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Regulatory networks depict promoting or inhibiting interactions between molecules
in a biochemical system. We introduce a category-theoretic formalism for regulatory
networks, using signed graphs to model the networks and signed functors to describe
occurrences of one network in another, especially occurrences of network motifs. With
this foundation, we establish functorial mappings between regulatory networks and other
mathematical models in biochemistry. We construct a functor from reaction networks,
modeled as Petri nets with signed links, to regulatory networks, enabling us to precisely
define when a reaction network could be a physical mechanism underlying a regulatory
network. Turning to quantitative models, we associate a regulatory network with a
Lotka-Volterra system of differential equations, defining a functor from the category of
signed graphs to a category of parameterized dynamical systems. We extend this result
from closed to open systems, demonstrating that Lotka-Volterra dynamics respects not
only inclusions and collapsings of regulatory networks, but also the process of building
up complex regulatory networks by gluing together simpler pieces. Formally, we use the
theory of structured cospans to produce a lax double functor from the double category
of open signed graphs to that of open parameterized dynamical systems. Throughout
the paper, we ground the categorical formalism in examples inspired by systems biology.

1 Introduction
The genes, proteins, and RNA molecules that comprise living cells interact in complex, varied ways
to sustain the cell throughout its lifecycle and respond to changes in its environment. Intensive
experimental study of these interactions is distilled in an idealized form as regulatory networks,
a kind of directed graph in which vertices represent molecules and edges represent interactions
between molecules (Figure 1). The edges are labeled with a positive or negative sign according
to whether the interaction is activating or inhibiting. Regulatory networks are the subject of a
large body of experimental and theoretical work, notably reviewed by Alon [Alo07; Alo19] and
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Tyson et al. [TN10; TLK19] among others. Particular attention has been paid to network motifs
[Alo07; TN10], the simple but functionally meaningful patterns that recur frequently in regulatory
networks, and to various quantitative dynamics [TLK19] that can be assigned to the networks.

Ash1

Cdk1/ClbS Sld2

Figure 1: A small biochemical regulatory network: regulation of Sld2 by Cdk1 or ClbS with Ash1 as a
predicted transcription factor. Adapted from Csikász-Nagy et al. [Csi+09, Figure 3C].

Although regulatory networks are simple enough to define mathematically—we shall define them
to be directed graphs, possibly with multiple edges and loops, whose edges are assigned a positive
or negative sign—important scientific concepts involving them, such as occurrences of motifs in
networks and biochemical mechanisms generating networks, are often treated imprecisely. Likewise
for relationships between regulatory networks and other mathematical models in biochemistry,
particularly dynamical models based on ordinary or stochastic differential equations. Hence a first
aim of this paper is to put certain concepts and relations concerning regulatory networks on a firm
mathematical footing. To do so, we will use methods from category theory.

Category theory, in both the small and the large, is a natural tool for this study. In saying that
a motif occurs in a network, one should allow for the possibility that the occurrence is indirect,
involving a sequence of appropriately signed interactions. For example, positive autoregulation can
occur directly but also indirectly through a double-negative feedback loop. Since a small category
is nothing other than a graph in which consecutive edges can be composed, subject to certain laws,
regulatory networks should be viewed not only as signed graphs (Section 2.1) but also as signed
categories freely generated by those (Section 2.2). Sign-preserving functors, unlike sign-preserving
graph homomorphisms, can express indirect occurrences and are in this sense a better notion of
morphism for regulatory networks. Here we are doing category theory in the small, using categories
as algebraic structures comparable to familiar ones like graphs, groups, and monoids.

Having laid these foundations for regulatory networks, we turn to category theory in the large, a
mathematical theory of structure well suited to describe the passages between regulatory networks
and other mathematical models of biochemical systems. Formally speaking, these passages are
functors into or out of the category of regulatory networks. Making a functor is significantly stronger
than making an objects-only mapping, as is typically done in the literature, since if morphisms
of signed graphs formalize relationships between different regulatory networks, then functorality
requires that these relationships be transported to or from other models of interest. By contrast,
an objects-only mapping is, abstractly speaking, entirely unconstrained and so is capable of acting
highly irregularly across different models of a given class. Functorality thus serves as a kind of
safeguard for model transformation: it does not, on its own, ensure that a transformation makes
good scientific sense but it does impose nontrivial logical constraints and coherences.

A first illustration of this principle is the connection between regulatory networks and biochemical
reaction networks (Section 2.3). When modeling the complex biochemical systems that constitute a
living cell, it is often practically necessary to abstract away certain details of the underlying chemical
processes. Regulatory networks generally do not capture all the species or reactions involved in
a given system; nor can they capture multispecies reactions faithfully because they describe only
pairwise interactions. Given that regulatory networks are, to some degree, phenomenological models,
it is natural to ask whether a given network could arise as a summary of a specific chemical process.
The latter are described by biochemical reaction networks, graph-like structures allowing reactions
or transitions with multiple inputs and outputs. Inspired by graphical syntax from systems biology
[Voi00; Voi13], we formalize reaction networks as “Petri nets with links,” and we construct a functor
from the category of Petri nets with signed links to the category of signed graphs. This functor
enables us to propose a formal definition for when a reaction network could be a mechanism for a
regulatory network, a concept that is rarely if ever treated in a precise way.

This concludes the content of Section 2. In Section 3, we turn from qualitative to quantitative
analysis, seeking a functorial assignment of continuous dynamics to regulatory networks. Although

Compositionality, Volume 6, Issue 2 (2024) 2



A compositional account of motifs, mechanisms, and dynamics in biochemical regulatory networks

rarely made explicitly functorial, systematic ways to formulate a model belonging to a mathematically
homogeneous class of models are ubiquitous in science. Voit calls these “canonical representations”
or “canonical models,”1 and identifies Lotka-Volterra models and BST models/S-systems as two
prominent examples in biology [Voi13, §3]. Reflecting their phenomenological status, regulatory
networks do not admit a single, obvious dynamical interpretation, and so a wide variety of dynamical
models have been considered, spanning the discrete and continuous, deterministic and stochastic
[TLK19]. We consider Lotka-Volterra systems of ordinary differential equations. While not
necessarily the most biologically plausible, Lotka-Volterra systems are among the simplest possible
continuous models and so are a natural place to begin a functorial study.

A Lotka-Volterra system of equations has the form

ẋi = ρi xi +
n∑

j=1
βi,j xi xj , i = 1, . . . , n.

or equivalently, has logarithmic derivatives that are affine functions of the state variables:

d

dt
[log xi(t)] = ρi +

n∑
j=1

βi,j xj(t), i = 1, . . . , n.

The coefficients ρi specify baseline rates of growth or decay, according to their sign, and the
coefficients βi,j rates of activation or inhibition, according to their sign. We construct a functor
that sends a signed graph (regulatory network) to a Lotka-Volterra model that constrains the signs
of the rate coefficients (Section 3.2). As a prerequisite, we define a category of parameterized
dynamical systems (Section 3.1), a construction of intrinsic interest that is by no means restricted
to Lotka-Volterra dynamics. By working with signed graphs, rather than merely graphs, we ensure
that scientific knowledge about whether interactions are promoting or inhibiting is reflected in both
the syntax and the quantitative semantics.

In order to comprehend complex biological systems, we must decompose them into small, readily
understandable pieces and then compose them back together to reproduce the behavior of the
original system. This is the mantra of systems biology, which stresses that compositionality is no
less important than reductionism in biology. With this motivation, a secondary aim of this paper
is to extend the above constructions from closed systems to open ones, which can be composed
together by gluing them along their interfaces. Mathematically, we pass from categories to double
categories2 [Gra19], two-dimensional categorical structures in which the usual morphisms of systems
compose along one direction (by convention, the “vertical” one) and open systems compose along
the other direction (the “horizontal” one). The double categories of open systems are further
equipped with monoidal products, enabling systems to be composed not just in sequence but also
in parallel. Among other results, we show that the Lotka-Volterra dynamics functor extends to a
monoidal lax double functor from the monoidal double category of open signed graphs to that of
open parameterized dynamical systems (Section 3.3).

The mathematics developed here is motivated by biochemistry but need not be restricted to it.
Famously, Lotka-Volterra systems originated in ecology to model predator-prey dynamics [Lot25].
Regulatory networks and Lotka-Volterra systems can be used as generic models of entities that
“regulate” each other in some manner, be it at the scale of individual cells or animal ecosystems.
Regulatory networks are highly reminiscent of the causal loop diagrams in system dynamics [Ste00,
Chapter 5], where the latter explicitly label feedback loops and their polarities.

The language of category theory is indispensable to this work but the level of knowledge assumed
of the reader is not constant. We assume throughout that the reader is familiar with the basic
notions of category theory, such as categories, functors, and natural transformations. Our main
reference for facts about category theory is Riehl’s text [Rie16], although there are many others. In
the definitions and theorem statements, we have tried to minimize the technical level and explicate

1“Canonical” models in systems biology should not be confused with the unrelated, in fact incompatible, notion of
“canonical” constructions in category theory.

2Early work on categorical systems theory, including on structured cospans [FS07], was based on bicategories. For
technical reasons explained in [Pat23], it is increasingly common to use double categories instead, as in recent work
on structured cospans [BC20]. This entails no loss since every double category has an underlying bicategory.
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the ideas in concrete terms. In the proofs, we have aimed for efficiency and freely use concepts and
results from the literature that do not appear in the main text. The reader can omit the proofs
without disrupting the continuity of the paper.

Acknowledgments. The authors thank the American Mathematical Society (AMS) for hosting
the 2022 Mathematical Research Community (MRC) on Applied Category Theory, where this
research project began. The AMS MRC was supported by NSF grant 1916439. We thank John
Baez, our group’s mentor at the MRC, for suggesting this project and for much helpful advice
along the way. Authors Fairbanks, Patterson, and Shapiro acknowledge subsequent support from
the DARPA ASKEM and Young Faculty Award programs through grants HR00112220038 and
W911NF2110323. Author Ocal acknowledges subsequent support from an AMS-Simons Travel
Grant and from the Hausdorff Research Institute for Mathematics funded by the German Research
Foundation (DFG) under Germany’s Excellence Strategy - EXC-2047/1 - 390685813.

2 Qualitative analysis: motifs and mechanisms
2.1 Regulatory networks as signed graphs
To begin, we clarify the notion of graph to be used throughout in this paper. The following definition
is standard among category theorists. In other fields, it might be called a “directed multigraph,”
but we will call it simply a “graph.”

Definition 2.1 (Graphs). The schema for graphs is the category Sch(Graph) freely generated
by two parallel morphisms:

V E
src

tgt
.

A graph is a functor X : Sch(Graph)→ Set, also known as a copresheaf on Sch(Graph).3 A graph
homomorphism from a graph X to another graph Y is a natural transformation ϕ : X → Y .
Graphs and graph homomorphisms form the category Graph.

To restate the definition in explicit terms, a graph X consists of

• a set X(V ) of vertices;
• a set X(E) of edges; and
• functions X(src), X(tgt) : X(E)→ X(V ), assigning to each edge its source and target.

A graph homomorphism ϕ : X → Y consists of a function ϕV : X(V )→ Y (V ), the vertex map,
and another function ϕE : X(E)→ Y (E), the edge map. These maps must preserve sources and
targets, meaning that the following squares commute:

X(E) X(V )

Y (E) Y (V )

X(src)

ϕE

Y (src)

ϕV

X(E) X(V )

Y (E) Y (V )

X(tgt)

ϕE

Y (tgt)

ϕV
.

We now turn to the main notion of this section, signed graph. Write Sgn for the set of (nonzero)
signs, whose two elements may be denoted {1,−1} or {+,−}. The set of signs is an abelian group,
isomorphic to the cyclic group Z2, under the usual multiplication.

Definition 2.2 (Signed graphs). The category of signed graphs is the slice category

SgnGraph := Graph/Sgn,

where, by abuse of notation, Sgn is regarded as a graph with one vertex and two loops.

3Applied category theorists often take set-valued functors to be covariant (i.e., as copresheaves) rather than
contravariant (i.e., as the more traditional presheaves), for reasons of convenience visible in works such as [Spi21].
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Unpacking the definition, a signed graph is seen to be a graph X equipped with a function
X(sgn) : X(E)→ Sgn that assigns a sign to each edge. Given signed graphs X and Y , a morphism
of signed graphs from X to Y is a graph homomorphism ϕ that preserves signs, meaning that
the following triangle commutes:

X(E) Y (E)

Sgn
X(sgn) Y (sgn)

ϕE

.

Signed graphs are a mathematical description of the regulatory networks studied in systems
biology [Alo07; TN10]. For the purposes of this paper, we will simply define a regulatory
network to be a signed graph. The vertices of the graph represent the components of the network,
which could be proteins, genes, or RNA molecules. Signed edges represent interactions between
components, where the source has the effect of either activating/promoting the target (positive
sign) or inhibiting/repressing it (negative sign). As is customary, we denote activation interactions
by arrows with pointed heads (−→) and inhibition interactions by arrows with flat heads (−−⊣).
For instance, the two drawings

x y

+

−

↭ x y

represent the same network, a negative feedback loop in which x activates y, which in turn inhibits
x [TN10, Scheme 1, Motif B].

In the literature [TN10], regulatory networks are often represented mathematically as sign-valued
matrices. This approach is a special case of ours in that an n-by-n matrix valued in {+1,−1, 0}
can be interpreted as a simple signed graph on n vertices, with signed edges defined by the nonzero
matrix elements. Unlike the matricial formalism, our formalism allows multiple edges between
the same pair of edges, which can model multiple interactions based on different mechanisms.
Allowing multiple edges and self-loops also ensures that graphs and signed graphs form well behaved
categories, as the following proposition shows.

Proposition 2.3. The category of signed graphs is complete (has all limits) and cocomplete (has
all colimits).

Proof. Because Graph is a copresheaf category, it is complete and cocomplete [Rie16, Proposition
3.3.9]. The slice category SgnGraph = Graph/Sgn is hence also complete and cocomplete [Rie16,
Proposition 3.5.5]; alternatively, this follows because slices of copresheaf categories are again
(equivalent to) copresheaf categories [Str00, Remark p. 303].

A morphism of signed graphs can do two things. Most obviously, it can pick out a signed graph
as a subobject of another one, via a sign-preserving subgraph embedding. A signed graph morphism
can also collapse multiple vertices onto a single vertex, and multiple edges onto a single edge with
the same sign, in the restrictive sense permitted by a graph homomorphism. To illustrate, consider
the following morphism inspired by Alon’s review [Alo07, Figure 5].

argR

argCBH argD argE argF argI

−→
argR

arg∗

(1)

The network in the domain is a “single-input module” in the arginine biosynthesis system, in which
the regulator argR represses five different enzymes (argCHB, argD, etc.) involved in producing
arginine. The morphism above forgets the distinction between these enzymes, collapsing them
into a catch-all entity labeled “arg∗”. These two functions—embedding and collapsing—are all
that a signed graph morphism can do. More precisely, any morphism of signed graphs factors
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essentially uniquely as an epimorphism (morphism with surjective vertex and edge maps) followed by
a monomorphism (morphism with injective vertex and edge maps), using the epi-mono factorization
available in any copresheaf category, or more generally in any topos [MM94, §IV.6]. In the next
section we will consider a more flexible notion of morphism between signed graphs.

Colimits of signed graphs can be used to construct a category, or rather a double category, of
open signed graphs. Composition of open signed graphs formalizes the process of building large
regulatory networks from smaller pieces, including network motifs.

Proposition 2.4 (Open signed graphs). There is a symmetric monoidal double category of open
signed graphs, Open(SgnGraph), having

• as objects, sets A, B, C, . . . ;
• as vertical morphisms, functions f : A→ B;
• as horizontal morphisms, open signed graphs, which consist of a signed graph X together

with a cospan of sets A0
ℓ0−→ X(V ) ℓ1←− A1;

• as cells, morphisms of open signed graphs (X, ℓ0, ℓ1) → (Y, m0, m1), which consist of
a map of signed graphs ϕ : X → Y along with functions fi : Ai → Bi, i = 0, 1, making the
following diagram commute:

A0 X(V ) A1

B0 Y (V ) B1

ℓ0

f0

ℓ1

ϕV

m0

f1

m1

.

Vertical composition is by composition in Set and in SgnGraph. Horizontal composition and monoidal
products are by pushouts and coproducts in SgnGraph, respectively, viewing the sets in the feet of
the cospans as discrete signed graphs.

Proof. To construct this symmetric monoidal double category, we use the method of structured
cospans [FS07] in its double-categorical form [BC20]. The categories of sets and of signed graphs
are related by an adjoint pair of functors

Set SgnGraph
Disc

evV

⊣ .

Here evV : SgnGraph→ Set is the evaluation at V functor, sending a signed graph X to its set of
vertices X(V ) and a morphism of signed graphs ϕ to its vertex map ϕV , and Disc : Set→ SgnGraph
is the discrete signed graph functor, sending a set A to the signed graph with vertex set A
and no edges. We obtain a symmetric monoidal double category of open signed graphs as the
L-structured cospans for the functor L := Disc : Set→ SgnGraph [BC20, Theorems 2.3 and 3.9].

To show that this symmetric monoidal double category is the same one in the proposition
statement, suppose that L ⊣ R : A → X is an adjoint pair of functors, where in our application
L = Disc and R = evV . By the defining bijection of an adjunction, L-structured cospans, i.e.,
objects A0 and A1 in A together with a cospan L(A0) → X ← L(A1) in X, correspond exactly
to “R-decorated cospans,” i.e., an object X in X together with a cospan A0 → R(X)← A1 in A.
Furthermore, by the naturality of this bijection [Rie16, Lemma 4.1.3], morphisms of L-structured
and R-decorated cospans

L(A0) X L(A1)

L(B0) Y L(B1)

L(f0) ϕ L(f1) ↭

A0 R(X) A1

B0 R(Y ) B1

f0 R(ϕ) f1

related by the adjunction are equivalent in that one diagram commutes if and only if the other does.
We will tacitly reuse this reasoning in future constructions, such as Proposition 2.10 below.
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Let us illustrate compositionality as a means of building larger regulatory networks from smaller
ones. The following example is adapted from Keurentjes et al. [Keu+11, Figure 1], later reproduced
in [Voi18, Figure 1.7].
Example 2.5 (Stress response system in plants). When a plant perceives stress factors, it has
three main biotic responses, called salicylic acid (SA) signaling, jasmonic acid (JA) signaling, and
ethylene (ET) signaling. These processes promote the transcription factors WRKY, MYC2, and
ERF, respectively, which in turn activate the genes responsible for responding to SA, JA, and ET.
As it appears in [Keu+11, Figure 1] and [Voi18, Figure 1.7], the regulatory network governing these
biotic responses

SA JA ET

ETR1

NPR1 JAZ EIN2

WRKY MYC2 ERF

SA-responsive genes JA-responsive genes ET-responsive genes

(2)

has five discernible subsystems: three signaling processes involving SA, JA, and ET, indicated by
the dashed boxes, and two interactions between these processes, namely the inhibitions of WRKY
and ERF by MYC2 that constitute SA-JA and JA-ET interactions. These subsystems and their
functions were identified empirically, and it is known that they interact in the prescribed manner.

Following the decomposition identified by the biologists, we build up the overall system from
smaller subsystems. Namely, we identify five subsystems and compose them from left to right. We
could equally well have identified other subsystems or done the compositions in a different order,
yielding an equivalent system. Horizontal associativity in the double category Open(SgnGraph),
constructed in Proposition 2.4, ensures that any order of composition yields the same result, up to
isomorphism.

We choose to separate out the five subsystems into small, individual regulatory networks:

SA

NPR1

WRKY

SA-responsive genes

JA

JAZ

MYC2

JA-responsive genes

ET

ETR1

EIN2

ERF

ET-responsive genes

WRKY

MYC2

ERF

MYC2

(3)

To turn these into open regulatory networks, as defined in Proposition 2.10 above, we will regard
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the SA signaling subsystem as having no inputs and one output as follows.

SA

NPR1

WRKY •

SA-responsive genes

(4)

Similarly, ET signaling will admit one input and no outputs.

ET

ETR1

EIN2

• ERF

ET-responsive genes

(5)

JA signaling will admit one input and one output.

JA

JAZ

• MYC2 •

JA-responsive genes

(6)

Finally, the inhibition of WRKY by MYC2 will have one input to WRKY and one output from
MYC2, whereas the inhibition of ERF by MYC2 will have one output from ERF and one input
from MYC2.

• WRKY

MYC2 •

ERF •

• MYC2
(7)

The only thing left to do is compose (from left to right) these open regulatory nets. Starting with
Equation (6), we compose it with the left part of Equation (7) by first putting them side by side
and identifying the intermediate sets

SA

NPR1

WRKY • WRKY

SA-responsive genes MYC2 •

(8)

which we then remove, together with its outgoing arrows, while identifying the vertexes they
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connect.

SA

NPR1

WRKY

SA-responsive genes MYC2 •

(9)

Rearranging the picture slightly for a better visualization, we obtain the open regulatory network
that results from the composition:

SA

NPR1

WRKY MYC2 •

SA-responsive genes

. (10)

Next, composing Equations (6) and (10) yields

SA JA

NPR1 JAZ

WRKY MYC2 •

SA-responsive genes JA-responsive genes

. (11)

Then composing Equation (11) with the right part of Equation (7) yields

SA JA

NPR1 JAZ

WRKY MYC2 ERF •

SA-responsive genes JA-responsive genes

. (12)

Finally, composing Equations (5) and (13) yields

SA JA ET

ETR1

NPR1 JAZ EIN2

WRKY MYC2 ERF

SA-responsive genes JA-responsive genes ET-responsive genes

(13)

which corresponds to the open regulatory network governing the biotic responses (cf. Equation (2)).
As mentioned at the beginning of the example, although we made a choice of subsystems and a
choice in the order of compositions, any other choice will give an isomorphic result by the horizontal
associativity of the double category Open(SgnGraph).
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2.2 Refining regulatory networks using signed categories and functors
While morphisms of signed graph have their uses, they do not capture the important idea of refining
regulatory networks, in which an interaction in one network is realized as a composite of several
interactions in another. To express refinement, we must generalize our notion of morphism from
graph homomorphisms to functors. This, in turn, requires the concept of a signed category.

Definition 2.6 (Signed categories). The category of signed categories is the slice category

SgnCat := Cat/Sgn,

where Cat is the category of small categories and the group of signs, Sgn, is regarded as a category
with one object and two morphisms.

Unpacking the definition, a signed category is a category C in which every morphism f is
assigned a sign sgn(f) ∈ {1,−1} in a functorial way, meaning that

sgn(x0
f1−→ x1

f2−→ · · · fn−→ xn) =
n∏

i=1
sgn(fi)

for every n ≥ 0 and every sequence of composable morphisms f1, . . . , fn. In particular (n = 0), the
identity morphisms have positive sign. A morphism of signed categories, or signed functor,
is a functor F : C→ D between signed categories that preserves the signs, meaning that

sgnD(F (f)) = sgnC(f)

for every morphism f in C.
Since our aim is to have a more flexible notion of morphism between signed graphs, we will

mostly restrict ourselves to those signed categories that are freely generated by a signed graph. The
free signed category or signed path category functor

Path : SgnGraph→ SgnCat

sends a signed graph X to the signed category Path(X) having

• as objects, the vertices of X;
• as morphisms from x to y, the paths in X from x to y, whose sign is defined to be the product

of the signs of the edges comprising the path.

Composition of paths is by concatenation, which clearly preserves the sign. The identity morphism
at x is the empty path at x, which has positive sign. The functor Path on signed graphs is completely
analogous to the usual free category functor on graphs, and as such is a left adjoint to the forgetful
functor from signed categories to signed graphs. Signed categories are likewise algebras for the
corresponding monad on the category SgnGraph.

By convention, if X and Y are signed graphs, we say that a signed functor from X to Y is a
signed functor F : Path(X)→ Path(Y ) between the corresponding signed path categories. Since
the morphisms of Path(X) are freely generated by the edges in X, a signed functor from X to Y is
uniquely determined by a morphism of signed graphs from X to the underlying signed graph of
Path(Y ). This means that each edge in X is sent to an appropriately signed path of edges in Y ,
which can be regarded as a refinement of the relationship that the edge represents.

Definition 2.7 (Category of refinements). The category SgnGraphPath has as objects signed graphs
and as morphisms signed functors between them; in other words, it is the Kleisli category for the
free signed category monad on SgnGraph.

We now have a precise language with which to classify network motifs and their occurrences.
As a first example, Alon identifies four types of incoherent feedforward loop (FFL) involving three
components,

x x x x

y y y y

z z z z

,
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Motif Generic instance

Positive autoregulation L+ :=
{
•

}
Negative autoregulation L− :=

{
•

}
Coherent feedforward loop I++ :=

{
• •

}
Incoherent feedforward loop I± :=

{
• •

}
Positive feedback loop L++ :=

{
• •

}
Negative feedback loop L± :=

{
• •

}
Double-negative feedback loop L−− :=

{
• •

}
Table 1: Common motifs in biochemical regulation networks [Alo07; TN10]

those of type 1, 2, 3, and 4, respectively [Alo07, Figure 2a]. Besides having three components,
what these motifs have in common is that there exists a signed functor into each of them from
the signed graph I± :=

{
• •

}
having two parallel arrows of opposite sign. The network I± is

thus the “generic” incoherent feedforward loop, in the sense that signed functors out of it refine
the pattern in specific ways. A similar situation holds for other common network motifs (Table 1),
which motivates the following definition.

Definition 2.8 (Motif instance). Given a signed graph A, regarded as a motif, an instance or
occurrence of the motif A in a network X is a monic signed functor A↣ X.

Note that a signed functor is a monomorphism exactly when the functor is an embedding of
categories, i.e., an injective-on-objects, faithful functor. Requiring the functor in the definition to
be monic excludes “degenerate instances” of motifs where vertices or edges are identified.

Now, should the incoherent FFL be regarded as a network motif, or is it the more specific types,
such as the incoherent FFL of type 1, that are motifs? From our point of view, they are all equally
motifs but they have different degrees of specificity, and the functorial language clarifies how motifs
are iteratively refined. Specifically, an instance of an incoherent FFL of type 1 in a network X
also gives an instance of an incoherent FFL in X (of unspecified type), simply by composing the
monomorphisms involved:

I± ∼=
{

x z
}
↣

{
x y z

}
↣ X.

Similarly, in the notation of Table 1, any instance of double-negative feedback (L−−) also gives an
instance of positive autoregulation (L+) [CP09], via the monomorphism L+ ↣ L−− that sends the
positive loop to the double-negative 2-cycle.

For any choice of motif A, the mapping that sends a regulatory network X to the set of
occurrences of A in X is a representable functor

Hom(A,−) : (SgnGraphPath)m → Set,

where (SgnGraphPath)m denotes the wide subcategory of monomorphisms in SgnGraphPath. The
functorality implies that, for any motif A, a monomorphism between regulatory networks induces a
map between instances of A in those networks.

We now extend the construction of open signed graphs to open signed categories.

Proposition 2.9. The category of signed categories is complete and cocomplete.

Proof. Because the category Cat is complete and cocomplete [Rie16, Proposition 3.5.6], its slice
SgnCat = Cat/Sgn is also [Rie16, Proposition 3.5.5].
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Proposition 2.10 (Open signed categories). There is a symmetric monoidal double category of
open signed categories, Open(SgnCat), having

• as objects, sets A, B, C, . . . ;
• as vertical morphisms, functions f : A→ B;
• as horizontal morphisms, open signed categories, which consist of a signed category C

together with a cospan of sets A0
ℓ0−→ Ob(C) ℓ1←− A1;

• as cells, morphisms of open signed categories (C, ℓ0, ℓ1)→ (D, m0, m1), which consist of
a signed functor F : C→ D along with functions fi : Ai → Bi, i = 0, 1, making the diagram
commute:

A0 Ob(C) A1

B0 Ob(D) B1

ℓ0

f0

ℓ1

Ob(F )

m0

f1

m1

.

Vertical composition is by composition in Set and in SgnCat. Horizontal composition and monoidal
products are by pushouts and coproducts in SgnCat, respectively, viewing the sets in the feet of
cospans as discrete signed categories.

Moreover, the signed path category functor extends to a symmetric monoidal double functor

Path : Open(SgnGraph)→ Open(SgnCat).

Proof. We take Open(SgnCat) to be the symmetric monoidal double category of L′-structured
cospans for the functor L′ := Disc : Set→ SgnCat involved the composite adjunction

Set SgnCat = Set SgnGraph SgnCat
Disc

Ob

Disc

evV U

Path

⊣ ⊣ ⊣ .

On the right hand side, the first adjunction was already used in the proof of Proposition 2.4, and
the second adjunction is the free-forgetful adjunction between signed graphs and signed categories.

To prove the last statement, we notice that all functors involved in the commutative square

Set SgnGraph

Set SgnCat

L=Disc

L′=Disc

Path

are left adjoints, hence preserve colimits. We can therefore appeal to [BC20, Theorem 4.3] to obtain
a symmetric monoidal double functor

Open(SgnGraph) ∼= LCsp(SgnGraph)→ L′Csp(SgnCat) ∼= Open(SgnCat).

2.3 Mechanistic models as Petri nets with links
However challenging they may be to identify through experiments and data analysis, regulatory
networks still only summarize how the components of a complex biochemical system interact.
Regulatory networks typically include only a subset of the system’s components, and they do
not model individual reactions and processes, only pairwise promoting or inhibiting interactions
between components. In this sense, regulatory networks are not fully mechanistic models, even if
they have a stronger causal interpretation than, say, a correlation matrix.

By contrast, mechanistic models in biochemistry model individual reactions, which requires a
different formalism. Pictures like the following, adapted from Voit’s review [Voi13, Figure 4], are
common in systems biology.

A B D

C

−

(14)
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This diagram possesses two distinctive features. First, directed hyperedges represent reactions
having a number of inputs or outputs different than one. There are, for example, hyperedges from
B and C to D, from nothing to A (an inflow), and from D to nothing (an outflow). If, in lieu of
hyperedges, we introduce a second type of vertex, we obtain a structure similar to a Petri net

A B

C

D

−

(15)

but with the second distinctive feature of having signed links from the first type of vertices (species)
to the second type (transitions), whose signs indicate promotion or inhibition.

In this section, we explain how a Petri net with signed links can provide a mechanism for a
regulatory network. This involves constructing a functor from Petri nets with signed links to signed
graphs, approximating the former as the latter. As a prerequisite, we need a precise definition of a
Petri net with links.

Definition 2.11 (Petri net with links). The schema for Petri nets with links is the category
Sch(LPetri) freely generated by these objects and morphisms:

I

S O T

L

srcL tgtL

srcI tgtI

tgtO srcO .

A Petri nets with links is a functor P : Sch(LPetri)→ Set, and a morphism of these is a natural
transformation. A morphism ϕ : P → Q preserves arities if the naturality squares associated
with the morphisms I → T and O → T are also pullback squares:

P (I) P (T )

Q(I) Q(T )

P (tgtI )

ϕI ϕT

P (tgtI )

⌟

P (O) P (T )

Q(O) Q(T )

P (srcO)

ϕO ϕT

P (srcO)

⌟
.

Petri nets with links and their morphisms form the category LPetri.

To explicate the definition, a Petri net with links P consists of

• a set P (S) of species;
• a set P (T ) of transitions;
• a set P (I) of input arcs going from species to transitions, via maps P (srcI) : P (I)→ P (S)

and P (tgtI) : P (I)→ P (T );
• a set P (O) of output arcs going from transitions to species, via maps P (srcO) : P (O)→ P (T )

and P (tgtO) : P (O)→ P (S); and finally
• a set P (L) of links going from species to transitions, via maps P (srcL) : P (L)→ P (S) and

P (tgtL) : P (L)→ P (T ).

The property of preserving arities, called “etale” by Kock [Koc22, §3.4], means that a morphism
ϕ : P → Q of Petri nets with links preserves the input and output arities of all transitions. Namely,
for each transition t in the net P the map ϕI : P (I)→ Q(I) restricts to a bijection between the
input arcs to t and to ϕT (t), and similarly the map ϕO : P (O) → Q(O) restricts to a bijection
between the output arcs from t and from ϕT (t). This property seems appropriate for many purposes,
including in biochemistry, but for mathematical convenience we will not always assume it.
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Remark 2.12 (Related literature). While not appearing in the literature in precisely this form, our
definition of a Petri net with links is closely related to several existing concepts. Kock has described
Petri nets as copresheaves on a category with objects S, T, I, O [Koc22], calling them whole-grain
Petri nets to distinguish them from classical Petri nets, whose semantics are subtly different
[Bae+21]. Meanwhile, the concept of a link is essential to stock and flow diagrams, originating in the
field of system dynamics [For61; Ste00] and recently given a rigorous categorical account [Bae+22].
The classical literature on Petri nets has also considered Petri nets equipped with positive/context
and negative/inhibitory arcs [AF73], called inhibitor nets [Hac76; Bal+04]. Roughly speaking, our
Petri nets with signed links are related to inhibitor nets ([Bal+04, Definition 1]) in the same way
that Kock’s whole-grain Petri nets are related to classical Petri nets; in both cases, working with
copresheaves has technical advantages. Finally, we note that the Petri nets with catalysts proposed
by Baez, Foley, and Moeller [BFM19] differ significantly from Petri nets with links: the former fix
a subset of the species to be catalysts throughout the net, whereas the latter uses links to make
catalyzation specific to individual reactions.
Remark 2.13 (Petri nets as typed graphs). Like bare Petri nets, Petri nets with links can be
described as graphs with two types of vertices. To see this, take the graph

TLPetri :=

 S T

I

L

O


with vertices S and T and edges I, O, and L. The category of Petri nets with links and natural
transformations is isomorphic to the slice category Graph/TLPetri. Moreover, the schema category
Sch(LPetri) is isomorphic to the category of elements of the functor TLPetri : Sch(Graph) → Set,
exemplifying a general fact about slices of copresheaf categories [Str00, Remark p. 303].

Petri nets with signed links are defined analogously to signed graphs (Definition 2.2).

Definition 2.14 (Petri nets with signed links). The category of Petri nets with signed links
is the slice category

SgnPetri := LPetri/PSgn,

where PSgn is the Petri net with links having one species, one transition, one input arc, one output
arc, and two links, namely the elements of Sgn.

Incidentally, the morphism P → PSgn defining a Petri net with signed links does not preserve
arities unless every transition in P has exactly one input and one output.

We now turn to the main construction of this section, a functor that sends a Petri net with
signed links to the signed graph of interactions implied by the net. On the example in Equations (14)
and (15), this functor gives the signed graph

A B D

C

. (16)

In general, the resulting signed graph has the Petri net’s species as vertices, and has signed edges
of the following four types:

(a) for every input-output pair to a transition, a positive edge from input to output;
(b) for every input to a transition, a negative self loop, representing consumption by the reaction;
(c) for every signed link, an edge of opposite sign going from the linked species to each input to

the linked transition;
(d) for every signed link, an edge of equal sign going from the linked species to each output from

the linked transition.
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(a) Input-output pair to
transition (b) Input to transition

(c) Input to transition with
incident link

(d) Output from transition
with incident link

Figure 2: Four different Petri nets with links. For each of these instances P , evaluating the representable
functor HomLPetri(P, −) : LPetri → Set gives the edges for one case in the case analysis that defines the
functor from Petri nets with signed links to signed graphs (Proposition 2.15).

All four cases are visible in the example of Equation (16). Each of these cases is detected by a
representable functor of the form

HomLPetri(P,−) : LPetri→ Set,

where P is one of the four Petri nets with links shown in Figure 2. Each net represents a “pattern”
whose matches produce edges in the signed graph.

The resulting functor SgnPetri→ SgnGraph, which restricts on vertices to the functor picking
out the set of species of the Petri net (representable by the Petri net with one species and no
transitions) and restricts on edges to the disjoint union of the four representable functors described
above, has the form of a familially representable functor between copresheaf categories. This type of
functor has been studied extensively within both pure (see, for instance, [Lei04, Appendix C]) and
applied category theory (see [Spi21]). To be consistent with our existing notation and to emphasize
that such functors have a useful computational interpretation, we adopt Spivak’s perspective that
they are data migration functors. In this framing, the schema category of a copresheaf category is
regarded as the schema for a database, a copresheaf on that category is regarded as a database
instance on the schema, and representable functors from the copresheaf category to Set are regarded
as conjunctive queries. A data migration functor between copresheaf categories is then one which
restricts on each component of the codomain to a disjoint union of conjunctive queries, or duc-query.

In order to apply this theory and precisely define the functor SgnPetri → SgnGraph, we fully
schematize the definitions of signed graphs and Petri nets with signed links. The schema for
signed graphs is the category Sch(SgnGraph) freely generated by these objects and morphisms:

V E A neg
src

tgt

sgn
.

A signed graph as in Definition 2.2 is equivalent to a functor X : Sch(SgnGraph)→ Set such that
X(A) = Sgn, the set of signs, and X(neg) : Sgn → Sgn is negation (i.e., multiplication by −1).
Note that negation is not needed to define the data of a signed graph but is relevant to the data
migration. A morphism of signed graphs X → Y is a natural transformation ϕ : X → Y whose
component at A is the identity function, ϕA = 1Sgn. We thus obtain a category isomorphic to
SgnGraph.

Similarly, the schema for Petri nets with signed links is the category Sch(SgnPetri) freely
generated by:

S

I O L A

T

neg

srcL

tgtL

srcI

tgtI

tgtO

srcO

sgn

one

.

A Petri net with signed links, as in Definition 2.14, is equivalent to a functor P : Sch(SgnPetri)→ Set
such that P (A) = Sgn, the map P (neg) : Sgn→ Sgn is negation, and P (one) : P (T )→ Sgn is the
constant map at +1. Again, these maps are needed for data migration, not for the data itself. A
morphism of Petri nets with signed links is a natural transformation ϕ : P → Q such ϕA = 1Sgn,
yielding a category isomorphic to SgnPetri.

With these preliminaries, we can construct the “interactions functor,” called “Int” for short,
from Petri nets with signed links to signed graphs.
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Proposition 2.15 (Interactions functor). A functor

Int : SgnPetri→ SgnGraph

is specified by the following functor from Sch(SgnGraph) to the category of duc-queries on Sch(SgnPetri):

Sch(SgnGraph)→ ⨿
((

SetSch(SgnPetri)
)op)

V 7→ S

E 7→ I ×T O + I + I ×T L + O ×T L

A 7→ A

src 7→ [srcI ◦πI , srcI , srcL ◦πL, srcL ◦πL]
tgt 7→ [tgtO ◦πO, srcI , srcI ◦πI , tgtO ◦πO]
sgn 7→ [one ◦πT , neg ◦ one ◦ tgtI , neg ◦ sgn ◦πL, sgn ◦πL]
neg 7→ neg .

(17)

Proof. We will define the functor Int : SgnPetri → SgnGraph as the restriction of a functor
SetD → SetC between the categories of copresheaves on D := Sch(SgnPetri) and C := Sch(SgnGraph).
In fact, the functor SetD → SetC is of the special kind known as a parametric right adjoint [Str00,
Definition p. 311] or a familially representable functor [Lei04, Appendix C].

According to the theory of data migration [Spi21, Corollary 2.3.6], giving a parametric right
adjoint SetD → SetC is equivalent to giving a functor from C to ⨿((SetD)op), the free coproduct
completion of the free limit completion of D. Our functor C → ⨿((SetD)op) is defined by Equa-
tion (17). The assignment of E ∈ C can also be described as the sum of the four representables
associated with the Petri nets with links in Figure 2.

Finally, the assignments A 7→ A and neg 7→ neg ensure that if P is a copresheaf on D with
P (A) = Sgn and P (neg) is negation, then applying this parametric right adjoint functor to P yields
a copresheaf X on C where again X(A) = Sgn and X(neg) is negation. Thus, this functor between
copresheaf categories restricts to a functor SgnPetri→ SgnGraph as claimed.

Using the interactions functor, we can give a formal account of what it means to have a
mechanistic model for a regulatory network.

Definition 2.16 (Mechanism). A mechanistic model for a regulatory network X is a Petri
net with signed links P together with an occurrence of X in Int(P ), i.e., a monic signed functor
X ↣ Int(P ).

For example, the Petri net with signed links in Equation (15) is a mechanistic model for a
regulatory network in which A and D participate in a positive feedback loop:

A D .

The next example is inspired by activation and inhibition of enzymes [Ing13, Chapter 3]. Besides
being of greater biological interest, it shows why Petri nets with links are better suited than bare
Petri nets to describe mechanisms.
Example 2.17 (Enzyme inhibition). Suppose that an enzyme E catalyzes the conversion of a
substrate S into a product P , and that an inhibiting agent I transforms the chemical configuration
of the reactive enzyme E into the inert compound F . Then the agent I inhibits the product P :

I P .

As a first attempt to model these interactions, consider the following Petri net without links.

I

E

S

F

P
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One might expect this Petri net to provide a mechanism for the inhibition of P by I, but at least
according to our definition, it does not. Applying the functor Int : SgnPetri→ SgnGraph yields the
regulatory network

I

E F

S P

in which there is no occurrence of the desired inhibition. If instead we allow links, the reaction
catalyzed by E should be written as having input S, output P , and a link from E to the transition.
A similar change is required for the reaction involving E, F , and I. A better model of the reactions
is thus the following Petri net with links.

IES FP

+ +

Applying the functor Int now yields the network

I

E F

S P

which indeed has an occurrence of I inhibiting P .

3 Quantitative analysis: parameters and dynamics
3.1 Parameterized dynamical systems
Pioneering the idea of functorial semantics for scientific models, Baez and Pollard extended the
mass-action model of reaction networks to a functor from the category of Petri nets with rates
into a category of dynamical systems [BP17]. In this picture, the reaction rate coefficients are
known constants associated with the reaction network. In practice, however, rate coefficients are
often unknown and must be extracted from existing literature or estimated from experimental data.
We therefore change our perspective slightly and consider dynamical systems not in isolation but
as parameterized families. This shift also turns out to have formal advantages: the category of
parameterized dynamical systems is better behaved than the category of dynamical systems, which
has too few morphisms.

To begin, we recall the dynamics functor, nearly identical to Baez-Pollard’s [BP17, Lemma 15]:

Lemma 3.1 (Dynamics). There is a functor Dynam : FinSet→ VectR that sends

• a finite set S to the vector space of algebraic vector fields v : RS → RS, where algebraic
means that the components of the vector field are polynomials in the state variables;

• a function f : S → S′ between finite sets to the linear transformation

(v : RS → RS) 7→ (f∗ ◦ v ◦ f∗ : RS′
→ RS′

),
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where the linear map f∗ : RS′ → RS is the pullback along f

f∗(x′)(i) := x′(f(i)), x′ ∈ RS′
, i ∈ S,

and the linear map f∗ : RS → RS′ is the pushforward along f

f∗(x)(i′) :=
∑

i∈f−1(i′)

x(i), x ∈ RS , i′ ∈ S′.

Proof. The functor Dynam : FinSet→ VectR can be constructed as the composite functor

FinSet ⟨D,F ⟩−−−−→ Vectop
R × VectR

PolyR(−,−)−−−−−−−→ VectR,

where F : FinSet → VectR, X 7→ RX is the free vector space functor (restricted to finite sets);
D : FinSetop → VectR is the dual vector space functor (restricted to F ), whose underlying set-valued
functor is

VectR(F (−),R) ∼= Set(−,R) : FinSetop → Set;

and PolyR(−,−) is the VectR-valued hom-functor that sends a pair of vector spaces to the vector
space of polynomial functions between them.4

The dynamics functor is the same one studied by Baez and Pollard except that we take the
vector space, rather than merely the set, of vector fields. That is because we are interested in
linearly parameterized dynamical systems. In calling the functor “dynamics,” we implictly identify a
vector field with the differentiable dynamical system that it generates. This common practice is not
entirely innocent since even when a system of differential equations depends linearly on parameters,
its solutions rarely do. We also note that the restriction to algebraic vector fields, as opposed to
smooth or even just continuous ones, is inessential but suffices for us and agrees with Baez-Pollard.

The dynamics functor is the main building block in constructing a category of parameterized
dynamical systems.

Definition 3.2 (Linear parameterizations). The category of linearly parameterized dynamical
systems is the comma category

Para(Dynam) := F/ Dynam,

where F : FinSet→ VectR, X 7→ RX is the free vector space functor restricted to finite sets.

So, by definition, a linearly parameterized dynamical system consists of a finite set P , the
parameter variables, and a finite set S, the state variables, together with a linear map

v : RP → Dynam(S)

sending each choice of parameters θ ∈ RP to an algebraic vector field v(θ). In more conventional
notation, we can write v(x; θ) := v(θ)(x) for x ∈ RS and θ ∈ RP . A morphism (P, S, v)→ (P ′, S′, v′)
of linearly parameterized dynamical systems is a pair of functions q : P → P ′ and f : S → S′

making the square
RP Dynam(S)

RP ′ Dynam(S′)

v

f∗◦(−)◦f∗

v′

q∗ (18)

commute, or equivalently making the equation

f∗(v(f∗(x′); θ)) = v′(x′; q∗(θ))

hold for all x′ ∈ RS′ and θ ∈ RP .

4For a coordinate-free description of polynomial maps between vector spaces, see [Car71, §1.6].
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While certainly not all dynamical models depend linearly on their parameters, a great many of
them do, including several important canonical models in biology and chemistry. The law of mass
action defines dynamical systems that depend linearly on the rate coefficients. The generalized
Lotka-Volterra equations, studied in the next section, are linear in the rate and affinity parameters.
Of course, the mass-action and Lotka-Volterra equations are nonlinear ODEs; linearity of a vector
field in state or in parameters are separate matters. Nevertheless, even for nonlinear models such
as Lotka-Volterra, linearity in parameters is a useful assumption that aides in the identifiability
analysis of the model [SRS14, §5].

To express important physical constraints and to define a semantics for signed graphs, we will
restrict the dynamical system and its parameters to be nonnegative. This is straightforward enough
but requires a bit of additional formalism.

Write R+ := {x ∈ R : x ≥ 0} for the semiring of nonnegative real numbers. A module over R+
is called a conical space, and the category of conical spaces and conic-linear (R+-linear) maps is
denoted Con := ModR+ . A conical space is a structure in which one can take linear combinations
with nonnegative real coefficients, just as a real vector space (R-module) is a structure in which
one can take linear combinations with arbitrary real coefficients. Any convex cone in a real vector
space is a conical space. Our main example is the nonnegative orthant of RS for some set S:
the function space RS

+ := {x : S → R+}, with conical combinations taken pointwise. A real vector
space can itself be regarded as a conical space; more precisely, the inclusion of semirings R+ ↪→ R
induces a forgetful functor VectR → Con by restriction of scalars.

Recall that a dynamical system is nonnegative if whenever the initial condition is in the
nonnegative orthant, its trajectory always remains in the nonnegative orthant. A dynamical system
of form ẋ = v(x) is nonnegative if and only if vi(x) ≥ 0 whenever x ≥ 0 componentwise and xi = 0
[HCH10, Proposition 2.1], in which case the vector field v is called essentially nonnegative
[HCH10, Definition 2.1]. Using this criterion, it is easy to see that a reaction network with mass-
action kinetics is nonnegative assuming the rate constants are nonnegative, as is a Lotka-Volterra
system for any choice of parameters. Hence both systems satisfy the obvious physical constraint
that no species should have negative concentration or population.

Lemma 3.3 (Nonnegative dynamics). There is a functor Dynam+ : FinSet→ Con that sends a
finite set S to the conical space of essentially nonnegative, algebraic vector fields v : RS → RS and
sends a function f : S → S′ to the transformation v 7→ f∗ ◦ v ◦ f∗.

Proof. The proof is similar to that of Lemma 3.1. It is clear that the essentially nonnegative functions
are stable under pointwise conical combinations, hence form a conical space. (They are, of course, not
stable under arbitrary linear combinations.) We just need to check that if v : RS → RS is essentially
nonnegative, then so is the transformed vector field f∗ ◦ v ◦ f∗ : RS′ → RS′ . Fix x′ ∈ RS′

+ and
i′ ∈ S′, and suppose that x′(i′) = 0. For every i ∈ f−1(i′), we have f∗(x′)(i) = x′(f(i)) = x′(i′) = 0
and so v(f∗(x′))(i) ≥ 0, whence the inequality of essential nonnegativity follows:

(f∗ ◦ v ◦ f∗)(x′)(i′) =
∑

i∈f−1(i′)

v(f∗(x′))(i) ≥ 0.

We now define the conical analogue of linearly parameterized dynamical systems.

Definition 3.4 (Conical parameterizations). The category of conically parameterized non-
negative dynamical systems is the comma category

Para(Dynam+) := F+/ Dynam+ .

where F+ : FinSet→ Con, X 7→ RX
+ is the free conical space functor restricted to finite sets.

So, a conically parameterized nonnegative dynamical system consists of finite sets P and S
together with a conic-linear map

v : RP
+ → Dynam+(S).

Proposition 3.5 (Colimits of parameterized dynamical systems). The categories of linearly and
conically parameterized dynamical systems are finitely cocomplete. Moreover, these finite colimits
are computed by colimits in FinSet of the parameter variables and of the state variables.
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Proof. The category FinSet has finite colimits and the functors F : FinSet → VectR and F+ :
FinSet→ Con preserve finite colimits, since they are composites of the inclusion FinSet ↪→ Set with
the left adjoints

Set VectR
F

U

⊣ and Set Con

F+

U+

⊣

to the underlying set functors on vector spaces and conical spaces. By Lemma 3.6 below, the comma
categories Para(Dynam) = F/ Dynam and Para(Dynam+) = F+/ Dynam+ have finite colimits,
which are preserved by the projection functors onto FinSet.

To illustrate, we describe the initial object and binary coproducts in Para(Dynam). The initial
linearly parameterized dynamical system has no parameter variables, no state variables, and the
unique (trivial) vector field on the zero vector space. The coproduct of two linearly parameterized
dynamical systems (P1, S1, v1) and (P2, S2, v2) has parameter variables P1 + P2, state variables
S1 + S2, and parameterized vector field

RP1+P2 ∼= RP1 ⊕ RP2 v1⊕v2−−−−→ Dynam(S1)⊕Dynam(S2) [Dynam(ι1),Dynam(ι2))]−−−−−−−−−−−−−−−→ Dynam(S1 + S2),

where ι1 : S1 → S1 + S2 and ι2 : S2 → S1 + S2 are the canonical inclusions. In conventional
notation, the coproduct system has parameterized vector field

v

([
x1
x2

]
;
[
θ1
θ2

])
=

[
v1(x1; θ1)
v2(x2; θ2)

]
.

The proof of Proposition 3.5, as well as of Theorems 3.7 and 3.8 below, depends on the following
technical lemma about comma categories, which the reader can omit without loss of continuity.

Lemma 3.6 (Colimits in comma categories). Let C0
F0−→ C F1←− C1 be a cospan of categories such

that C0 and C1 have colimits of shape J and F0 preserves J-shaped colimits. Then the comma
category F0/F1 also has J-shaped colimits, and the projection functors πi : F0/F1 → Ci, i = 0, 1,
preserve those colimits.

Furthermore, a functor G : X → F0/F1 into the comma category preserves J-shaped colimits
whenever the associated functors Gi := πi ◦G : X→ Ci, i = 0, 1, do so.

Proof. Colimits in the comma category F0/F1 are constructed in [RB88, §5.2]. To make the rest of
the proof self-contained, we recall the construction here.

By the universal property of the comma category, a diagram D : J → F0/F1 is equivalent to
diagrams Di := πi ◦D : J→ Ci, i = 0, 1, along with a natural transformation D⃗ : F0 ◦D0 ⇒ F1 ◦D1.

Let (ci, λi) be a colimit cocone for the diagram Di in Ci, having legs Di(j)
λi

j−→ ci for each j ∈ J.
The family of morphisms

F0(D0(j)) D⃗j−−→ F1(D1(j))
F1(λ1

j )
−−−−→ F1(c1), j ∈ J,

is then a cocone under F0 ◦D0. Since F0 preserves J-shaped limits, (F0(c0), F0 ∗ λ0) is a colimit
cocone for F0 ◦D0, so by its universal property, there exists a unique morphism f : F0(c0)→ F1(c1)
making the squares commute:

F0(D0(j)) F1(D1(j))

F0(c0) F1(c1)

D⃗j

f

F0(λ0
j ) F1(λ1

j ) , j ∈ J.

Setting λ := (λ0
j , λ1

j )j∈J, the cocone ((c0, c1, f), λ) can be shown to be a colimit of the diagram D.
To prove the last statement about colimit preservation, let D : J→ X be a diagram with colimit

cocone (x, λ), having legs Dj
λj−→ y for j ∈ J. We must show that its image cocone (G(x), G ∗ λ) is
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a colimit of the diagram G ◦D in F0/F1. By the universal property of the comma category, the
functor G : X → F0/F1 is equivalent to the functors Gi : X → Ci, i = 0, 1, along with a natural
transformation G⃗ : F0 ◦G0 ⇒ F1 ◦G1. The image cocone (G(x), G ∗ λ) then amounts to cocones
(G0(x), G0 ∗ λ) and (G1(x), G1 ∗ λ), which by hypothesis are colimits of the diagrams G0 ◦D and
G1 ◦D in C0 and C1, together with a family of commutative squares in C:

F0(G0(Dj)) F1(G1(Dj))

F0(G0(x)) F1(G1(x))

G⃗Dj

F0(G0(λj))

G⃗x

F1(G1(λj)) , j ∈ J.

But a morphism G⃗x making all these squares commute is already uniquely determined by the
universal property of the colimit cocone (F0(G0(x)), F0 ∗G0 ∗ λ) for the diagram F0 ◦G0 ◦D, using
the hypothesis that F0 preserves J-shaped colimits. Indeed, this is precisely how one constructs the
colimit of the diagram G ◦D in F0/F1, as shown above. It follows that (G(x), G ∗ λ) is a colimit
cocone for G ◦D.

3.2 The Lotka-Volterra dynamical model
A Lotka-Volterra system with n species has, using matrix notation, the vector field

v(x; ρ, β) := x⊙ (ρ + βx) = diag(x)(ρ + βx)

with state vector x ∈ Rn and arbitrary real-valued parameters ρ ∈ Rn and β ∈ Rn×n [SMH18, §2.2].
In coordinates, the vector field is

vi(x; ρ, β) = xi

ρi +
n∑

j=1
βi,jxj

 = ρixi +
n∑

j=1
βi,jxixj , i = 1, . . . , n.

The parameter ρi sets the baseline rate of growth (when positive) or decay (when negative) for
species i, whereas βi,j defines a promoting (when positive) or inhibiting (when negative) effect of
species j on species i. In typical applications the signs of the parameters are fixed and known in
advance of any data. For example, in the famous predator-prey Lotka-Volterra system

ẋ = ax− bxy

ẏ = dxy − cy,

with prey x and predators y, the parameters ρ =
[

a
−c

]
and β =

[
0 −b
d 0

]
are specified by nonnegative

real numbers a, b, c, d ≥ 0.
In this section, we define quantitative semantics for graphs and signed graphs using the Lotka-

Volterra dynamical model. To illustrate the main ideas, we first construct a functor from finite
graphs (Definition 2.1) to linearly parameterized dynamical systems (Definition 3.2), giving a
semantics for unlabeled graphs. It is more useful to have a semantics for regulatory networks, which
we have defined to be signed graphs. We therefore construct a second functor from finite signed
graphs (Definition 2.2) to conically parameterized nonnegative dynamical systems (Definition 3.4).

Recall that a graph is finite if its vertex and edge sets are both finite. Let FinGraph denote the
full subcategory of Graph spanned by finite graphs.

Theorem 3.7 (Lotka-Volterra model for finite graphs). There is a functor

LV : FinGraph→ Para(Dynam)

that sends
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• a finite graph X to the linearly parameterized dynamical system with parameter variables
P := X(V ) + X(E), state variables S := X(V ), and algebraic vector field5

v(x; ρ, β)(i) := ρ(i) x(i) +
∑

(e:i′→i)∈X

β(e) x(i′) x(i), x ∈ RX(V ), i ∈ X(V ),

parameterized by vectors ρ ∈ RX(V ) and β ∈ RX(E);
• a graph homomorphism ϕ : X → Y to a morphism of systems with parameter variable map

ϕV + ϕE : X(V ) + X(E)→ Y (V ) + Y (E) and state variable map ϕV : X(V )→ Y (V ).

Moreover, the functor LV preserves finite colimits.

Proof. By the universal property of the comma category Para(Dynam) = F/ Dynam, to give a
functor LV : FinGraph→ Para(Dynam) is to give a pair of functors LV0, LV1 : FinGraph→ FinSet
along with a natural transformation

L⃗V : (F ◦ LV0)⇒ (Dynam ◦LV1) : FinGraph→ VectR.

We set LV0(X) := X(V ) + X(E) and LV1(X) := X(V ). Using the universal property of the
coproduct in VectR, the components

L⃗VX : RX(V ) ⊕ RX(E) ∼= RX(V )+X(E) → Dynam(X(V )).

of the transformation L⃗V themselves decompose into two parts, call them

v0
X := L⃗V

0
X : RX(V ) → Dynam(X(V )) and v1

X := L⃗V
1
X : RX(E) → Dynam(X(V )).

We define these to be

v0
X(x; ρ)(i) := ρ(i) x(i) and v1

X(x; β)(i) :=
∑

e∈X(tgt)−1(i)

β(e) x(X(src)(e)) x(i).

Putting the pieces back together reproduces the first statement of the theorem. We just need to
check that the transformation L⃗V is, in fact, natural.

Given a graph homomorphism ϕ : X → Y , the naturality square for the transformation L⃗V is

RX(V )+X(E) Dynam(X(V ))

RY (V )+Y (E) Dynam(Y (V ))

L⃗VX

(ϕV +ϕE)∗ (ϕV )∗◦(−)◦(ϕV )∗

L⃗VY

, (19)

which decomposes into two squares,

RX(V ) Dynam(X(V ))

RY (V ) Dynam(Y (V ))

v0
X

(ϕV )∗ (ϕV )∗◦(−)◦(ϕV )∗

v0
Y

and
RX(E) Dynam(X(V ))

RY (E) Dynam(Y (V ))

v1
X

(ϕE)∗ (ϕV )∗◦(−)◦(ϕV )∗

v1
Y

.

Let us check that both squares commute. For the first, we have

(ϕV )∗(v0
X(ϕ∗

V (y); ρ))(j) =
∑

i∈ϕ−1
V

(j)

v0
X(y ◦ ϕV ; ρ)(i) =

∑
i∈ϕ−1

V
(j)

ρ(i) y(ϕV (i))

=

 ∑
i∈ϕ−1

V
(j)

ρ(i)

 y(j) = v0
Y (y; (ϕV )∗(ρ))(j)

5For a fixed graph X and vertex i ∈ X(V ), the notation (e : i′ → i) ∈ X means any edge e ∈ X(tgt)−1(i)
incoming to i, whose source i′ = X(src)(e) varies with e.
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for all y ∈ RY (V ), ρ ∈ RX(V ), and j ∈ Y (V ). For the second, we have

(ϕV )∗(v1
X(ϕ∗

V (y); β))(j) =
∑

i∈ϕ−1
V

(j)

v1
X(y ◦ ϕV ; β)(i)

=
∑

i∈ϕ−1
V

(j)

∑
e∈X(tgt)−1(i)

β(e) y(ϕV (X(src)(e))) y(j)

=
∑

f∈Y (tgt)−1(j)

∑
e∈ϕ−1

E
(f)

β(e) y(Y (src)(ϕE(e))) y(j)

=
∑

f∈Y (tgt)−1(j)

 ∑
e∈ϕ−1

E
(f)

β(e)

 y(Y (src)(f))y(j)

= v1
Y (y; (ϕE)∗(β))(j),

for all y ∈ RY (V ), β ∈ RX(E), and j ∈ Y (V ). When exchanging the order of the summations we
have used the facts that the graph homomorphism ϕ : X → Y preserves sources and targets, the
latter in its contravariant form

X(E) X(V )

Y (E) Y (V )

X(tgt)

ϕE

Y (tgt)

ϕV
⇝

P(Y (V )) P(X(V ))

P(Y (E)) P(X(E))

X(tgt)−1

ϕ−1
E

Y (tgt)−1

ϕ−1
V

,

where P(S) denotes the power set of a set S.
Finally, we must verify that the functor LV preserves finite colimits. By Lemma 3.6, that

happens provided both functors LV0, LV1 : FinGraph→ FinSet preserve finite colimits. The functor
LV1 = evV is an evaluation functor on a copresheaf category, hence preserves colimits [Rie16,
Proposition 3.3.9]. Since coproducts commute with colimits, the pointwise coproduct of two
evaluation functors

LV0 =
(
FinGraph ⟨evV ,evE⟩−−−−−−→ FinSet× FinSet +−→ FinSet

)
also preserves colimits. This completes the proof.

A quantitative semantics for signed graphs can be defined similarly, subject to a caveat about
the vertex parameters. Our notion of signed graph, designed to capture regulatory networks as
studied in the biochemistry literature, attaches signs only to edges. We are thus led to assume that,
in the Lotka-Volterra dynamical model, all species have baseline rates of decay rather than growth.
This assumption is valid for some, though certainly not all, regulatory networks [TN10, p. 222]. It
is not suitable for predator-prey models in ecology.

Baseline rates of growth or decay could, if needed, be parameterized more flexibly. Most simply,
one could attach signs to vertices as well as edges and use them in the quantitative semantics.
Alternatively, at the expense of a more cumbersome formalism, one could define dynamical systems
with mixed linear-conical parameterizations, allowing the vertex parameters to be arbitrary real
numbers while the edge parameters are constrained to be nonnegative.6 For simplicity and uniformity
of presentation, we do not describe these extensions further.

Let FinSgnGraph denote the full subcategory of SgnGraph spanned by finite signed graphs.

Theorem 3.8 (Lotka-Volterra model for finite signed graphs). There is a functor

LV : FinSgnGraph→ Para(Dynam+)

6Similar mixed parameterizations are a practical necessity in parametric statistical models, studied in detail in
one author’s PhD thesis [Pat20].
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that sends a finite signed graph X to the conically parameterized nonnegative dynamical system with
parameter variables P := X(V ) + X(E), state variables S := X(V ), and essentially nonnegative,
algebraic vector field

v(x; ρ, β)(i) := −ρ(i) x(i) +
∑

(e:i′→i)∈X

X(sgn)(e) β(e) x(i′) x(i), x ∈ RX(V ), i ∈ X(V ),

parameterized by ρ ∈ RX(V )
+ and β ∈ RX(E)

+ . Moreover, the functor LV preserves finite colimits.

Proof. Similarly to the previous proof, the functor LV : FinSgnGraph→ Para(Dynam+) is defined
by functors LV0, LV1 : FinSgnGraph→ FinSet along with a natural transformation

L⃗V : F+ ◦ LV0 ⇒ Dynam+ ◦LV1 : FinSgnGraph→ Con,

now having components L⃗VX given by the copairing of

v0
X := L⃗V

0
X : RX(V )

+ → Dynam+(X(V )) and v1
X := L⃗V

1
X : RX(E)

+ → Dynam+(X(V )),

where we define

v0
X(x; ρ)(i) := −ρ(i) x(i) and v1

X(x; β)(i) :=
∑

e∈X(tgt)−1(i)

X(sgn)(e) β(e) x(X(src)(e)) x(i).

The proof of naturality is essentially the same as before, using the crucial additional fact that
morphisms of signed graphs preserve signs. The proof that the functor LV preserves finite colimits
is unchanged.

To exemplify the theorem, let us see how the Lotka-Volterra dynamics functor acts on a
monomorphism and on an epimorphism of signed graphs.

In order to compare the dynamics of two species A and B involved in a negative feedback loop
versus A and B in isolation, we take the inclusion of signed graphs

A B A Bι

Labeling the edges in the feedback loop as AB and BA, the morphism LV(ι) sends the conically
parameterized dynamical system{

vA(x; ρ) = −ρA xA

vB(x; ρ) = −ρB xB

, ρ ∈ R{A,B}
+ ,

to the parameterized dynamical system{
vA(x; ρ, β) = −ρA xA − βBA xB xA

vB(x; ρ, β) = −ρB xB + βAB xA xB

, ρ ∈ R{A,B}
+ , β ∈ R{AB,BA}

+ ,

by setting the latter’s interaction coefficients to zero: βAB = βBA = 0. This formalizes the
commonsense fact that the first system is a degenerate case of the second.

For a more interesting example, we return to the projection map between regulatory networks
given by Equation (1) of Section 2.1, inspired by the arginine biosynthesis system. Call this projection
map p, and abbreviate the regulator molecule as R and the enzymes as S := {C, D, E, F, I}. The
morphism LV(p) sends the parameterized dynamical system

vR(x; ρ, β) = −ρR xR − βR x2
R

vC(x; ρ, β) = −ρC xC − βC xR xC

vD(x; ρ, β) = −ρD xD − βD xR xD

vE(x; ρ, β) = −ρE xE − βE xR xE

vF (x; ρ, β) = −ρF xF − βF xR xF

vI(x; ρ, β) = −ρI xI − βI xR xI
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with state variables {R}+ S and parameters ρ, β ∈ R{R}+S
+ to the parameterized dynamical system{

vR(x; ρ, β) = −ρR xR − βR x2
R

v∗(x; ρ, β) = −ρ∗ x∗ − β∗ xR x∗

with state variables {R, ∗} and parameters ρ, β ∈ R{R,∗}
+ , in two different but equivalent ways. The

first way sets the latter system’s coefficients equal to sums of the former’s coefficients, namely

ρ∗ =
∑
i∈S

ρi and β∗ =
∑
i∈S

βi.

The second way substitutes x∗ for each xi, i ∈ S, in the first system and then takes the vector field
v∗ to be the sum of the vi’s, i ∈ S, with these substitutions. The equivalence of these operations
is precisely the condition for LV(p) to be a morphism of parameterized dynamical systems, cf.
Equations (18) and (19).

3.3 Composing Lotka-Volterra models
To complete this part of the story, we extend the Lotka-Volterra dynamics functors between
graphs and parameterized dynamical systems, constructed in Theorems 3.7 and 3.8, to double
functors between open graphs and open parameterized dynamical systems. We begin by making
parameterized dynamical systems into open systems. By “open systems,” we mean dynamical
systems that have specified interfaces along which they can share material with other systems.

Proposition 3.9 (Open parameterized dynamical systems). There is a symmetric monoidal double
category of open linearly parameterized dynamical systems, Open(Para(Dynam)), having

• as objects, finite sets A, A′, . . . ;
• as vertical morphisms, functions f : A→ A′;
• as horizontal morphisms, open linearly parameterized dynamical systems, which consist

of a linearly parameterized dynamical system (P, S, v : RP → Dynam(S)) along with a cospan
A0

ℓ0−→ S
ℓ1←− A1 whose apex is the set S of state variables;

• as cells, morphisms of such open systems (P, S, v, ℓ0, ℓ1) → (P ′, S′, v′, ℓ′
0, ℓ′

1), which
consist of a morphism (q, f) : (P, S, v)→ (P ′, S′, v′) between linearly parameterized dynamical
systems along with functions f0 : A0 → A′

0 and f1 : A1 → A′
1 making the diagram commute:

A0 S A1

A′
0 S′ A′

1

ℓ0 ℓ1

f0 f

ℓ′
0

f1

ℓ′
1

.

Vertical composition is by composition in FinSet and in Para(Dynam). Horizontal composition and
monoidal products are by pushouts and coproducts in Para(Dynam), respectively, interpreting the
finite sets in the feet of the cospans as linearly parameterized dynamical systems with no parameter
variables and identically zero vector fields.

Similarly, there is a symmetric monoidal double category Open(Para(Dynam+)) of open conically
parameterized nonnegative dynamical systems.

Proof. We do the construction for linearly parameterized dynamical systems. The construction for
conically parameterized nonnegative dynamical systems is perfectly analogous, replacing R with R+
and vector spaces with conical spaces.

The projection functor πS : Para(Dynam) → FinSet, (P, S, v) 7→ S that sends a linearly
parameterized dynamical systems to its set of state variables has a left adjoint Z : FinSet →
Para(Dynam) that sends a finite set S to the system (∅, S, 0) with empty set of parameter variables.
By linearity, its parameterized vector field 0 ∼= R∅ → Dynam(S) is necessarily the zero vector
field. This indeed gives an adjunction Z ⊣ πS , because to any function f : S → S′ and linearly
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parameterized dynamical system (P ′, S′, v′) there corresponds a unique morphism (0P ′ , f) : Z(S)→
(P ′, S′, v′), where the compatibility square

0 Dynam(S)

RP ′ Dynam(S′)

f∗◦(−)◦f∗

v′

commutes trivially, since the zero vector space is initial in VectR.
Therefore, since Para(Dynam) has finite colimits (Proposition 3.5), we can construct a symmetric

monoidal double category of Z-structured cospans [BC20, Theorem 3.9], which is isomorphic to
Open(Para(Dynam)) by arguments given before.

We can now construct double functors between open graphs and open parameterized dynamical
systems, but the vertex parameters under Lotka-Volterra dynamics cause a twist in the story
compared to Baez and Pollard’s compositionality result for mass-action kinetics of open Petri nets
[BP17, Theorem 18]. When composing open dynamical systems in the image of the Lotka-Volterra
functor, one takes a coproduct of the parameter variables, i.e., a direct sum of the parameter spaces,
belonging to identified vertices. However, if one composes the open graphs first, then the identified
vertices receive a single copy of the parameters from the Lotka-Volterra functor. Thus this functor
does not preserve composition of open systems, not even up to isomorphism. Nevertheless, there is
a (noninvertible) comparison between the two: given a pair of vertex parameters in the direct sum,
we can reduce them to a single parameter simply by summing them. In mathematical terms, we
get a lax double functor: a double functor that strictly preserves vertical composition, as usual, but
preserves horizontal composition only up to specified comparison cells.7 While this laxness could
be seen as a failure of compositionality, it is at most a very mild and well controlled failure. It is
better regarded as a bookkeeping device for the vertex parameters.

Theorem 3.10 (Open Lotka-Volterra models). There is a symmetric monoidal lax double functor

LV : Open(FinGraph)→ Open(Para(Dynam))

that acts

• on objects and vertical morphisms, as the identity;
• on horizontal morphisms and cells, by the functor LV : FinGraph→ Para(Dynam) on graphs

and graph homomorphisms and as the identity on the associated cospans and cospan morphisms:(
X, A0

ℓ0−→ X(V ) ℓ1←− A1

)
7→

(
LV(X), A0

ℓ0−→ X(V ) ℓ1←− A1

)
.

The comparison cells are defined using the morphisms of linearly parameterized dynamical systems
αS : Z(S)→ LV(Disc S), where

αS := (0S , 1S) : (∅, S, 0)→ (S, S, L⃗V(Disc S)), S ∈ FinSet.

• Given composable open graphs (X, A→ X(V )← B) and (Y, B → Y (V )← C), the compari-
son cell for horizontal composition is given by the morphism of systems

LV(X) +Z(B) LV(Y )
id +αB

id
−−−−−−→ LV(X) +LV(Disc B) LV(Y )

∼=−→ LV(X +Disc B Y ).

• Given a finite set A, the comparison cell for the horizontal unit is given by the morphism of
systems αA : Z(A)→ LV(Disc A).

Similarly, there is a symmetric monoidal lax double functor

LV : Open(FinSgnGraph)→ Open(Para(Dynam+)).

7The precise definition of a lax double functor can be found, for instance, in the textbook [Gra19, §3.5].

Compositionality, Volume 6, Issue 2 (2024) 26



A compositional account of motifs, mechanisms, and dynamics in biochemical regulatory networks

Proof. To construct the lax double functor, we use [Pat23, Theorem 2.4], which extends the
construction of a double functor in [BC20, Theorem 4.3] from the pseudo to the lax case. The
family of morphisms αS : Z(S)→ LV(Disc S), S ∈ FinSet, in the theorem statement assemble into
a natural transformation

FinSet FinGraph

FinSet Para(Dynam)

L=Disc

LV

L′=Z

α .

The functors involved in this cell all preserve finite colimits: the top and bottom ones because
they are left adjoints and the right one by Theorem 3.7. By [Pat23, Theorem 2.4], we obtain a
symmetric monoidal lax double functor

Open(FinGraph) ∼= LCsp(FinGraph)→ L′Csp(Para(Dynam)) ∼= Open(Para(Dynam)).

To see that this double functor is the same one in the theorem statement, we once again use
the adjunctions to pass between L-structured and R-decorated cospans (recalling terminology
introduced in the proof of Proposition 2.4). Notice that the natural transformation α has as its
mate [CGR14, §1] the identity transformation ᾱ = 1evV

:

FinSet FinGraph

FinSet Para(Dynam)

R=evV

LV

R′=πS

ᾱ .

Thus the action of the double functor F := LV on L-structured cospans simplifies to the identity
when translated to R-decorated cospans.

L(A0) X L(A1)

L′(A0) F (L(A0)) F (X) F (L(A1)) L′(A1)

↭

A0 R(X) A1

A0 R(X) R′(F (X)) R(X) A1

ℓ0 ℓ1

αA0 F (ℓ0) F (ℓ1) αA1

ℓ̄0 ℓ̄1

ℓ̄0 ᾱX ᾱX ℓ̄1

A similar statement holds for the action of the double functor on morphisms of L-structured and
R-decorated cospans.

4 Conclusion
Summary. Regulatory networks are a minimalistic but widely used tool to describe the interactions
between molecules in biochemical systems. We have made the first functorial study of regulatory
networks, formalized as signed graphs, and their connections with other mathematical models in
biochemistry. Among such models, we have studied reaction networks, formalized as Petri nets
with signed links, and parameterized dynamical systems, focusing on Lotka-Volterra dynamics.

The major categories of this paper, and the functors between them, are summarized in the
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following diagram, where “LV” is the Lotka-Volterra dynamics functor (§3.2).

SgnCat (§2.2) SgnGraph (§2.1) SgnPetri (§2.3)

FinSgnGraph Para(Dynam+) (§3.1)

Path

U

LV

Int⊣

Most of the main results extend from closed systems to open systems, which compose by gluing
along their boundaries. Of the diagram above, we have extended the following parts to double
categories of open systems and double functors between them. The Lotka-Volterra double functor
is lax; the others are pseudo.

Open(SgnCat) Open(SgnGraph)

Open(FinSgnGraph) Open(Para(Dynam+)) (§3.3)LV

Path

Outlook. Of many possible directions for future work, we mention a few. As noted in the
introduction, Lotka-Volterra dynamics are only one of numerous dynamics that could be considered
as a canonical model for regulatory networks, and they are not even among the most commonly
studied in the biochemistry literature [TLK19]. It would be desirable to have dynamics functors for
regulatory networks that draw on more flexible or more biologically plausible classes of dynamical
systems. In another direction, the two halves of this paper—qualitative and quantitative—are not
as tightly as integrated as one might hope. How does the presence of a motif in a regulatory network,
such as an incoherent feedforward loop perhaps even of a specific type, manifest in the continuous
dynamics of that network? Put in category-theoretic terms, the Lotka-Volterra dynamics functor
is defined on signed graphs; how does it relate to the freely generated signed categories in which
motifs are expressed? These intriguing questions are suggestive of “feedback loop analysis” in the
field of system dynamics [Ric95], to which stronger connections should be made.

This project fits into a broader program by applied category theorists and other scientists
that aims to systematize, in a completely precise way, the language and methods of describing,
comparing, and composing scientific models in different domains. Within biology, the field of
systems biology has advocated for a holistic view of complex biological systems that emphasizes
composition as much as reduction. We believe that category theory has a role to play in this
endeavor by bringing mathematical precision to compositional and structural aspects of modeling
that are traditionally thought to be outside the realm of mathematics.
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