, Q).

We imagine that this composition really is sequential in a straightforward way. G is ‘played
out’ according to some strategy σ ∈ ΣG and then H is ‘played out’ according to some τ ∈ ΣH. A
choice of (σ, τ) ∈ ΣG × ΣH therefore determines an open play of G and H played in sequence, and
so we take ΣG × ΣH to be the set of strategy profiles of H ◦ G.

The play function of the sequential composite is defined straightforwardly using the sequential
composition of concrete lenses defined in 2.2.3.

Defining best response for a sequential composite is a bit more delicate and, for explanatory
purposes, we make use of the informal notion of a local context for a subgame. Given a context
c = (x : X, k : Z → Q) and a strategy (σ, τ) for H ◦ G, the best-response relation of H ◦ G is
specified by calling the best-response function of G with a modified context corresponding to how
c ‘appears’ to G when H plays according to τ and, similarly, calling the best-response function of
H with a modified context corresponding to how c ‘appears’ to H when G plays according to σ. In
practice we define these ‘local contexts’ in the obvious way that type checks, but this is because
the work has already been done in carefully choosing the correct definitions.

Definition 2.7.1 (Sequential composition for concrete open games). Let G = (ΣG , PG , BG) :
(X, S) → (Y, R) and H = (ΣH, PH, BH) : (Y, R) → (Z, Q) be concrete open games. Define

1. ΣH◦G = ΣG × ΣH,

2. PH◦G(σ, τ) = PH(τ) ◦ PG(σ) (where ◦ composition is in CL), and

3. BH◦G(x⋆, k⋆)(σ, τ) = BG(x⋆, k⋆ ◦ PH(τ))σ × BH(PG(σ) ◦ x⋆, k⋆)(τ).

We represent H ◦ G with the diagram

G
X

S

H

Y

R

Z

Q

2.8 Tensor composition for concrete open games
The tensor composition of open games represents simultaneous play. Given concrete open games
G : (X1, S1) → (Y1, R1) and H : (X2, S2) → (Y2, R2), the strategy set for G ⊗ H is ΣG × ΣH; we
make use of the tensor composition in CL in defining the play function; and the best-response
function is given by modifying the context c to give local contexts for G and H.

Definition 2.8.1 (Local contexts for tensor composition). Define the left local tensor context
operator

L :
(

X ′ × (X ′ → Y ′) × (Y × Y ′ → R × R′)
)

→ (Y → R)
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by
L(x′, p′, k)(y) = π1 ◦ k(y, p′(x′)).

As a diagram, L(x′, p′, l) is the function

x′ X′
p′ Y ′ k

R′

Y
R

Similarly, define the right local tensor context operator

R :
(

X × (X → Y ) × (Y × Y ′ → R × R′)
)

→ (Y ′ → R′)

by
R(x, p, k)(y′) = π2 ◦ k(p(x), y).

As a diagram,

x
X p Y

k

R

R′
Y ′

Suppose we have concrete open games G : (X, S) → (Y, R) and H : (X ′, S′) → (Y ′, R′) and
we wish to combine them to create some game G ⊗ H : (X × X ′, S × S′) → (Y × Y ′, R × R′).
Consider the left context operator L acting on some triple (x′, p′, k). If k is an outcome function
for the game G ⊗ H and H observes x′ and plays according to the function p′, then L(x′, p′, k) is
the ‘apparent’ outcome function for G. Similarly, R(x, p, k) is the ‘apparent’ outcome function for
H when G observes x and plays according to p. With this in mind, we define tensor composition
for concrete open games as follows.

Definition 2.8.2 (Tensor composition of concrete open games). Let G : (X, S) → (Y, R) and
H : (X ′, S′) → (Y ′, R′) be concrete open games. Define

G ⊗ H : (X × X ′, S × S′) → (Y × Y ′, R × R′)

by

1. ΣG⊗H = ΣG × ΣH,

2. PG⊗H(σ, τ) = PG(σ) ⊗ PH(τ) (in CL),

3. BG⊗H :
(

(X × X ′) × (Y × Y ′ → R × R′)
)

→ Rel(ΣG⊗H) is given by

BG⊗H
(
(x, x′)⋆, k⋆

)
(σ, τ) = BG

(
x⋆, L(x′, (PH(τ))v, k)⋆

)
(σ)

× BH
(
x′⋆, R(x, (PG(σ))v, k)⋆

)
(τ)

G ⊗ H is represented by the diagram

G
X

S

Y

R

H
X′

S′

Y ′

R′
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2.9 Equivalence of open games
One subtlety remains before we can define the category of concrete open games. We aim to define
a category with pairs of sets as objects and morphisms given by concrete open games. If carried
out näıvely, this runs into the problem that strategy sets which should be identical are merely
isomorphic. For instance, the strategy set of K ◦ (H ◦ G) is (ΣG × ΣH) × ΣK whilst the strategy set
of (K ◦ H) ◦ G is ΣG × (ΣH × ΣK). In order for concrete open games to form a category, we must
first take an appropriate quotient.

There are several different reasonable choices of quotient. Since this is an orthogonal consider-
ation to this paper’s topic, we choose the most straightforward, which is to identify open games
that have a compatible isomorphism between their sets of strategies. Other choices that can be
made are bisimulations [3] and surjections [8]. Alternatively, instead of taking a quotient, open
games can be considered as the 1-cells of a bicategory [22].

Definition 2.9.1. Let G, H : (X, S) → (Y, R) be concrete open games. An isomorphism α : G → H
is given by a bijection α : ΣG → ΣH such that

1. PG(σ) = PH(α(σ)) for all σ ∈ ΣG

2. For all σ, σ′ ∈ ΣG and c ∈ X × (Y → R), (σ, σ′) ∈ BG(c) iff (α(σ), α(σ′)) ∈ BH(c)

Definition 2.9.2. Let G, H : (X, S) → (Y, R) be concrete open games. G and H are equivalent,
written G ∼ H, if there exists an isomorphism α : G → H. We write [G] for the equivalence class
of G under this relation. We also say that the isomorphism α witnesses the equivalence between G
and H and write G α∼ H.

The following results demonstrate that sequential and tensor composition of concrete open
respects equivalence of concrete open games.

Lemma 2.9.3. Let G, G′ : (X, S) → (Y, R) and H, H′ : (Y, R) → (Z, Q) be concrete open games.
If G ∼ G′ and H ∼ H′, then H ◦ G ∼ H′ ◦ G′.

Proof. Suppose G α∼ H and G′ β∼ H′. Then α × β : ΣG × ΣG → ΣG′ × ΣH′ given by

(α × β)(σ, τ) = (α(σ), β(τ))

is such that H ◦ G α×β∼ H′ ◦ G′.

Lemma 2.9.4. Let G, H : (X, S) → (Y, R) and G′, H′ : (X ′, S′) → (Y ′, R′) be concrete open
games. If G ∼ H and G′ ∼ H′, then G ⊗ G′ ∼ H ⊗ H′.

Proof. If G α∼ H and G′ β∼ H′, then G ⊗ G′ α×β∼ H ⊗ H′ as in the previous lemma.

2.10 The category of concrete open games
We are now finally in a position to show that concrete open games form a symmetric monoidal
category.

Notation 2.10.1. In string diagrams we refer to a play function applied to a strategy simply
by the strategy. For example, σ may refer to PG(σ). In practice this does not lead to ambiguity
because proofs and definitions proceed by assigning fixed strategies to particular open games. This
notational convention allows for less cluttered string diagrams.

Lemma 2.10.2. Sequential composition of concrete open games is associative up to equivalence.

The identity morphism (X, S) → (X, S) is given by the computation ⟨idX , idS⟩.

Lemma 2.10.3. Let G : (X, S) → (Y, R). Then [G] = [G ◦ ⟨idX , idS⟩] = [⟨idY , idR⟩ ◦ G].

Corollary 2.10.4. There is a category ConGame with pairs of sets as object and equivalence
classes of concrete open games as morphisms.
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We now move on to proving that ConGame is symmetric monoidal.
Lemma 2.10.5. ⊗ : ConGame × ConGame → ConGame is a functor.
Lemma 2.10.6. The associator in ConGame is natural.

We include the proof of this lemma specifically because it will be important later.

Proof. Let Gi : (Xi, Si) → (Yi, Ri) be open games where i ∈ {1, 2, 3}. We need to show that
α ◦ (G1 ⊗ (G2 ⊗ G3)) ∼ ((G1 ⊗ G2) ⊗ G3) ◦ α. Define β : (ΣG1 × (ΣG2 × ΣG3)) × {⋆} → {⋆} × ((ΣG1 ×
ΣG2) × ΣG3) by β

(
(σ, (τ, µ)), ⋆

)
=
(
⋆, ((σ, τ), µ)

)
.

As CL is symmetric monoidal, we have that

α ◦ PG1⊗(G2⊗G3)(σ, (τ, µ)) = P(G1⊗G2)⊗G2((σ, τ), µ) ◦ α.

Let xi ∈ Xi and k : (Y1 × Y2 × Y3) → (R1 × R2 × R3). We will show that the local contexts for
G1, G2, and G3 are the same in both G1 ⊗ (G2 ⊗ G2) and (G1 ⊗ G2) ⊗ G3. First we consider G1. Let
k′ := L(x3, PG3µ, k). Then,

kG1 := L
(
(x2, x3), PG2⊗G3(τ, µ), k

)

=
(x2, x3) (τ ⊗ µ)v

X2

X3

Y2 k

Y3

Y1

R1

=
x2

x3

X2 τv

X3
µv

Y2
k

Y3

Y1

R1

=
x2

X2 τv
Y2

k′
R1Y1

= L
(

x2, PG2(τ), L
(
x3, PG3µ, k

))
Similar arguments hold for G2 and G3, showing that

kG2 := R
(

x1, PG1(σ), L
(
x3, PG3(µ), k

))
= L

(
x3, PG3(µ), R

(
x1, PG1(σ), k

))
and

kG3 := R
(

(x1, x2), PG1⊗G2(σ, τ), k
)

= R
(

x2, PG2(τ), R
(
x1, PG1(σ), k

))
.

Then (
(⋆, (σ, (τ, µ))), (⋆, (σ′, (τ ′, µ′)))

)
∈ Bα◦(G1⊗(G2⊗G3))

(
(x1, (x2, x3)), k

)
⇐⇒ (σ, σ′) ∈ BG1(x1, kG1) and (τ, τ ′) ∈ BG2(x2, kG2) and (µ, µ′) ∈ BG3(x3, kG3)
⇐⇒

(
(((σ, τ), µ), ⋆), (((σ′, τ ′), µ′), ⋆)

)
∈ B((G1⊗G2)⊗G3)◦α

(
((x1, x2), x3), k

)
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The above lemma relies on the fact that the monoidal tensor in Set is cartesian. In particular
we needed that bipartite states s : I → S1 ⊗ S2 in Set (i.e. elements of S1 × S2) correspond to
pairs of states (s1 : I → S1, s2 : I → S2). In an arbitrary monoidal category, it need not be the
case that for all states s : I → S1 ⊗ S2 there exist states s1 : I → S1 and s2 : I → S2 such that

s
S1

S2

=

s1 S1

s2 S2

This poses a significant barrier to generalising concrete open games to monoidal categories where
the monoidal tensor is not cartesian, and Section 3 addresses this problem.

Lemma 2.10.7. The structural computations λ, ρ, and s are natural in ConGame.

Theorem 2.10.8. ConGame is symmetric monoidal.

2.11 Encoding functions as games
Recall that, given functions f : X → Y and g : R → S, there is a computation of concrete open
games ⟨f, g⟩ : (X, S) → (Y, R). In fact, this operation is functorial.

Lemma 2.11.1 ([20]). Define F : Set × Setop → ConGame by F (X, S) = (X, S) and F (f :
X → Y, g : R → S) = ⟨f, g⟩. Then F is a faithful monoidal functor.

We also incorporate computations directly into the diagrammatic calculus for concrete open
games, representing the computation ⟨f, g⟩ : (X, S) → (Y, R) by

f

g

YX

S R

Two particularly useful examples of this notation are the covariant and contravariant copying
computations ⟨∆X , id1⟩ : (X, 1) → (X × X, 1) and ⟨id1, ∆R⟩ : (1, R × R) → (1, R) which are
represented by

X

X

X

and

R

R

R

respectively.

2.12 Game theory with concrete open games
In this section we give some examples of games modelled using concrete open games. We will
be light on details, aiming to simply demonstrate some of the expressive power of concrete open
games. We direct the reader to [20] for more details.

2.12.1 Bimatrix games

Bimatrix games are simply two-player normal-form games, the most well-known example of which
is likely the prisoner’s dilemma. We assume the set of actions available to each player is finite for
simplicity.

Definition 2.12.2. A bimatrix game consists of
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1. Finite set of actions A and B; and

2. An outcome function k : A × B → R2.

A bimatrix game G = (A, B, k) is represented by the concrete open game

A

B

ck

A

B

R

R

where A and B are utility maximising agents and ck is the counit game associated with k. In
diagrammatic form, the structure of the game is made clear. Players A and B make independent
choices from A and B respectively which are then used to generate two real numbers as outcomes.
Bimatrix games may not have a Nash equilibrium in pure strategies, but in cases that do have
Nash equilibria, they appear as fixed points of the best-response function B : A × B → P(A × B)
of the above concrete open game, i.e. strategy profiles (a, b) satisfying (a, b) ∈ B(a, b).

2.12.3 Two-player sequential game

A two-player sequential game is defined by the same data as a bimatrix game (sets A and B and a
function k : A × B → R2), but we allow the second player to observe the first player’s move before
making a choice, so strategies for the second player are functions A → B. This is represented by
the concrete open game

A

X

B
Y ck

where A and B are utility maximising agents and ck is the counit game associated with k.
Crucially, the fixed points of the concrete open game are not subgame perfect Nash equilibria,

but rather plain old Nash equilibria. It is also possible to define a concrete open game that captures
subgame perfect equilibria, but this requires an additional operator defined in [14].

2.12.4 Normal-form games

Let Γ =
(
N, (Si)N

i=1, (ui)N
i=1
)

be a normal-form game for N players. Si denotes the set of strategies
available to player i. The function ui maps a strategy tuple for all players,

∏N
i=1 Si, to player i’s

payoff, in R. Define k :
∏N

i=1 Si → RN by s = (s1, · · · , sN ) 7→ (u1(s), · · · , uN (s)). We can model
this normal-form game using the concrete open game

ck ◦
( N⊗

i=1
Ai

)
where Ai : I → (Si,R) is the utility maximising agent. The fixed points of this game’s best-response
relation are then the pure-strategy Nash equilibria of the normal-form game.
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3 General open games
The notion of open game we introduced in the section before can emulate some standard games
such as the prisoner’s dilemma. On the other hand, classical game theory has a much wider reach.
It can model situations with which a concrete open game cannot deal. This involves stochastic
environments, probabilistic choices by players, and incomplete information.

In this section, we will significantly generalise the notion of an open game, to make room for
these three extensions (and beyond). The first order of business, to make progress in this direction,
is to generalise concrete lenses.

3.1 Generalising concrete lenses
In the proof of Lemma 2.2.4 we made use of the fact that every Set function is a comonoid homo-
morphism for the copy/delete comonoid. Recall that a morphism is a comonoid homomorphism if
it can be ‘moved through’ the comonoid structure.

f =
f

f

f =

If Set is replaced with some arbitrary symmetric monoidal category C and the copy/delete
comonoid is replaced with some arbitrary comonoid in C, sequential composition of lenses, as
defined in Definition 2.2.3, may not be associative. This presents a substantive problem — there
exist categories relevant to game theory in which sequential composition of concrete lenses is not
associative. Of particular interest is the Kleisli category of the finitary distribution monad, Kl(D),
which we will need in order to model Bayesian games (discussed in Section 4). Kl(D) inherits
a copy/delete comonoid from Set, but its comonoid homomorphisms are the deterministic maps
(i.e. precisely the non-probabilistic maps).

In the next section we introduce coends, a piece of categorical machinery that allows for an
elegant generalisation of concrete lenses to arbitrary symmetric monoidal categories. We call these
generalised lenses coend lenses or, simply, lenses. We will first introduce the technical notion before
magicking it away with a diagrammatic calculus that represents what is ‘really’ going on.

3.2 Co-wedges and Coends
Co-wedges are a variant of co-cones of natural transformations applying to functors that act both
covariantly and contravariantly on an argument. In Section 2.1 we noted that lenses have both
covariant and contravariant components. We will see that this behaviour can be described by
coends, which are initial co-wedges. For extra motivation, discussion, and examples, we refer the
reader to [27].

Definition 3.2.1 (Co-wedge). Let F : Cop × C → D be a functor. A co-wedge c : F → α is an
object α : D together with maps

{
ca : F (a, a) → α

∣∣ a : C
}

such that, for any morphism f : a′ → a,
the diagram

α F (a, a)

F (a′, a′) F (a′, a)

ca

ca′

F (a′, f)

F (f, a)

commutes.
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Definition 3.2.2 (Coend). A coend is a couniversal co-wedge. Diagrammatically, the coend of a
functor F : Cop × C → D is a co-wedge

{
ca : F (a, a) → coend(F )

∣∣ a : C
}

such that for any other
co-wedge

{
da : F (a, a) → α

∣∣ a : C
}

and morphism f : a′ → a the diagram

coend(F ) F (a, a)

F (a′, a′) F (a′, a)

α

F (f, a)

F (a′, f)

ca

ca′

da

da′

h

commutes for a unique morphism h : coend(F ) → α.

We adopt the integral notation for coends, writing∫ a:C
F (a, a)

for coend(F ). We will make use of the fact that coends can be characterised by the following
coequaliser.

Lemma 3.2.3. Let F : Cop × C → D. If D is cocomplete and C is small, the coend
∫ a:C

F (a, a) is
given by the coequaliser of the pair of arrows

∐
a,a′:C

f :a′→a

F (a, a′)
∐
a:C

F (a, a),
F1

F2

where the f : a′ → a components of F1 and F2 are F (f, a′) and F (a, f) respectively.

When C is not small (as it usually is not), we need to show directly that coends exist.

3.3 Coend lenses
Much of the material in this section is worked out in much greater detail in [36], which serves as a
good standard reference for coend lenses. We first give an abstract definition of coend lenses, then
provide some justification.

Definition 3.3.1 (Coend lens). Let X, S, Y, and R be objects in a symmetric monoidal category
C. A coend lens l : (X, S) → (Y, R) is an element of the set∫ A:C

C(X, A ⊗ Y ) × C(A ⊗ R, S).

We think of the coend in the above definition as acting as a kind of existential quantifier over
the type variable A, followed by a quotient (to be described) over the resulting structure. That
is, a coend lens l : (X, S) → (Y, R) consists of an equivalence relation over triples comprised of a
choice of type A, a morphism v : X → A ⊗ Y , and another morphism u : A ⊗ R → S.

By Lemma 3.2.3 we can characterise coend lenses (X, S) → (Y, R) as the elements of a particular
coequaliser. Moreover, coequalisers in Set are given by quotients. Unpacking the coequaliser
explicitly, coend lenses (X, S) → (Y, R) are given by the set of triples of the form described
above, quotiented by the equivalence relation generated by (i.e. the smallest equivalence relation
containing) (

(f ⊗ idY ) ◦ v, u
)

∼
(
v, u ◦ (f ⊗ idR)

)
for all A, B : C and f : A → B. In diagrammatic form, the pair
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v
f B

Y

A

X

,
u S

B

R

is related to the pair

vX

A

Y ,

f
u S

A

R

B

We refer to the types A and B as bound types (B is bound in the first diagram, A in the second).
In Section 4, we will see that this bound type keeps track of correlations between random variables
in the Kleisli category of the distribution monad.

In vague terms, two pairs of morphisms are related if one can get from one to the other by
‘sliding’ a morphism off the bound type of one morphism on to the bound type of the other. Given
a pair of morphisms (v : X → A ⊗ Y, u : A ⊗ R → S), we write [v, u] for their equivalence class.
When we need to talk explicitly about the bound type of [v, u] we write [A, v, u] to specify that
the pair (v, u) has bound type A. We also adopt the convention that l = [Al, lv, lu] where, as with
concrete lenses, we say that lv is the view morphism and lu is the update morphism. We follow [36],
taking the hint from the diagrammatic representation of the equivalence relation by representing
a coend lens [v, u] : (X, S) → (Y, R) as

v

Y

u

R

X S

We usually omit the bound type in diagrams for clarity. The equivalence relation is then simply

vX

Y

u

R

f

S ∼ vX

Y

u

R

f

S

The equivalence relation permits the cancelling of isomorphisms:

v

Y

u

R

X S ∼ vX

f f−1

u

Y R

S

Many proofs in this section proceed by allowing symmetric monoidal structure to interact with
coend structure as, for example, in the following diagram.

vX

Y

u

R

S ∼ vX u

Y R

S

The formal foundations of this class of diagrams are investigated in [37].

Example 3.3.2 (Identity lens). The identity lens id(X,S) : (X, S) → (X, S) is given by [I, idX :
X → X, idS : S → S]. Diagrammatically,

X X SS

Example 3.3.3. A pair of morphisms (f : X → Y, g : R → S) is encoded by the coend lens
[I, f, g] : (X, S) → (Y, R):

fX Y gR S
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Definition 3.3.4 (Sequential composition of coend lenses). Let [v, u] : (X, S) → (Y, R) and
[v′, u′] : (Y, R) → (Z, Q) be coend lenses. Define [v′, u′] ◦ [v, u] : (X, S) → (Z, Q) to be

vX

v′

Y Z

u′

Q

u

R

S

Explicitly,
[A′, v′, u′] ◦ [A, v, u] = [A ⊗ A′, (v′ ⊗ idA) ◦ v, u ◦ (idA ⊗ u′)].

Theorem 3.3.5 (Coend lenses form a category). Suppose C is a monoidal category such that, for
all objects X, S, Y, R ∈ C, ∫ A:C

C(X, A ⊗ Y ) × C(A ⊗ R, S)

exists. Then there is a category LensC whose objects are pairs of objects in C and where

LensC
(
(X, S), (Y, R)

)
=
∫ A:C

C(X, A ⊗ Y ) × C(A ⊗ R, S).

When C is small, the existence of sets of coend lenses of each type is guaranteed by the cocom-
pleteness of Set. When C is not small, and the lens types correspond to coends indexed by a large
category, we must verify that these sets exist by some other means (by, for example, giving a Set
isomorphism). Fortunately, this is not difficult for the categories of interest in this work.

Definition 3.3.6 (Tensor composition of coend lenses). Let [v, u] : (X, S) → (Y, R) and [v′, u′] :
(X ′, S′) → (Y ′, R′) be coend lenses. Define [v, u] ⊗ [v′, u′] : (X ⊗ X ′, S ⊗ S′) → (Y ⊗ Y ′, R ⊗ R′)
to be

vX

v′X′
Y ′

Y

u′

u

R′

R

S

S′

Explicitly, [A, v, u] ⊗ [A′, v′, u′] is given by[
(A ⊗ A′, idA ⊗ sY,A′ ⊗ idY ′) ◦ (v ⊗ v′), (u ⊗ u′) ◦ (idA ⊗ sA′,R ⊗ idR′)

]
.

Theorem 3.3.7 (LensC is symmetric monoidal). The category LensC is symmetric monoidal with
the tensor given in Definition 3.3.6, monoidal unit I = (IC , IC), and with structural morphisms
inherited from C given by

α(X,A),(Y,B),(Z,C) = [αX,Y,Z , α−1
A,B,C ]

λ(X,A) = [λX , λ−1
A ]

ρ(X,A) = [ρX , ρ−1
A ]

s(X,A),(Y,B) = [sX,Y , sB,A].

Lemma 3.3.8. LensSet is isomorphic to CL. (More generally, when ⊗ is cartesian, LensC is
isomorphic to an appropriately generalised definition of CLC.)
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3.4 Towards generalising open games
We could, at this point, attempt to define a (generalised) open game G : (X, S) → (Y, R) over a
symmetric monoidal category C as

1. A set Σ of strategies;

2. A play function P : Σ → LensC
(
(X, S), (Y, R)

)
; and

3. A best-response function B : C(I, X) × C(Y, R) → Rel(Σ).

Call such generalised open games interim open games (for they will not live long). Sequential
composition and tensor composition of interim open games could be defined much as we did for
concrete open games. The problems begin to arise when one attempts to prove that this definition
results in a symmetric monoidal category.

In proving that the associator was natural in CL, we used the fact that the monoidal tensor
in Set is cartesian. If the tensor of C is not cartesian, the local context of G in G ⊗ (H ⊗ K) is
different to the local context of G in (G ⊗ H) ⊗ K. Let

G : (X1, S1) → (Y1, R1)
H : (X2, S2) → (Y2, R2)
K : (X3, S3) → (Y3, R3)

be interim open games, p ∈ C(I, X1 ⊗ X2 ⊗ X3), k ∈ C(Y1 ⊗ Y2 ⊗ Y3, R1 ⊗ R2 ⊗ R3), and (σ, τ, µ) ∈
ΣG × ΣH × ΣK. The local context of G in G ⊗ (H ⊗ K) is given by

p
X2 τv

µv
X3

Y2
k

Y3

Y1

R1

whilst the local context of G in (G ⊗ H) ⊗ K is given by

p
X2 τv

p
X3 µv

Y2
k

Y3

Y1

R1

In general, these morphisms are not the same. In the case where C is the Kleisli category of
the distribution monad, the first morphism contains information about correlations between the
types X2 and X3 whilst the second morphism does not. Consequently, the distinction between
these two local contexts for G is substantive. Fortunately, coend lenses also provide a solution to
this problem.

The high-level approach for defining a category of generalised open games is to use as few
‘deleting’ maps as possible. We do this by ‘hiding’ information in the bound variable of a coend
lens whenever we would otherwise delete it. A consequence of this approach is that the correct
definition of a ‘context’ for generalised open games is quite abstract, but we will see that this
abstractness allows for more elegant proofs and, in any case, disappears when dealing with the
categories we are actually interested in.
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3.5 States, continuations, and contexts
In this section we define a generalised notion of context for open games. Observe that a state
[s, s′] ∈ LensC(I, (X, S)) has the form

s
X

s′

S

More verbosely, a state s ∈ LensC(I, (X, S)) is the equivalence class of a choice of type A : C
together with a state s : C(I, A⊗X) in C and an effect s′ : C(A⊗S, I) in C. A useful interpretation
of states in LensC is as a history/cohistory pair. (Cohistories are not yet well understood. They
make proofs easier, but vanish in categories which make game-theoretic sense.)

An effect [e, e′] ∈ LensC((Y, R), I) has the form

eY

I I

e′ R

Concerning effects, we have the following result.

Lemma 3.5.1. C(Y, R) ∼= LensC((Y, R), I)

Proof. The isomorphism i : C(Y, R) → LensC((Y, R), I) is given by

i(f : Y → R) = [R, f, idR] = [Y, idY , f ].

This result captures the idea that ‘effects in LensC are outcome functions in C’.
We can now define (generalised) contexts which consist of a coend over a state in LensC (a

history/cohistory pair) and an effect in LensC (an outcome function). Contexts are therefore
members of a double coend. This double coend turns out to be a state in the double lens category
LensLensC . From a purely technical standpoint, using double lenses allows for elegant proofs.
From a heuristic perspective, we will see that the extra bound variable the double lens affords us
enables us, in the case C = Kl(D), to store information about correlations between variables where
we would otherwise have to take marginals.

Definition 3.5.2 (Context functor). The context functor C : LensC × Lensop
C → Set is given by

C(Φ, Ψ) =
∫ Θ:LensC

LensC(I, Θ ⊗ Φ) × LensC(Θ ⊗ Ψ, I)

= LensLensC (I, (Φ, Ψ))

Elements of C(Φ, Ψ) are called contexts.

(We use the letters Φ, Ψ to refer to objects of LensC , which are pairs of objects of C.)
As a context [p, k] ∈ C(Φ, Ψ) is just a state in LensLensC , so it admits a graphical representation

as

p

Φ
k

Ψ
.

This is neat, and means many of the results in the rest of this section can be carried out graphically.
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3.6 General open games
We have now arrived at a level of generality where we can define generalised open games in a
way that is obviously analogous to concrete open games. Given Φ, Ψ ∈ LensC , an open game
consists of a set of strategy profiles, a family of lenses indexed by the set of strategy profiles, and
a best-response function which takes a context as input and returns a relation on strategy profiles.

Definition 3.6.1 (Open game). Let Φ, Ψ ∈ LensC . An open game G : Φ → Ψ consists of

1. A set of strategy profiles Σ;

2. A play function P : Σ → LensC(Φ, Ψ); and

3. A best-response function B : C(Φ, Ψ) → Rel(Σ).

The rationale here is much the same as it is with concrete open games. The play function takes
a strategy profile as input and returns a lens describing an open play of the game. Best response
takes a context as argument that provides the information necessary for the game to make informed
strategic decisions, and returns a relation on strategies.

As with concrete open games, we define a notion of atomic open game:

Definition 3.6.2. An atomic open game a : Φ → Ψ is an open game such that

1. Σa ⊆ LensC(Φ, Ψ);

2. For all l ∈ Σa, Pa(l) = l; and

3. For all contexts c ∈ C(Φ, Ψ), Ba(c) is constant.

Atomic open games are uniquely specified by a subset Σ ⊆ LensC(Φ, Ψ) and a selection function
B : C(Φ, Ψ) → P(Σ), and we will sometimes specify atomic open games via this data. We refer to
atomic open games simply as atoms.

Example 3.6.3. The identity atom idΦ : Φ → Φ is given by Σ = {idΦ}, B(c) = {idΦ} for all
c ∈ C(Φ, Φ).

Example 3.6.4 (Computation). Let f : C(X, Y ) and g : C(R, S) be morphisms in C. Define the
atom ⟨f, g⟩ : (X, S) → (Y, R) by

1. Σ⟨f,g⟩ = {[f, g]}; and

2. B⟨f,g⟩(c) = {[f, g]} for all c ∈ C
(
(X, S), (Y, R)

)
.

3.7 Composing open games
The heuristic for sequential composition of general open games is much the same as for concrete
open games in Subsection 2.7. The only difference is that we are now using coend lenses rather than
concrete lenses, and contexts also are slightly different. Best response of a sequential composite
H ◦ G is still defined by forming local contexts for G and H.

Definition 3.7.1 (Sequential composition of open games). Let G : Φ → Ψ and H : Ψ → Ξ be
open games. Define H ◦ G : Φ → Ξ by

1. ΣH◦G = ΣG × ΣH,

2. PH◦G(σ, τ) = PH(τ) ◦ PG(σ),

3. BH◦G([p, k])(σ, τ) = BG([p, k ◦ PH(τ)])(σ) × BH([PG(σ) ◦ p, k])(τ).

Given a context [p, k] ∈ C(Φ, Ξ) represented by the diagram

p

Φ
k

Ψ
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the local context for G given a strategy τ ∈ ΣH is given by

p

Φ τΨ
Ξ

k

and given a strategy σ ∈ ΣG the local context for H is given by

p
Φ

σ Ψ
k

Ξ

In this representation the process of taking a local context is non-arbitrary, and obviously associa-
tive.

3.8 The tensor of open games
Again, the heuristic for defining the tensor of open games is much as it was for concrete open
games. We will first formalise the notion of ‘local context’ for tensored general open games.

Definition 3.8.1 (Local contexts for tensor composition). Define the left local context function

LΦ,Φ′,Ψ,Ψ′ : C(Φ ⊗ Φ′, Ψ ⊗ Ψ′) × LensC(Φ′, Ψ′) → C(Φ, Ψ)

by

L([p, k], l) =
p l

Φ′

Φ

k

Ψ

Ψ′

Define the right local context function

RΦ,Φ′,Ψ,Ψ′ : C(Φ ⊗ Φ′, Ψ ⊗ Ψ′) × LensC(Φ, Ψ) → C(Φ′, Ψ′)

by

R([p, k], l) =
p l

Φ

Φ′

k
Ψ

Ψ′

We will usually suppress the subscripts of L and R as the types can be inferred from context.

Definition 3.8.2 (Tensor composition of open games). Let G : Φ → Ψ and H : Φ′ → Ψ′ be open
games. Define G ⊗ H : Φ ⊗ Φ′ → Ψ ⊗ Ψ′ by

• ΣG⊗H = ΣG × ΣH;

• PG⊗H(σ, τ) = PG(σ) ⊗ PH(τ) (in LensC);

• Define BG⊗H : C(Φ ⊗ Φ′, Ψ ⊗ Ψ′) → Rel(ΣG⊗H) by

BG⊗H(c)(σ, τ) = BG(L(c, PH(τ)))(σ) × BH(R(c, PG(σ)))(τ)
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3.9 Equivalence of open games
As in Section 2.9, we need to quotient open games in order to obtain a category.

Definition 3.9.1 (Isomorphism of open games). Let G, H : Φ → Ψ be open games. An isomor-
phism of open games α : G → H is a bijection α : ΣG → ΣH such that

1. PG(σ) = PH(α(σ)) for all σ ∈ ΣG ; and

2. For all σ, σ′ ∈ ΣG and c ∈ C(Φ, Ψ), (σ, σ′) ∈ BG(c) iff (α(σ), α(σ′)) ∈ BH(c) .

Definition 3.9.2 (Equivalence of open games). Let G, H : Φ → Ψ be open games. G and H
are equivalent, written G ∼ H, if there exists an isomorphism α : G → H. We write [G] for the
equivalence class of G under this relation.

Lemma 3.9.3. Let G, G′ : Φ → Ψ, H, H′ : Ψ → Ξ, and K, K′ : Φ′ → Ψ′ be open games. Then

1. If G ∼ G′ and H ∼ H′, then H ◦ G ∼ H′ ◦ G′; and

2. If G ∼ G′ and K ∼ K′, then G ⊗ K ∼ G′ ⊗ K′.

Demonstrating equivalence in the cases of interest will always be trivial, and so we simply
specify the witnessing bijection between strategy sets.

3.10 The category of open games
That equivalence classes of open games form a category follows easily from the fact that coend
lenses form a category.

Lemma 3.10.1. Sequential composition of equivalence classes of open games is associative.

Proof. Suppose we have open games

Φ
G

Ψ H Ξ K Υ.

The equivalence between (K ◦ H) ◦ G and K ◦ (H ◦ G) will be witnessed by the isomorphism
β : ΣG × (ΣH × ΣK) → (ΣG × ΣH) × ΣK, (σ, (τ, µ)) 7→ ((σ, τ), µ). Let σ ∈ ΣG , τ ∈ ΣH, and
µ ∈ ΣK. Then P(K◦H)◦G(σ, (τ, µ)) = PK◦(H◦G)((σ, τ), µ) by associativity of composition in LensC .
Let [p, k] ∈ C(Φ, Υ) be a context. Then

((σ, (τ, µ)), (σ′, (τ ′, µ′))) ∈ B(K◦H)◦G([p, k])

⇐⇒ (σ, σ′) ∈ BG

(
[p, k ◦ PK(µ) ◦ PH(τ)]

)
and (τ, τ ′) ∈ BH

(
[PG(σ) ◦ p, k ◦ PK(µ)]

)
and (µ, µ′) ∈ BK

(
[PH(τ) ◦ PG(σ) ◦ p, k]

)
⇐⇒ (((σ, τ), µ), ((σ′, τ ′), µ′)) ∈ BK◦(H◦G)([p, k])

Theorem 3.10.2. If LensC exists, there exists a category GameC with pairs of objects in C as
objects and equivalence classes of open games as morphisms.

Proof. All that remains to be checked is that the identity computation defined in Example 3.6.3
is an identity morphism, and this follows from easy checks.
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3.11 The symmetric monoidal structure of open games
We now prove that ⊗ is functorial. The proof is a good demonstration of the utility of coend
diagrams. In the commutative squares in the following lemma, the top path describes how local
contexts are formed in, say, (H ⊗ H′) ◦ (G ⊗ G′) and the bottom path describes how local contexts
are formed in (H◦G)⊗(H′◦G′). That the squares commute follows by inspection of the appropriate
coend diagrams.

Lemma 3.11.1. Suppose we have coend lenses

Φ Ψ Ξ

Φ′ Ψ′ Ξ′

l m

l′ m′

The following diagrams commute:

1.

C(Φ ⊗ Φ′, Ξ ⊗ Ξ′) C(Φ, Ξ)

C(Φ ⊗ Φ′, Ψ ⊗ Ψ′) C(Φ, Ψ)

L(−, l′ ◦ m′)

C(Φ ⊗ Φ′, m ⊗ m′) C(Φ, m)

L(−, l′)

2.

C(Φ ⊗ Φ′, Ξ ⊗ Ξ′) C(Φ, Ξ)

C(Ψ ⊗ Ψ′, Ξ ⊗ Ξ′) C(Ψ, Ξ)

L(−, l′ ◦ m′)

C(l ⊗ l′, m ⊗ m′) C(l, Ξ)

L(−, m′)

3.

C(Φ ⊗ Φ′, Ξ ⊗ Ξ′) C(Φ′, Ξ′)

C(Φ ⊗ Φ′, Ψ ⊗ Ψ′) C(Φ′, Ψ′)

R(−, l ◦ m)

C(Φ ⊗ Φ′, m ⊗ m′) C(Φ, m)

R(−, l)

4.

C(Φ ⊗ Φ′, Ξ ⊗ Ξ′) C(Φ′, Ξ′)

C(Ψ ⊗ Ψ′, Ξ ⊗ Ξ′) C(Ψ′, Ξ′)

R(−, l ◦ m)

C(l ⊗ l′, Ξ ⊗ Ξ′) C(l′, Ξ′)

R(−, m)

Proof. The four squares are given respectively by the following equalities of coend diagrams:

1.
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p

l′
Φ′ m′

Ψ′
ΦΞ′

m

Ψ

k
Ξ

Ξ′

=

p

l′
Φ′ ΦΞ′ m′

m

Ψ

k
Ξ

Ξ′

2.

p

l′
Φ′ m′

Ψ′

Φ

l
Ξ′

Ψ

k

Ξ

Ξ′

=

p l
Φ

l′
Φ′ m′

Ψ′
Ψ

Ξ′

k

Ξ

3.

p l
Φ

m
Ψ

Φ′ m′Ψ

k

Ξ′

Ξ

=

p l
Φ

Φ′ m′Ξ′

k

Ξ′

m
Ψ Ξ

4.

p l
Φ

m
Ψ

Φ′ l′ Ψ′

k

Ξ′

Ξ

=
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p l
Φ

m
Ψ

l′
Φ′

Ψ′

k

Ξ′

Functoriality of the tensor in GameC then follows easily.

Corollary 3.11.2. ⊗ : GameC × GameC → GameC is a functor.

Proof. Suppose we have open games

Φ Ψ Ξ

Φ′ Ψ′ Ξ′

G H

G′ H′

Note that Σ(H◦G)⊗(H′◦G′) = (ΣG×ΣH)×(ΣG′ ×ΣH′) and Σ(H⊗H′)◦(G⊗G′) = (ΣG×ΣG′)×(ΣH×ΣH′).
The isomorphism β : (ΣG ×ΣH)×(ΣG′ ×ΣH′) → (ΣG ×ΣG′)×(ΣH×ΣH′) witnessing the equivalence
between (H ◦ G) ⊗ (H′ ◦ G′) and (H ⊗ H′) ◦ (G ⊗ G′) is given by ((σ, τ), (σ′, τ ′)) 7→ ((σ, σ′), (τ, τ ′)).
LensC is symmetric monoidal and, hence,

P(H◦G)⊗(H′⊗G′)((σ, τ), (σ′, τ ′)) = P(H⊗H′)◦(G⊗G)((σ, σ′), (τ, τ ′)).

Using Lemma 3.11.1,(
((σ, τ), (σ′, τ ′)), ((σ′′, τ ′′), (σ′′′, τ ′′′))

)
∈ B(H◦G)⊗(H′◦G′)(c)

⇐⇒ (σ, σ′′) ∈ BG

(
C(Φ, PH(τ)) ◦ L(−, PH′(τ ′) ◦ PG′(σ′))(c)

)
and (τ, τ ′′) ∈ BH

(
C(PG(σ), Ξ) ◦ L(−, PH′(τ ′) ◦ PG′(σ′))(c)

)
and (σ′, σ′′′) ∈ BG′

(
C(Φ′, PH′(τ ′)) ◦ R(−, PH(τ) ◦ PH(σ))(c)

)
and (τ ′, τ ′′′) ∈ BH′

(
C(PG′(σ′), Ξ′) ◦ R(i, PH(τ) ◦ PH(σ))(c)

)
⇐⇒ (σ, σ′′) ∈ BG

(
L(−, PG′(σ′)) ◦ C(Φ ⊗ Φ′, PH(τ) ⊗ PH′(τ ′))(c)

)
and (σ′, σ′′′) ∈ BG′

(
R(−, PG(σ)) ◦ C(Φ ⊗ Φ′, PH(τ) ⊗ PH′(τ ′))(c)

)
and (τ, τ ′′) ∈ BH

(
L(−, PH′(τ ′)) ◦ C(PG(σ) ⊗ PG′(σ′), Ξ ⊗ Ξ′)(c)

)
and (τ ′, τ ′′′) ∈ BH′

(
R(−, PH(τ)) ◦ C(PG(σ) ⊗ PG′(σ′), Ξ ⊗ Ξ′)(c)

)
⇐⇒

(
((σ, σ′), (τ, τ ′)), ((σ′′, σ′′′), (τ ′′, τ ′′′))

)
∈ B(H⊗H′)◦(G⊗G′)(c).

Definition 3.11.3. The structural isomorphisms in GameC are given by

α(X,A),(Y,B),(Z,C) = ⟨αX,Y,Z , α−1
A,B,C⟩

ρ(X,A) = ⟨ρX , ρ−1
A ⟩

λ(X,A) = ⟨λX , λ−1
A ⟩

s(X,A),(Y,B) = ⟨sX,Y , sB,Y ⟩.

Lemma 3.11.4. The structural isomorphisms are natural in GameC.
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Proof. We show that the associator is natural. Naturality of the other stuctural maps follow by
similar arguments. Let Gi : Φi → Ψi for i ∈ {1, 2, 3}. Note that Σα◦(G1⊗(G2⊗G3)) =

(
ΣG1 ×

(ΣG2 × ΣG3)
)

× {α} and Σ((G1⊗G2)⊗G3)◦α = {α} ×
(
(ΣG1 × ΣG2) × ΣG3

)
. The equivalence between

α◦
(
G1 ⊗(G2 ⊗G3)

)
and

(
(G1 ⊗G2)⊗G3

)
◦α will be witnessed by the isomorphism

(
(σ, (τ, µ)), α

)
7→(

α, ((σ, τ), µ)
)
. Let σ ∈ ΣG1 , τ ∈ ΣG2 , µ ∈ ΣG3 , and [p, k] ∈ C

(
(Φ1 ⊗ (Φ2 ⊗ Φ3)), ((Ψ1 ⊗ Ψ2) ⊗ Ψ3)

)
.

We note that the local context for G1 given this data is the same for both games. The local context
of G1 is given by

p

τ
Φ2

µ

Φ1 Ψ1

Φ3
k

Ψ2

Ψ3

in α ◦
(
G1 ⊗ (G2 ⊗ G3)

)
and by

p

τ

µ

Φ2

Φ3

Φ1 Ψ1

k
Ψ3

Ψ2

in
(
(G1 ⊗ G2) ⊗ G3

)
◦ α. This two morphisms are evidently equal. Similar diagrams demonstrate

that the local contexts for G2 and G3 are the same in both games also.

Theorem 3.11.5. GameC is symmetric monoidal.

Proof. All that remains to be shown is that the Mac Lane pentagon and triangle axioms are
satisfied, but this follows easily as the underlying category C is symmetric monoidal.

3.12 Nice categories of open games
In this section we show how the notion of ‘cohistory’ collapses when the monoidal unit I of the
underlying monoidal category C is terminal. With cohistories gone, we will see that GameC has a
very natural game-theoretic interpretation.

Lemma 3.12.1 ([36]). If the monoidal unit of C is terminal, then LensC(I, (X, S)) ∼= C(I, X).

The isomorphism i : C(I, X) → LensC(I, (X, S)) is explicitly given by p 7→ [p, !s]. In a diagram,

p X 7→ p X S

The following fact appears as [27, exercise 1.13]; thanks to Guillaume Boisseau and Amar
Hadzihasanovic for the discussion at [39].

Lemma 3.12.2. If F ⊣ U : D → C is any adjunction and G : Dop × C → Set any functor, then∫ C∈C
G(F (C), C) ∼=

∫ D∈D
G(D, U(D)).
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Proof.∫ C∈C
G(F (C), C) ∼=

∫∫ C∈C,D∈D
G(D, C) × D(F (C), D) (ninja Yoneda lemma)

∼=
∫∫ D∈D,C∈C

G(D, C) × C(C, U(D)) (adjunction, Fubini theorem)

∼=
∫ D∈D

G(D, U(D)) (ninja Yoneda lemma)

Lemma 3.12.3. If the monoidal unit of C is terminal, then

C((X, S), (Y, R)) ∼= LensC((I, R), (X, Y )).

Proof. Let F : C → LensC be the embedding F (X) = (X, I). When the monoidal unit of C is
terminal, this functor has a right adjoint U : LensC → C that is given on objects by U(X, S) = X.
On morphisms U is defined by the universal maps∫ A∈C

C(X, A ⊗ Y ) × C(A ⊗ R, S) → C(X, Y )

induced by the dinatural (in A) maps C(X, A ⊗ Y ) × C(A ⊗ R, S) → C(X, Y ), taking (v, u) to
X

v−→ A ⊗ Y
!A⊗Y−−−−→ I ⊗ Y ∼= Y . The adjunction F ⊣ U is given by the natural isomorphism∫ A∈C

C(X, A ⊗ Y ) × C(A ⊗ R, I) ∼=
∫ A∈C

C(X, A ⊗ Y ) × C(A, I) ∼= C(X, I ⊗ Y ) ∼= C(X, Y ).

In the previous lemma we take G : Lensop
C × C → Set to be

G((Φ, Φ′), Θ) = C(I, Θ ⊗ X) × LensC((Φ, Φ′) ⊗ (Y, R), I).

Then

C((X, S), (Y, R)) ∼=
∫ (Θ,Θ′)∈LensC

G((Θ, Θ′), Θ) ∼=
∫ Θ∈C

G((Θ, I), Θ) ∼= LensC((I, R), (X, Y ))

with the three isomorphisms respectively using Lemmas 3.12.1, 3.12.2 and 3.5.1.

In the case where the monoidal unit of C is terminal, the type of best response for an open
game G : (X, S) → (Y, R) is equivalently

BG : LensC((I, R), (X, Y )) → Rel(ΣG).

We have seen that expressing contexts as states in the double lens category is a good level of
abstraction for categories of open games, allowing for elegant diagrammatic proofs. From a game-
theoretic perspective, however, it will make more sense to express contexts as equivalence classes
[p, k, Θ] : LensC((I, R), (X, Y )). This is because a state p : C(I, Θ⊗X) is easily seen to correspond
to a history for an open game and the function k : Θ ⊗ Y → R acts like an outcome function. In
this way, we can specify a context for an open game in much the same way as we did for concrete
open games in section 2.

The coend diagram

p

X

k
Y

R

of a context [p, k] ∈ LensC((I, R), (X, Y )) neatly illustrates that a context is a game state with
a ‘hole’ in it. If we think of a game G : (X, S) → (Y, R) as a player in a larger game, then p
corresponds to the things that have happened in the game before G gets to act; k corresponds to
what will happen in the game after G acts; and the gap in the diagram corresponds to the part of
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the game where G gets to influence the outcome. Alternatively, a context is that which becomes a
game once G has decided which strategy to play, whereby playing that strategy will fill in the gap
in the context.

Given open games G : (X, S) → (Y, R), H : (Y, R) → (Z, Q), strategies σ ∈ ΣG , τ ∈ ΣH, and a
context [p, k] ∈ LensC((I, R), (X, Z)), the local context for G in H ◦ G is given by

p

X τvY

Z

k
Q

τu R

and the local context for H is given by

p

X
σv

Y

k
Z

Q

Given another open game K : (X ′, S′) → (Y ′, R′), a context [p, k] ∈ LensC((I, R ⊗ R′), (X ⊗
X ′, Y ⊗ Y ′)), and a strategy µ ∈ ΣH, the local contexts for G and H in G ⊗ H are given by

p
X′

µv

X

k
Y ′

Y

R

R′

and

p X σv

X′

k
Y

Y ′

R

R′

respectively.

4 Bayesian open games
In this section we will zero in on open games with a specific lens structure. As we will show this
class of open games will address the shortcomings of concrete open games.

4.1 Commutative monads
Recall that a monad T over a monoidal category C is strong if it comes with a strength natural
transformation tA,B : A ⊗ TB → T (A ⊗ B) satisfying various coherence conditions.

We have the following result guaranteeing the existence of a large class of coend lens categories.
We refer the reader to [36] for a much more in-depth discussion of the following result, and many
more examples of when lens categories exist.

Theorem 4.1.1 ([36]). If T is a strong monad, then LensKl(T ) exists2.

2In [36], lenses over a Kleisli category are called effectful optics.
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Definition 4.1.2 (Commutative monad). Let T be a strong monad with strength t over a monoidal
category C. Define the costrength natural transformation t′

A,B : TA ⊗ B → T (A ⊗ B) to be the
composite

TA ⊗ B
sT A,B

B ⊗ TA
tB,A

T (B ⊗ A)
T (sB,A)

T (A ⊗ B).

T is commutative if the diagram

TA ⊗ TB
tT A,B

T (TA ⊗ B)
T (t′

A,B)
T 2(A ⊗ B)

t′
A,T B

T (A ⊗ TB) T 2(A ⊗ B)
T (tA,B)

T (A ⊗ B)
µ

µ

commutes for all objects A and B in C.

If a monad is commutative then we get that its Kleisli category is symmetric monoidal for free
with the monoidal tensor ⊗ (on objects) and unit being the same as in the underlying category C .

Lemma 4.1.3 ([35]). If T is a commutative monad over a symmetric monoidal category C, then
Kl(T ) is symmetric monoidal.

Commutative monads over Set also come with canonical copy/delete comonoid structures for
every object. Copying cX : X → T (X × X) is given by

X
∆

X × X
η

T (X × X)

and deleting dX : X → I is given by

X
! {⋆}

η
T ({⋆}).

From this comonoid structure we obtain canonical projections

X ⊗ Y
id ⊗ d

X ⊗ I
ρ

X

and

X ⊗ Y
d ⊗ id

I ⊗ Y
λ

Y .

Crucially, it is not guaranteed that the monoidal tensor of Kl(T ) is cartesian.

4.2 The category of sets and random functions
We now turn to the category of interest for this section.

The finitary distribution monad D : Set → Set maps a set X to the set of finitary probability
distributions on X (finitary in the sense that only finitely many elements are assigned non-zero
probability).

Definition 4.2.1 (Finitary distribution monad). Define D : Set → Set by

D(X) =
{

α : X → [0, 1]
∣∣∣ supp(α) < ℵ0,

∑
x∈supp(α)

α(x) = 1
}

where supp(α) is
{

x ∈ X
∣∣ α(x) ̸= 0

}
, the support of α. D acts on morphisms by

D(f : X → Y )(α : D(X))(y) =
∑

f(x)=y

α(x).
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The monad structure of D is given as follows. The unit is given by

ηX(x) = δx

where

δx(x′) =
{

1 if x = x′

0 otherwise

and the extension f† : D(X) → D(Y ) of f : X → D(Y ) is

f†(α) =
∑

x∈supp(α)

f(x)(y).

Lemma 4.2.2. D is a commutative monad.

Corollary 4.2.3. Kl(D) is symmetric monoidal with canonical copy/delete comonoids and pro-
jection maps.

The monoidal tensor in Kl(D), which represents joint distributions, is not cartesian.

Definition 4.2.4 (Copy/delete comonoid for Kl(D)). The copying map in Kl(D) is given explic-
itly by cX : X → D(X × X) where

c(x)(x1, x2) =
{

1 if x = x1 = x2

0 otherwise.

The monoidal unit of Kl(D) is terminal, and hence the deleting map dX : X → D({⋆}) must be
given by d(x)(⋆) = 1. As this map is unique, we refer to it as !.

Whenever we are working in Kl(D) we denote cX and !X by

X

X

X and X

respectively.
The canonical projections in Kl(D) correspond to taking marginals.

Definition 4.2.5 (Marginals). Let p : D(X × Y ) be a joint distribution. The left marginal
pX : D(X) is given by pX(x) =

∑
y∈supp(p(x,−)) p(x, y). The right marginal pY : D(Y ) is given

similarly by pY (y) =
∑

x∈supp(p(−,y)) p(x, y). As diagrams, these are given by

p

Y

X

and p

X

Y

respectively.

An important operation on probability distributions is Bayesian updating where an agent has
some prior distribution (initial belief), makes an observation, and then updates their prior to a
new, posterior distribution.

Definition 4.2.6 (Update operator). Let X and Θ be sets. We think of Θ as a type which an
agent has a probabilistic belief about, and X as a type that will be observed by an agent. Define
the update operator UΘ : D(Θ × X) → (X → D(Θ)) by

UΘ(p)(x)(ϑ) = p(ϑ, x)∑
(ϑ′,x)∈supp(p) p(ϑ′, x) .

We also write p(ϑ|x) for UΘ(p)(x)(ϑ).
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Lemma 4.2.7. The update operator is natural in Θ. That is, the following diagram commutes for
any f : Θ1 → Θ2:

D(Θ1 × X)
UΘ1

X → D(Θ1)

D(f × X)

D(Θ2 × X)
UΘ2

X → D(Θ2).

D(f) ◦ −

Proof. Let p ∈ D(Θ1 × X), x ∈ X, ϑ1 ∈ Θ1, and ϑ2 ∈ Θ2. The top of the square is given by(
D(f) ◦ UΘ1

)
(p)(x)(ϑ2) =

∑
f(ϑ1)=ϑ2

UΘ1(p)(x)(ϑ1)

=
∑

f(ϑ1)=ϑ2
p(ϑ1, x)∑

ϑ′
1∈supp(p(−,x)) p(ϑ′

1, x) . (⋆)

The bottom of the square is given by

UΘ2

(
D(f × X)(p)

)
(x)(ϑ2) = D(f × X)(p)(ϑ2, x)∑

ϑ′
2

D(f × X)(p)(ϑ′
2, x)

=
∑

f(ϑ1)=ϑ2
p(ϑ1, x)∑

ϑ′
2

∑
f(ϑ′

1)=ϑ′
2

p(ϑ′
1, x) . (⋆⋆)

The result follows, noting that the denominators of (⋆) and (⋆⋆) are equal.

4.3 Bayesian open games
Definition 4.3.1 (Bayesian open game). A Bayesian open game is a morphism in GameKl(D).
Explicitly, a Bayesian open game G : (X, S) → (Y, R) is given by

1. A set of strategies Σ,

2. A play function

P : Σ →
∫ Θ:Set (

X → D(Θ × Y )
)

×
(
(Θ × R) → D(S)

)
,

3. A best-response function

B : LensKl(D)((I, R), (X, Y )) → Rel(Σ)

We refer to atoms in the category of Bayesian open games as Bayesian atoms.

We unpack the definition of the play function to emphasise that, when we wish to actually
specify a Bayesian open game, it is usually easier to specify P(σ) as the equivalence class of a pair
of morphisms.
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4.4 Bayesian agents
We will now define Bayesian agents which, as with concrete open games, have constant best-
response functions. Bayesian agents capture the notion of rational agents that

1. Have a correct prior about the various types in a game;

2. Update this prior based on an observation to a new posterior;

3. Attempt to maximise their expected utility given their posterior.

Definition 4.4.1 (Bayesian agent). Let X, Y be sets. The Bayesian agent A(X,Y ) : (X, I) →
(Y,R) is the Bayesian atom given by

1. ΣA = X → D(Y ),

2.

Pσ = [σ, !R] = σX Y R

3. The selection function ε : LensKl(D)((I,R), (X, Y )) → P(X → D(Y )) is given by

εA([p, k]) =
{

σ : X → D(Y )
∣∣∣∣ ∀x ∈ supp(p2),

σ(x) ∈ arg max
α∈D(Y )

(
E
[
k†(UΘ(p)(x), α)

])}
.

It is worth explaining this last formula in words. A(X,Y ) represents an agent choosing an
element of Y after observing an element of X. The context of the decision consists of a set Θ
of unobservable states, a prior joint distribution p : D(Θ × X) on unobservable and observable
states, and a utility function k : Θ × Y → D(R) that depends on the unobservable state and
the agent’s choice. The optimality condition says that for all observations x that the agent could
make with nonzero probability, the strategy σ(x) maximises the expected value of k(ϑ′, −), where
ϑ′ = UΘ(p)(x) is the posterior distribution on the unobservable state given the observation of x.

Lemma 4.4.2. The selection function of a Bayesian agent is well-defined. That is, it is indepen-
dent of the choice of representative of the coend equivalence relation.

Proof. This result follows from the fact that Bayesian updating is natural in the bound type of a
coend lens (4.2.7).

In the next definition we formalise the idea that a player in a game might be assigned a (game-
theoretic) type on which their utility function depends. We can do this simply using a Bayesian
agent and a copying computation.

Definition 4.4.3. Let A(X,Y ) : (X, I) → (Y,R) be a Bayesian agent. Define A∆
(X,Y ) : (X, I) →

(X × Y,R) to be the Bayesian open game (id(X,1) ⊗ A(X,Y )) ◦ ∆X , or as a string diagram,

X

A
Y

R

X

Lemma 4.4.4. A∆
(X,Y ) is explicitly given, up to isomorphism, by

1. ΣA∆
(X,Y )

= X → D(Y );

2. PA∆
(X,Y )

: ΣA∆
(X,Y )

→ LensKl(D)
(
(X, I), (X × Y,R)

)
is given by
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PA∆
(X,Y )

(σ) = X
σ Y

X

R ;

3. Let [p, k] ∈ LensKl(D)
(
(I,R), (X, X × Y )

)
. Best response is given, up to isomorphism, by

BA∆
(X,Y )

([p, k]) = BA(X,Y )([p, k]′) where [p, k]′ is the context given by

p

X

k

Y

R

Proof. This result follows from definition chasing, noting that A(X,Y ) is the only component with
non-trivial strategy profile set.

Lemma 4.4.5. Let A(Xi,Yi) be Bayesian agents for i ∈ {1, · · · , n}. Then A∆n =
⊗n

i=1 A∆
(Xi,Yi) is

explicitly given as follows.

1. ΣA∆n =
∏n

i=1(Xi → D(Yi));

2. The play function

PA∆n : ΣA∆n → LensKl(D)

(( n∏
i=1

Xi, I
)
,
( n∏

i=1
(Xi × Yi),Rn

))
is given by

PAn
◦ (σ1, · · · , σn) =

X1

σ1

σn

Xn

Y1

Yn

X1

Xn

...
...

R

R

...

3. Let [p, k] ∈ LensKl(D)

(
(I,Rn), (

∏
i Xi,

∏
i Xi × Yi)

)
. Best response

BA∆n ([p, k])(σ1, · · · , σn)

is given, up to isomorphism, by
n∏

i=1

{
σi : Xi → D(Yi)

∣∣∣∣ ∀xi ∈ supp(pσ−i),

σi(xi) ∈ arg max
αi∈D(Yi)

(
E
[
kσ−i

(
UΘ−i

(pσ−i)(xi), αi

])}

where [pσ−i , kσ−i ] is the context given by
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p
Xi

Xi

Xn

σn

k

Yn

Xn

Yi

Xi

Yi

X1

σ1
Y1

X1 R

R

R

...

...

...

...

...

...

Proof. (1) and (2) follow easily from definitions. As for (3), we need to prove that the local context
for each A(Xi,Yi) is [pσ−i , kσ−i ]. Note that the previous Lemma 4.4.4 serves as the base case (n = 1)
for an induction argument. The result then follows easily by considering that

BA∆n ([p, k])(σ1, · · · , σn) = BA∆
(X1,Y1)

([p, k]1)(σ1) × B⊗n

i=2
A∆

(Xi,Yi)
([p, k]−1)(σ−1)

and applying the inductive hypothesis, where [p, k]−1 is the context

p X2

Xn

X1

σ1

k

Y1

X1

X2

Y2

Xn

Yn

R

R

R

...
...

...

4.5 Decisions under risk
In this section we introduce another type of situation involving a Bayesian agent that can be
modelled using Bayesian open games.

A decision problem under risk is a decision problem for which one can sensibly assign proba-
bilities to possible outcomes. A good example is roulette. When making a bet in roulette, you can
calculate the likelihood of success and also your expected return on any bet. Decision problems
under risk are generally represented by Bayesian open games constructed from computations and
precisely one Bayesian agent. A simple subclass of decision problems under risk are represented
by Bayesian open games of the form
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p

A
X

u

R

Y

Z

in which an agent A attempts to maximise their outcome which is, in part, dependent on the type
Z which A does not observe.

We now give a fully worked out example of a Bayesian open game in which an agent has a
prior, makes an observation, updates their prior as a consequence of that observation, and then
makes a prediction based on their posterior.

Example 4.5.1 (Biased coin). Suppose we give an agent A a biased coin which lands on one side
75% of the time and the other side 25% of the time. It is not known which side the coin is biased
towards, but it is known that it is equally likely to be biased towards heads as towards tails. A flips
the coin whilst another identical coin (i.e. another coin biased the same way) is flipped in secret.
A observes her coin flip and is then asked to predict which side up the secret coin landed. If she
is correct she receives an outcome of 1 with probability 1. If she is wrong she receives an outcome
of 0 with probability 1. The optimal strategy for A is to guess that the coin flipped in secret will
land the same way up as the coin she flipped. If, for instance, A’s coin comes up heads, then there
is a 75% chance that both coins are biased towards heads. Consequently the coin flipped in secret
is more likely to show heads. A symmetric argument applies if A’s coin shows tails.

We can represent this game using the open game

p

A
{H, T }

u

R

{H, T }

{H, T }

where

p : D({H, T}2) = 1
2

(
9
16(T, T ) + 1

16(H, H) + 3
16(T, H) + 3

16(H, T )
)

+ 1
2

(
9
16(H, H) + 1

16(T, T ) + 3
16(H, T ) + 3

16(T, H)
)

= 5
16(H, H) + 5

16(T, T ) + 3
16(T, H) + 3

16(H, T )

and

u : {H, T}2 → DR

(x, y) 7→

{
δ1 if x = y

δ0 otherwise.

Explicitly, the game is given by G := u ◦ (A ⊗ id{H,T }) ◦ p. Note that ΣG ∼= ΣA = {H, T} →
D({H, T}). Also note that there is precisely one context for G since its type is I → I (that is,
(1, 1) → (1, 1)) and, moreover, as the best-response functions for u, id{H,T }, and p are trivial, the
best-response function for G is isomorphic to the constant relation

BA([p, k]) =
{

σ : {H, T} → D({H, T})
∣∣∣∣ ∀x ∈ {H, T},

σ(x) ∈ arg max
α∈D({H,T })

E[k(U{H,T }(p)(x), α)]
}

.
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The posterior U{H,T }(p)(H)(H) is given by

U{H,T }(p)(H)(H) = p(H, H)∑
(ϑ,H)∈supp(p) p(ϑ, H)

= 5
8

and hence U{H,T }(p)(H)(T ) = 3
8 . Similarly, U{H,T }(p)(T ) = 5

8 T + 3
8 H. It follows that

arg maxα

(
E[k†(U{H,T }(p)(H), α)]

)
= {δH}

arg maxα

(
E[k†(U{H,T }(p)(T ), α)]

)
= {δT }.

Hence BA([p, k]) is a singleton set containing the strategy σ where σ(H) = δH and σ(T ) = δT , as
expected.

4.6 Relating Bayesian Open Games to Bayesian Games
The example given in the previous section illustrates two important improvements over the version
of open games as introduced in [13]. There, everything is deterministic – the environment, the
players moves etc. Here, the environment as well as the players’ moves can be probabilistic.

Still, we only consider a single player. We could consider examples with more players and with
probabilistic behaviour induced by nature or games where probabilistic behaviour is key, such as
matching pennies. In [15] a definition of open games is given that can handle mixed strategies.

Instead, we want to focus on another aspect of Bayesian open games, which we believe is much
less obvious, particularly to readers with no game theory background: From a game-theoretic
perspective, we introduced a new solution concept. For random environments and probabilistic
moves, there is no real difference to standard Nash equilibria. However, there are important classes
of games for which the new equilibrium notion brings material change.

Reconsider Example 4.5.1. Here, the agent has some prior information about the nature of the
coin. Given observations from the coin and the prior information, the agent updates beliefs about
the true nature of the coin and maximises accordingly. Thus, we maintain not only an assumption
that the agent maximises but also how she deals with information.

The example is very simple. After all, there is only one agent. Our interest lies of course in
the interaction of such Bayesian agents. While the strategic reasoning is more complicated in such
situations the overall structure is the same as in Example 4.5.1: Each agent has access to some
prior information, some (partial) information is revealed, and the agent makes a decision.

In the game-theory literature such a game is called a ‘Bayesian game’ or also ‘game in Bayesian
form’ and the solution concept we sketched is called ‘Bayesian Nash Equilibrium’. Next, we intro-
duce the standard economic notion of such games, then provide a simple example, an auction, and
followed by a general construction that allows us to translate an arbitrary Bayesian game into a
Bayesian open game.

4.6.1 Games in Bayesian form

Denote with ΓB =
(
N, (Ai)N

i=1, (Θi)N
i=1, π, (ui)N

i=1
)

a Bayesian game. Before we explain the com-
ponents we add some useful notation: we write Θ−i =

∏
j∈N,j ̸=i Θj for the possible combinations

of Θj other than i.

• N denotes the number of players.

• Ai defines a set of actions available to the players.3

• Θi defines the a set of (player) types each player i can have.

3Note, we intenionally refer to this as actions and not as strategies. This will be clear once we compare the
Bayesian game to a normal-form game.

Accepted in Compositionality on 2021-11-27. 37



Volume 5, Issue 9. ISSN 2631-4444

• π : D
(∏N

i=1 Θi

)
is a joint prior distribution on the types that is common knowledge.

• ui :
∏N

i=1 Θi ×
∏N

i=1 Ai → R defines a utility for any profile of player types and any profile
of actions.

This definition is rather cryptic at first. So let us try to dissect its components. Then we will
compare it to the definition of a normal form which we introduced in 2.12.4. This hopefully further
helps to make sense of it.

Let us begin with Θi, the player type, which is probably most obscure and most central at the
same time. One way to think of types is imagining player i having different realisations or versions,
one of which ends up playing the game. Each realisation, or type, summarises information relevant
for the game. Often, this information will concern the payoffs.4 For example, player i may consider
to bid in an auction. His type determines his evaluation for the good, that is, how much he values
owning the good. It is easily conceivable that i may have different evaluations before the auction
really takes place.

This example also illustrates another aspect of this structure. While player i may have different
types, before he has to choose his action, he typically will know his type. So, once the bidding
starts, he knows how much he values the good. But crucially, he does not know the types of the
other players, only a probability distribution – conditional on his own observed type. The last
aspect also already alludes to the role of Bayesian updating: Given his own observed type, a player
may refine his belief about the other players’ types.

The payoff function ui, as with a normal form, maps choices of players into a payoff. Here,
however, player i’s type may affect the payoff. Think again about an auction, naturally the bidding
behaviour will affect i’s payoff. But so does his type, the evaluation for the good. Note that the
definition above includes the possibility that the whole realisation of types affects i’s payoff. In
the case of bidding for a private good, only i’s type will typically be relevant.

Lastly, Ai represents the set of actions player i can take in the game. Note, that we intentionally
refer to this as actions and not as strategies. To understand this it is best to compare the above
definition to a normal-form game.

Recall its notation: Γ =
(
N, (Si)N

i=1, (ui)N
i=1
)
. Here, Si refers to a strategy which is a complete

contingent plan for all possible occasions where i can make a move. Note that Si can be a shorthand
for some complicated dynamic structure where i moves several times.

Analogously, Ai in the Bayesian game refers to a complete contingent plan once the game
‘begins’, i.e. after i has learned his type. This could involve a complicated dynamic structure.
Crucially, however, this is not the same as a strategy for the Bayesian game. Why? A strategy of
the Bayesian game must include a contingent plan also for each realisation of i’s type!

Formally, a pure strategy for a game in Bayesian form is a mapping si : Θi → Ai for all Θi. A
behavioural strategy σi for player i is a mapping σi : Θi → D(Ai), i.e for each type of player i a
behavioural strategy assigns a probability distribution over the available actions.5

For each player we can now define the (conditional) expected utility for player i given be-
havioural strategy profile σ with

Eui(σ | ti) ≡
∑

t−i∈Θ−i

pπ(t−i | ti)ui((ti, t−i), σ)

Note, that pπ(·|·) updates the prior information π for player i given Bayes’ rule. Equipped with
all that we can finally define a Bayesian Nash equilibrium.

4The concept of a type is much more expressive. It can express all sorts of uncertainty with respect to a game.
We will not discuss this here as it would lead us too far astray. Compare, for instance, Chapters 9-11 in [29] for
more background on the notion of type.

5In the context of the a game in Bayesian form, similar to a game in normal form, it is more common to use mixed
strategies of type D(Si) = D(Θi → Ai), i.e. distributions on pure strategies. However, as any game in Bayesian
form can be equivalently modelled as a game in extensive form, and both, behavioural and mixed strategies lead
to the same equilibria (under mild assumptions automatically fulfilled in our setup), the difference is immaterial.
The reason for our choice of using behavioural strategies is that open games share properties from both standard
formulations and it is easier to connect behavioural strategies to our formulation. More on that in Section 4.7.

Accepted in Compositionality on 2021-11-27. 38



Volume 5, Issue 9. ISSN 2631-4444

Definition 4.6.2 (Bayesian equilibrium). A (behavioural) strategy profile σ∗ = (σ∗
1 , σ∗

2 , ..., σ∗
N ) is

a Bayesian Nash equilibrium if for each player i ∈ N , each type ϑi ∈ Θi, and each possible action
ai ∈ Ai it holds that:

Eui(σ∗ | ϑi) ≥ Eui(ai, σ−i | ϑi)

4.6.3 An auction example

Suppose two agents are bidding for a good that is being sold in a first-price sealed-bid auction.
Here ‘first-price’ means that whichever agent bids higher receives the good and pays her/his own
bid, with the other agent neither gaining nor losing anything. ‘Sealed-bid’ means neither player
can observe the other’s bid, meaning the bidding is effectively simultaneous.

Both players have a private valuation for the good, which are drawn from a joint random
distribution π : D(Θ × Θ), where Θ ⊆ [0, ∞) is the range of possible values. As usual, we
assume this prior is common knowledge. One consequence thereof is that a player knowing their
own valuation can update their beliefs about the other’s valuation. Obviously, whether there is
something to learn from one’s own valuation about others’ valuations depends on the type of
good being auctioned. For instance, if we are bidding on a construction contract, then the value
that contract has for me will be correlated with your evaluation. If, however, we are bidding
on a painting by some obscure painter, it is less clear that I can learn something about others’
valuations.

The winning bidder’s utility is given by their valuation of the good minus the bid that they
must pay. (This can be negative if the bid is higher than the valuation.) We must also choose a
way to resolve a tie if the bids are equal: we assume that the winner is determined by a fair coin
flip. Thus the expected utilities, for private valuations ϑi ∈ Θ and bids bi ∈ Θ, are given by

U(ϑ1, b1, ϑ2, b2) =


(ϑ1 − b1, 0) if b1 > b2

(0, ϑ2 − b2) if b1 < b2

( ϑ1−b1
2 , ϑ2−b2

2 ) if b1 = b2.

In order to formalise this situation as a Bayesian game as defined in the previous section, we
take N = 2, A1 = A2 = Θ, and π.

The Bayesian open game describing this situation is given by the string diagram

A(Θ,Θ)

A(Θ,Θ)

U
π

Θ

Θ

Θ

Θ

Θ

Θ

R

R

Θ

Θ

As a morphism G : I → I in the category of Bayesian open games, this has ΣG = (Θ →
D(Θ)) × (Θ → D(Θ)), the set of behavioural strategy profiles for the auction, and BG(∗) the
best-response relation for behavioural strategy profiles.

4.6.4 General construction for games in Bayesian form

Generalising the previous example, we can give a construction for converting any game in Bayesian
form into a Bayesian open game of type I → I that has the same best-response relation.
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Consider a general Bayesian game (N, (Ai), (Θi), π, U). For each player i, recall the copying
agent A∆

(Θi,Ai) : (Θi, 1) → (Θi × Ai,R). Their tensor product has type

N⊗
i=1

A∆
(Θi,Ai) :

(
N∏

i=1
Θi, 1

)
→

(
N∏

i=1
(Θi × Ai),RN

)
.

The full game is given by

I
⟨π,1⟩−−−→

(
N∏

i=1
Θi, 1

) N⊗
i=1

A∆
(Θi,Ai)

−−−−−−−−−→

(
N∏

i=1
(Θi × Ai),RN

)
⟨U,idRN ⟩
−−−−−−→ (RN ,RN )

εRN−−→ I.

Proposition 4.6.5. Let G = (N, (Ai), (Ti), π, U) be a game Bayesian form, and let

c = (1, π, U) : C
((

N∏
i=1

Ti, 1
)

,

(
N∏

i=1
(Ti × Ai),R

))
.

Then B⊗N

i=1
A∆

(Ti,Ai)
(c) is the best-response relation for behavioural strategy profiles of G.

The main part of the proof of this result is contained in Lemma 4.4.5, which characterises the
tensor product of copying agents.

4.7 Extensive form
The normal-form representation as well as the representation of Bayesian Games really are strategy-
centric. They both condense the strategic situation in a way that makes them most amenable to
analysis from the point of view of a specific equilibrium concept such as Nash/Bayesian Nash
equilibrium.

Open games have baked in a notion of equilibrium and thus certainly share this focus. And
for that reason, comparisons to classical game theory in this paper have been limited to these
representations.

In classical game theory, an alternative to the normal-form representation of a game is its
extensive form. This representation can also be used for games in Bayesian form. We will not
give a definition here, as standard definitions are cumbersome and will not add much value. What
is important though is what the extensive form represents: it provides a detailed account about
which player knows what at which point and what actions he has then available. One can think of
the extensive form as a detailed account of how a game and the players’ information unfolds. Thus,
it provides much more information than its corresponding normal form, to which each extensive
form can be reduced.

For instance, one reason to consider the extensive form representation of a game is that it
explicitly captures temporal information, say, if one player moves before the other player.6

Open games as a representation of a strategic situation have much in common with its extensive
form representation. After all they provide an expressive language to represent a detailed account
of a strategic interaction. In the following, we will make the relationship between Bayesian open
games as presented in this paper and the extensive form representation of Bayesian games more
concrete.

We begin with a concrete example that illustrates how open games deal with sequential moves
of players in the presence of asymmetric information.

4.7.1 The market for lemons

The following is a simple version of a classic model going back to [1].7 There are two players, a
seller and a buyer. The seller wants to sell a used car to the buyer; he offers the buyer a price

6One other important reason to use the extensive form is to consider different, typically refined versions of Nash
equilibria which take into account the dynamic dimension of games. But this goes beyond our current paper.

7Note that the original model is not game-theoretic in nature. See [28] Chapter 13 for a discussion and a richer
game-theoretic model than presented here.
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P ; the buyer can either accept or reject the offer. Both players have some evaluation for the car
which will affect their profit/utility.

Their evaluation depends on the quality Q of the car. It is drawn from some fixed distribution π.
Critically, the seller observes the quality before offering a price to the buyer. The buyer, however,
does not directly observe the quality.

The open game below represents this situation.

π

S B

Q

Q

Q

P

P

P

B

R

R

U

As Akerlof [1] observed, due to the asymmetry in information, a transaction may not occur even
though such a transaction would be efficient (and would take place if both players were perfectly
informed). The reason is simple. For each price the buyer has to take into consideration what
quality of car the seller would be willing to offer. As each seller will only offer prices equal to or
above his evaluation for the car, a low price indicates low quality. However, a high price does not
necessarily reflect high quality; it could just mean that the seller is charging a high price for an
actual ‘lemon’. Thus, the buyer, given his prior will update his estimate of the quality for each
price offered. And depending on the parameters, transactions may only occur for low quality cars
but not for high quality cars.

Note that, similar to our remark in 2.12.3, even though the interaction (and the representation
as an open game) is sequential, the equilibrium notion is static and does not consider the timing
of moves.8

4.7.2 A general construction

To translate an arbitrary extensive form game to a string diagram requires an additional external
choice operator like the one developed in [22], which is currently not well understood in the Bayesian
setting. We will instead give a much simpler translation for a certain subclass of extensive form
games, roughly those whose trees are perfectly balanced. Specifically we require:

• All paths from the root to a leaf have the same length

• All information sets intersect only one level of the tree (where the ith level is the set of all
nodes that are i steps away from the root)

• All information sets on the same level are owned by the same player (the root node is always
owned by Nature)

• All nodes on the same level have the same number of outgoing edges, labelled by the same
edge labels

Any extensive form game can be converted into one satisfying these conditions that is equivalent
for most game-theoretic purposes, by adding (potentially many) dummy nodes and moves leading
to redundant subtrees with only strictly dominated payoffs. Obviously this is unsatisfactory, and
the construction in this section should be thought of as an argument that Bayesian open games
have the same ‘expressive power’ as extensive form, and not as a practical translation.

8See remark in Section 4.7. There are refinements of Bayesian Nash Equilibria which take the dynamics into
account. In the context of the lemon market this is relevant if one considers extensions of that model. One prominent
example is the role of costly signals that the informed side may use in order to reduce the uncertainty of the buyer.
Cf. [28] Chapter 13.C.
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Consider an extensive form game G satisfying these conditions, with N > 0 players, and L > 0
‘ordinary’ levels with choice nodes, together with level 0 (the root) and level L + 1 (the leaves).

At an ordinary level 1 ≤ i ≤ L, suppose the set of nodes is Xi, the information equivalence
relation is ∼i (and so the set of information sets at level i is Xi/∼i), all information sets are owned
by player 1 ≤ Pi ≤ N , and the set of outgoing edge labels for all nodes is Ai. We summarise the
connectivity between level i and level i + 1 as a transition function qi : Xi × Ai → Xi+1.

The data at the root node is a probability distribution π : D(X1) on the Nature moves. Finally,
XL+1 is the set of leaf nodes, and the assignment of payoffs at leaf nodes is summarised as a utility
function U : XL+1 → RN .

We translate each level of the tree into a Bayesian open game, which we then sequentially
compose together. An ordinary level 1 ≤ i ≤ L will be translated to an open game of type
Gi : (Xi,RN ) → (Xi+1,RN ), level 0 to an open game G0 : (1, 1) → (X1,RN ) and level L + 1
to an open game GL+1 : (XL+1,RN ) → (1, 1). Thus, the final result will be an open game
G = GL+1 ◦ · · · ◦ G0 : (1, 1) → (1, 1).

We define G0 to be the computation ⟨π, !⟩, where π : 1 → D(X1) is the prior considered as a
state in the Kleisli category, and ! : RN → D(1) = 1 is the discard map. That is to say, it is the
atomic open game with ΣG0 = {[π, !]} and BG0(c) = {[π, !]} for all contexts c ∈ C

(
(I, I), (X1,RN )

)
.

G0 is simply depicted by the string diagram

π X1

RN

and the optic [π, !] by the coend diagram

π RNX1

Similarly, we define GL+1 to be the atomic open game with ΣGL+1 = {U} and BGL+1(c) = {U}
for all contexts c ∈ C

(
(XL+1,RN ), (I, I)

)
, where U : (XL+1,RN ) → (I, I) is the optic given by

(RN , U, id), with the coend diagram

UXL+1 RN

1 1

GL+1 is itself denoted by the string diagram

U
XL+1

RN

The open game Gi for 1 ≤ i ≤ L is defined by the string diagram

π∼i AXi/∼i,Ai

qi

πPi

Xi

RN

Xi+1

RN

Xi/∼i

Xi

Ai

R

Unwinding this definition, we get that
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• ΣGi
∼= ΣA(Xi/∼i,Ai) = Xi/∼i → D(Ai)

• For σi : Xi/∼i → D(Ai), PGi
(σi) is the optic (Xi,Rn) → (Xi+1,Rn) given by the coend

diagram

qi

π∼i

Xi RNXi+1 RN

Ai

Xi

σi
Xi/∼i

• For a context c = (Θ, p, k) : (I,RN ) → (Xi, Xi+1), BGi(c) is the constant relation{
σi : Xi/∼i → D(Ai)

∣∣∣∣ σi([xi]∼i) ∈ arg max
ai∈Ai

E[πPi(k(p1, q(p2, ai))) | p2 = xi]

for all xi ∈ supp(p2)
}

,

where E[πPi
(k(p1, q(p2, ai))) | p2 = xi] is the conditional expectation of

I
p−→ Θ ⊗ Xi

Θ⊗q(−,ai)−−−−−−−→ Θ ⊗ Xi+1
k−→ RN πPi−−→ R

given that the right marginal of p is xi.

In order to characterise G = GL+1 ◦ · · · ◦G0 inductively we have a choice to either work forwards
from G0 or backwards from GL+1, corresponding roughly to forward induction and backward in-
duction in game theory. We choose the former. The inductive hypothesis is encapsulated in the
following lemma.

Lemma 4.7.3. For 1 ≤ i ≤ L, consider the extensive form game Gi without specified payoffs
given by truncating the original extensive form game G to the first i + 1 levels (i proper levels
plus the root node). Note that the set of leaves of Gi is (labelled by) Xi+1. Then the open game
Gi ◦ · · · ◦ G0 : (1, 1) → (Xi+1,RN ) is given by the following:

• ΣGi◦···◦G0 is the set of behavioural strategy profiles of Gi, namely ΣGi◦···◦G0 =
∏i

j=1(Xj/∼j →
D(Aj))

• (Gi ◦ · · · ◦ G0)(σ) is the optic (1, a, !), where a : 1 → D(Xi+1) is the probability distribution
on the leaf nodes of Gi resulting from playing the behavioural strategy profile σ

• Every context of Gi ◦ · · · ◦ G0 has the form

1 Xi+1

p

k′

Θ

RN

and thus is equivalent to one of the form (1, ∗, k) where ∗ is the unique distribution on one
point and k : Xi → D(RN ), by taking k to be the partial application of k′ : Θ×Xi+1 → D(RN )
to p : D(Θ). Then BGi◦···◦G0([∗, k])(σ) is the set of best responses to σ in the extensive form
game given by Gi together with payoffs, where the ith player’s payoff from the leaf node x ∈ Xi

is E[k(x)i] (where k(x)i is the ith marginal of the joint distribution k(x) : D(RN )).

By taking i = L in the previous lemma and then post-composing with GL+1, we obtain the
final result.
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Theorem 4.7.4. G = GL+1 ◦ · · · ◦ G0 : (1, 1) → (1, 1) is given by the following:

• The set of strategy profiles of G is the set of behavioural strategy profiles of the original
extensive form game G

• Every context is equivalent to one of the form (1, ∗, ∗), and for a behavioural strategy profile
σ, BG(1, ∗, ∗)(σ) is the set of best responses to σ in G

5 Conclusion
In this last section we will discuss the wider context of this work, as well as some work in progress
and future work.

Computer support. Due to the complexity of the definition of Bayesian open games, in practice
computer support is necessary to work with real models in the framework. We have created such a
software tool in the form of a Haskell library (available at https://github.com/jules-hedges/open-g
ames-hs), consisting of a ‘core’ implementation of the monoidal category of Bayesian open games,
together with a domain-specific embedded programming language that provides a higher level of
description roughly equivalent to string diagrams. We have found this to be a practical tool for
modelling, especially for rapid prototyping of models, in a variety of applied domains including
auction design, governance modelling and blockchain protocol modelling. The implementation of
this tool, and these applied case studies, will be described in a series of future papers.

Non-finitary probability. In Section 3 we gave a general theory of open games over a monoidal
category. And then, in Section 4 specialised it to the Kleisli category of the finite support probabil-
ity monad. This restriction to finite support distributions was done for simplicity, but the general
machinery we have introduced is applicable to any category of probabilistic functions. Examples
include the Kleisli categories of the Giry monads on measurable and Polish spaces [16], the Radon
monad on compact Hausdorff spaces [38], and the Kantorovich monad on complete metric spaces
[11]. In fact, we believe that Bayesian open games can be formulated over any Markov category
[10], which encompasses all of these examples.

Other solution concepts. In this paper we have focused on the solution concept of Bayesian
Nash equilibrium. It is one of the central solution concepts in applied economic modelling as it
allows us to model situations of asymmetric information. It is probably no exaggeration that for
most economic situations information is asymmetric and thus the default. Hence, this paper is an
important step in making the theory of open games practically useful for a wide range of situations.
As a side effect, both ordinary mixed strategy Nash equilibria and correlated equilibria are obtained
as special cases of Bayesian Nash equilibrium. However, for dynamic games it is common to use
equilibrium refinements such as perfect Bayesian equilibrium or sequential equilibrium, in which
individual players’ beliefs are represented explicitly.9 It is an open question whether it is possible
to extend compositional game theory with these stronger solution concepts.

Behavioural aspects. A currently-unexplored benefit of Bayesian open games is that neither
maximisation of real numbers nor Bayes’ law is involved in the definition of the categorical struc-
ture, and instead both enter when decisions are defined. This means that the same framework can
equally well accommodate agents who neither perfectly maximise, nor update their beliefs strictly
according to Bayes’ law. This could make our framework useful for behavioural game theory, where
such alternatives are considered (see, e.g. [4]).

9See Chapter 7 in [29] for a general discussion of equilibrium refinements and Chapter 9 in [28] for a discussion
of refinements for dynamic games.
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