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In information theory, one major goal is to find useful functions that summarize the
amount of information contained in the interaction of several random variables. Specif-
ically, one can ask how the classical Shannon entropy, mutual information, and higher
interaction information relate to each other. This is answered by Hu’s theorem, which
is widely known in the form of information diagrams: it relates shapes in a Venn dia-
gram to information functions, thus establishing a bridge from set theory to information
theory. In this work, we view random variables together with the joint operation as
a monoid that acts by conditioning on information functions, and entropy as a func-
tion satisfying the chain rule of information. This abstract viewpoint allows to prove
a generalization of Hu’s theorem. It applies to Shannon and Tsallis entropy, (Tsallis)
Kullback-Leibler Divergence, cross-entropy, Kolmogorov complexity, submodular infor-
mation functions, and the generalization error in machine learning. Our result implies
for Chaitin’s Kolmogorov complexity that the interaction complexities of all degrees
are in expectation close to Shannon interaction information. For well-behaved proba-
bility distributions on increasing sequence lengths, this shows that the per-bit expected
interaction complexity and information asymptotically coincide, thus showing a strong
bridge between algorithmic and classical information theory.
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1 Introduction
Information diagrams, most often drawn for two or three random variables (see Figures 1 and 2),
provide a concise way to visualize information functions. Not only do they show (conditional) Shan-
non entropy [48], mutual information, and interaction information — also called co-information [8]
— of several random variables in one overview, they also provide an intuitive account of the
relations between these functions.

This well-known fact goes beyond just three variables: diagrams with four (see Figure 3) and
more variables exist as well. Hu’s theorem [32, 63, 64] renders all this mathematically precise by
connecting the set-theoretic operations of union, intersection, and set difference to joint informa-
tion, interaction information, and conditioning of information functions, respectively. The map
from sets to information functions is then a measure and turns disjoint unions into sums. Certain
summation rules of information functions then follow visually from disjoint unions in the diagrams.

Our work is concerned with the question of whether Hu’s theorem can be generalized to other
information functions than entropy, such as Kullback-Leibler divergence and cross-entropy. Such
functions are important in the context of statistical modeling of multivariate data, in which one
aims to find a probabilistic model able to reproduce the information structure of the data. For
instance, an information diagram for cross-entropy would then allow to visualize how the cross-
entropy between a model probability distribution and the data distribution is decomposed into
higher-order terms. [16] used these higher-order terms (which they called cluster (cross)-entropies)
in their adaptive cluster expansion approach to statistical modeling of data with Ising models.

Kullback-Leibler divergence has been studied in the context of decompositions of joint entropy
and information [1] and is often minimized in machine learning and deep learning [11, 12]. This
becomes especially interesting for graphical methods, including diffusion models [50], which form
the basis for widespread text-to-image generation methods like Dalle [41], Imagen [44], and stable
diffusion [42]. Diffusion models involve a decomposition of a joint Kullback-Leibler divergence over
a Markov chain. Once information diagrams are established in a generalized context, this might
facilitate to study decompositions of loss functions for more general graphical models.

Our claim is that the language employed in the foundations of information cohomology [5] gives
the perfect starting point for generalizing Hu’s theorem. Namely, by replacing discrete random
variables with partitions on a sample space, they give random variables the structure of a monoid
that is commutative and idempotent. Furthermore, conditional information functions are formally
described by a monoid action. And finally, the most basic information function that generates
all others, Shannon entropy, is fully characterized as the unique function that satisfies the chain
rule of information. We substantially generalize Hu’s theorem by giving a proof only based on the
properties just mentioned, leading to new applications to Kolmogorov complexity, Kullback-Leibler
divergence, and beyond.

To clarify, the main contribution of this work is not to provide major previously unknown ideas
— indeed, our proof is very similar to the original one given in [63] — but instead, to place and
prove this result in its proper abstract context. This then reveals information diagrams for new
information measures.

Section 2 summarizes classical definitions and results for Shannon information theory, general-
ized to countable discrete random variables to be later applied to Kolmogorov complexity. Section 3
— which can be read independently of the preceding section — contains our main result, the gen-
eralized Hu theorem. In Section 4, we prove a Hu theorem for Kolmogorov complexity. We also
combine Hu’s theorems for Shannon entropy and Kolmogorov complexity to generalize the well-
known result that “expected Kolmogorov complexity is close to entropy” [28]: general interaction
complexity is close to interaction information. For the case of well-behaved sequences of probability
measures on binary strings with increasing length, this leads to an asymptotic result: in the limit
of infinite sequence length, the per-bit interaction complexity and interaction information coincide.
In Section 5, we consider further examples of Hu’s theorem, including Kullback-Leibler divergence
and the generalization error in machine learning. We conclude with a discussion in Section 6,
followed by proofs in the appendices.

Compositionality, Volume 7, Issue 1 (2025) 3
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Preliminaries and Notation
We mainly assume the reader to be familiar with the basics of measure theory and probability
theory. They can be learned from any book on the topic, for example [45] or [54]. The main
concepts we assume to be known are σ-algebras, the Borel σ-algebra on Rn, measurable spaces,
measures, measure spaces, probability measures, probability spaces, and random variables. We
assume some very basic familiarity with abelian groups, (commutative, idempotent) monoids, and
additive monoid actions. In contrast, we carefully define all basic notions from (algorithmic)
information theory from scratch.

On notation: to aid familiarity, we will start writing the Shannon entropy with the symbol H,
but then switch to the notation I1 once we embed Shannon entropy in the concept of interaction
information, Definition 2.7. Instead of the typical notation H(Y | X) for the conditional entropy,
we will use X.H(Y ) = X.I1(Y ). This is the general notation of monoid actions and is thus
preferable in our abstract context. Furthermore, for two disjoint sets A and B, we write their
union as A∪̇B. The number of elements in A is written as |A|. The power set of A, i.e., the set of
its subsets, is denoted 2A. And finally, the natural and binary logarithms of x are denoted ln(x)
and log(x), respectively.

2 Preliminaries on Shannon Entropy of Countable Discrete Random Vari-
ables

In this technical introduction, we explain preliminaries on discrete random variables, entropy,
mutual information, and interaction information. Our treatment will also emphasize abstract
structures that lead us to the generalizations in Section 3. The goal is to arrive at Summary 2.17,
which summarizes the properties of classical information functions in an abstract way suitable for
our generalizations. We will omit many proofs of elementary and well-known results. When we say
a set is countable, then we mean it is finite or countably infinite. Whenever we talk about discrete
measurable spaces, we mean countable measurable spaces in which all subsets are measurable. Some
technical considerations related to the measurability of certain functions in the infinite, discrete
case are found in Appendix A.

2.1 Entropy, Mutual Information, and Interaction Information
We fix in this section a discrete sample space Ω. We define

∆(Ω) :=
{

P : Ω → [0, 1]
∣∣∣ ∑

ω∈Ω
P (ω) = 1

}
=
{

(pω)ω∈Ω ∈ [0, 1]Ω
∣∣∣ ∑

ω∈Ω
pω = 1

}
.

If Ω is finite, we view it as a measurable space with the σ-algebra of Borel measurable sets. When
Ω is infinite and discrete, we equip ∆(Ω) with the smallest σ-algebra that makes all evaluation
maps

evA : ∆(Ω) → R, P 7→ evA(P ) := P (A)

for all subsets A ⊆ Ω measurable. In the finite case, this definition is equivalent to the one
given before. We remark that we do not distinguish between probability measures and their
mass functions in the notation or terminology: for a subset A ⊆ Ω and a probability measure
P : Ω → [0, 1], we simply set P (A) :=

∑
ω∈A P (ω).

Our aim is the study of discrete random variables X : Ω → EX . Here, being discrete means
that EX — next to Ω — is discrete. For any probability measure P on Ω and any random variable
X : Ω → EX , we define the distributional law PX : EX → [0, 1] as the unique probability measure
with

PX(x) := P
(
X−1(x)

)
=

∑
ω∈X−1(x)

P (ω)

for all x ∈ X. Clearly, PX ∈ ∆(EX).
For the following definition of Shannon entropy, introduced in [48, 49], we employ the convention

0 · ∞ = 0 · (−∞) = 0 and ln(0) = −∞. Furthermore, set R := R ∪ {+∞}.

Compositionality, Volume 7, Issue 1 (2025) 4
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Definition 2.1 (Shannon Entropy). Let P ∈ ∆(Ω) be a probability measure. Then the Shannon
entropy of P is given by

H(P ) := −
∑
ω∈Ω

P (ω) ln P (ω) ∈ R.

Here, ln : [0, ∞) → R∪{−∞} is the natural logarithm. Now, let X : Ω → EX be a discrete random
variable. The Shannon entropy of X with respect to P ∈ ∆(Ω) is given by

H(X; P ) := H(PX) = −
∑

x∈EX

PX(x) ln PX(x) ∈ R.

For the identity idΩ : Ω → Ω, ω 7→ ω we then have PidΩ = P and therefore H(idΩ; P ) = H(P ).
For discrete probability distributions with infinite Shannon entropy, see [2].

Now, set
∆f (Ω) := ∆(Ω) \ {P ∈ ∆(Ω) | H(P ) = ∞}.

∆f (Ω) is the measurable space of probability measures with finite entropy. We restrict entropy
functions to this space for algebraic reasons:

Definition 2.2 (Entropy Function of a Random Variable). Let X : Ω → EX be a discrete random
variable. Then its entropy function or Shannon entropy is the measurable function

H(X) : ∆f (Ω) → R, P 7→ H(X; P )

defined on probability measures with finite entropy. Its measurability is proven in Corollary A.3.

Let P : Ω → R be a probability measure and X : Ω → EX a discrete random variable. Then
we define the conditional probability measure P |X=x : Ω → R by

P |X=x(ω) :=

P
(

{ω}∩X−1(x)
)

PX (x) , PX(x) ̸= 0;
P (ω), PX(x) = 0.1

(1)

For all A ⊆ Ω, we then have

P |X=x(A) =

P
(

A∩X−1(x)
)

P (X−1(x)) , PX(x) ̸= 0;
P (A), PX(x) = 0.

For the following definition, recall that a series of real numbers converges absolutely if the series
of its absolute values converges. It converges unconditionally if every reordering of the original
series still converges with the same limit. According to the Riemann series theorem [36], these two
properties are equivalent.

Definition 2.3 (Conditionable Functions, Averaged Conditioning). Let F : ∆f (Ω) → R be a
measurable function. F is called conditionable if for all discrete random variables X : Ω → EX

and all P ∈ ∆f (Ω), the sum

(X.F )(P ) :=
∑

x∈EX

PX(x)F (P |X=x) (2)

converges unconditionally. Note that P |X=x ∈ ∆f (Ω), which makes F (P |X=x) in Equation (2)
well-defined.

For all conditionable measurable functions F : ∆f (Ω) → R and all discrete random variables
X : Ω → EX , the function X.F : ∆f (Ω) → R is a measurable function by Corollary A.5, which
we call the averaged conditioning of F by X. The space of all conditionable measurable functions
F : ∆f (Ω) → R is denoted by Meascon(∆f (Ω),R).

1Note that the precise definition for the case PX(x) = 0 does not matter since it almost surely does not appear.
However, defining the conditional also in this case makes many formulas simpler since we do not need to restrict
sums involving P |X=x to the case PX(x) ̸= 0.

Compositionality, Volume 7, Issue 1 (2025) 5
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If X : Ω → EX and Y : Ω → EY are two (not necessarily discrete) random variables, then their
(Cartesian) product, or joint variable, XY : Ω → EX × EY is defined by

(XY )(ω) :=
(
X(ω), Y (ω)

)
∈ EX × EY .2 (3)

If we have two discrete random variables X and Y and a probability measure P ∈ ∆(Ω), then this
allows to consider (P |X=x)Y (y) for (x, y) ∈ EX × EY . In order to not overload notation, we will
write this often as P (y | x). Similarly, we will often write P (x) := PX(x) and P (ω | x) := P |X=x(ω).
We obtain the following elementary lemma and corollary whose proofs are left to the reader:

Lemma 2.4. Let Y be a discrete random variable on Ω. Then H(Y ) is conditionable. More
precisely, for another discrete random variable X on Ω and P ∈ ∆f (Ω), H(X; P ) and H(XY ; P )
are finite and we have [

X.H(Y )
]
(P ) = H(XY ; P ) − H(X; P ),

which results in
[
X.H(Y )

]
(P ) converging unconditionally.

Corollary 2.5. The following chain rule

H(XY ) = H(X) + X.H(Y )

holds for arbitrary discrete random variables X : Ω → EX and Y : Ω → EY .

We will also write Y.F (P ) := (Y.F )(P ). For example, if F = H(X) is the Shannon entropy of
the discrete random variable X, we write

Y.H(X; P ) = Y.H(X)(P ) = [Y.H(X)](P ) =
∑

y∈EY

PY (y)H(X; P |Y =y).

We emphasize explicitly that Y can not act on H(X; P ) since this is only a number, and not a
measurable function. Nevertheless, we find the notation Y.H(X; P ) for [Y.H(X)](P ) convenient.
We obtain the following properties resembling those of an additive monoid action:

Proposition 2.6. Let X, Y be two discrete random variables on Ω, 1 : Ω → ∗ := {∗} a trivial ran-
dom variable, and F, G : ∆f (Ω) → R two conditionable measurable functions. Then the following
hold:

1. 1.F = F ;

2. Y.F is also conditionable, and we have X.(Y.F ) = (XY ).F ;

3. F + G is also conditionable, and we have X.(F + G) = X.F + X.G.

Proof. Properties 1 and 3 are elementary and left to the reader to prove. 2 follows from P (x, y) =
P (x) · P (x | y) and (P |X=x)|Y =y = P |XY =(x,y).

Next, we define mutual information and, more generally, interaction information — also called
co-information [8]. As we want to view interaction information as a “higher degree generalization”
of entropy and treat both on an equal footing in Hu’s theorem, we now change the notation: for
any discrete random variables X, we set I1(X) := H(X).

Definition 2.7 (Mutual Information, Interaction Information). Let q ∈ N and assume that Iq−1
is already defined. Assume also that Y1, . . . , Yq are q discrete random variables on Ω. Then we
define Iq(Y1; . . . ; Yq) : ∆f (Ω) → R, the interaction information of degree q, as the function

Iq(Y1; . . . ; Yq) := Iq−1(Y1; . . . ; Yq−1) − Yq.Iq−1(Y1; . . . ; Yq−1).

I2 is also called mutual information.

2In the case that EX = EY = R, there is some ambiguity of notation, as the reader could understand XY to be
given by (XY )(ω) = X(ω) · Y (ω). This definition plays a role in the algebra of random variables [51]. In our work,
we instead always mean the Cartesian product.

Compositionality, Volume 7, Issue 1 (2025) 6
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Remark 2.8. What we call interaction information is in the literature sometimes called (higher
/ multivariate) mutual information. In that case, the term Jq(Y1; . . . ; Yq) := (−1)q+1Iq(Y1; . . . ; Yq)
is called interaction information, see for example [4].

Proposition 2.9. For all q ≥ 1 and all discrete random variables Y1, . . . , Yq, Iq(Y1; . . . ; Yq) :
∆f (Ω) → R is a well-defined conditionable measurable function.

Proof. I1(Y1) is conditionable by Lemma 2.4. Assuming by induction that Iq−1(Y1; . . . ; Yq−1) is
well-defined and conditionable, we obtain the following: Yq.Iq−1(Y1; . . . ; Yq−1) is well-defined and
conditionable by Proposition 2.6, part 2, and Iq(Y1; . . . ; Yq) is well-defined and conditionable by
Proposition 2.6, part 3.

2.2 Equivalence Classes of Random Variables
Assume all random variables are discrete. For two random variables X and Y on Ω, we write
X ≾ Y if there is a function fXY : EY → EX such that fXY ◦ Y = X. The definition of ≾ is
equivalent to a preorder put forward in the context of conditional independence relations [18–20].
The latter work defines in their Section 6.2: X ≾ Y if for all ω, ω′ ∈ Ω, the following implication
holds true:

Y
(
ω
)

= Y
(
ω′) =⇒ X

(
ω
)

= X
(
ω′).

It is straightforward to show that this coincides with our own definition.
Clearly, our relation is reflexive and transitive and thus a preorder. We define the equivalence

relation ∼ by X ∼ Y iff X ≾ Y and Y ≾ X. We denote by [X] the equivalence class of X.

Proposition 2.10 (See Proof 1). Let Y ≾ X be two discrete random variables on Ω. Then we
have I1(Y ) ≤ I1(X) as functions on ∆f (Ω), meaning that I1(Y ; P ) ≤ I1(X; P ) for all P ∈ ∆f (Ω).
In particular, if X and Y are equivalent (i.e., X ≾ Y and Y ≾ X), then I1(X) = I1(Y ).

Proposition 2.11 (See Proof 2). Let X ∼ Y be two equivalent discrete random variables on Ω.
Then for all conditionable measurable functions F : ∆f (Ω) → R we have X.F = Y.F .

Proposition 2.12. Let q ≥ 1 and Y1, . . . , Yq and Z1, . . . , Zq be two collections of discrete random
variables on Ω such that Yk ∼ Zk for all k = 1, . . . , q. Then Iq(Y1; . . . ; Yq) = Iq(Z1; . . . ; Zq).

Proof. For q = 1, this was shown in Proposition 2.10. The case q > 1 can be shown by induction
using Definition 2.7 and Proposition 2.11.

This proposition shows that interaction information is naturally defined for collections of equiv-
alence classes of random variables, instead of the random variables themselves.

2.3 Monoids of Random Variables
Again, assume all random variables to be discrete.

Lemma 2.13. Let X, Y, Z, X ′, and Y ′ be random variables on Ω. Let 1 : Ω → ∗ be a trivial
random variable, with ∗ = {∗} a measurable space with one element. Then the following properties
hold:

0. If X ∼ X ′ and Y ∼ Y ′, then XY ∼ X ′Y ′;

1. 1X ∼ X ∼ X1;

2. (XY )Z ∼ X(Y Z);

3. XY ∼ Y X;

4. XX ∼ X.

Additionally, we have X ≾ Y if and only if XY ∼ Y .

Proof. All of these statements are elementary and left to the reader to prove.

Compositionality, Volume 7, Issue 1 (2025) 7
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Recall that a monoid is a tuple (M, ·, 1) with M a set, · a multiplication, and 1 ∈ M , such
that 1 is neutral and the multiplication is associative. A monoid is commutative and idempotent
if m · n = n · m and m · m = m for all m, n ∈ M . Notice that rules 1 to 4 in the lemma resemble
the properties of a commutative, idempotent monoid.

We remark that a commutative, idempotent monoid is algebraically the same as a join-semilattice
(sometimes also called bounded join-semilattice), i.e., a partially ordered set which has a bottom
element (corresponding to 1 ∈ M) and binary joins (corresponding to the multiplication in a
monoid). The partial order can be reconstructed from a commutative, idempotent monoid M
by writing m ≤ n if m · n = n, which corresponds to the last statement in Lemma 2.13. The
language of join-semilattices is, for example, used in the development of the theory of conditional
independence [18].

Proposition 2.14 (See Proof 3). Let M̂ = {X : Ω → EX}X be a collection of random variables
with the following two properties:

a) There is a random variable 1 : Ω → ∗ in M̂ which has a one-point set ∗ = {∗} as the target;

b) For every two X, Y ∈ M̂ there exists a Z ∈ M̂ such that XY ∼ Z.

Let [X] denote the equivalence class of X under the relation ∼. Define M := M̂/ ∼ as the collection
of equivalence classes of elements in M̂ . Define [X] · [Y ] := [Z] for any Z ∈ M̂ with XY ∼ Z.
Then the triple (M, ·, [1]) is a commutative, idempotent monoid.

We note that the monoid of equivalence classes of discrete random variables is isomorphic to
the monoid of partitions on Ω, which is the formalization used in [5].

We can now study finite monoids of random variables as instances of the construction in Propo-
sition 2.14. Let n ≥ 0 be a natural number. Let X1, . . . , Xn be fixed random variables on Ω. Define
[n] := {1, . . . , n}. For arbitrary I ⊆ [n], define XI :=

∏
i∈I Xi, the joint of the variables Xi for

i ∈ I. For XJ and XI , we have the equivalence XJXI ∼ XJ∪I . Note that X∅ : Ω → ∗ = {∗} is a
trivial random variable.

Definition 2.15 (Monoid of X1, . . . , Xn). The monoid M(X1, . . . , Xn) of the variables X1, . . . , Xn

consists of the following data:

1. The elements are equivalence classes [XI ] for I ⊆ [n].

2. The multiplication is given by [XJ ] · [XI ] = [XJ∪I ].

3. 1 := [X∅] is the neutral element with respect to multiplication.

This is a well-defined commutative, idempotent monoid by Proposition 2.14.

Recall that an additive monoid action is a triple (M, G, .), where M is a monoid, G is an
abelian group, and . : M × G → G is a function such that 1 ∈ M acts neutrally, with associativity
(meaning m.(n.g) = (m · n).g), and distributivity over addition in G.

Proposition 2.16. Let M be a monoid of (equivalence classes of) discrete random variables on
Ω as in Proposition 2.14. Let G = Meascon

(
∆f (Ω),R

)
be the group of conditionable measurable

functions from ∆f (Ω) to R. Then the averaged conditioning . : M × G → G given by(
[X] .F

)
(P ) :=

(
X.F

)
(P ) =

∑
x∈EX

PX(x)F (P |X=x)

is a well-defined monoid action.

Proof. The action is well-defined by Proposition 2.11 and Proposition 2.6, part 2. It is a monoid
action by Proposition 2.6.

Summary 2.17. We now summarize the abstract properties of interaction information Iq. Let
M be a commutative, idempotent monoid of discrete random variables as in Proposition 2.14. By
abuse of notation, we do not distinguish between random variables and their equivalence classes,
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i.e., we write Y instead of [Y ]. Denote by G := Meascon
(
∆f (Ω),R

)
the group of conditionable

measurable functions from ∆f (Ω) to R. By Proposition 2.16, averaged conditioning . : M ×G → G
is a well-defined monoid action.

By Proposition 2.12, we can view Iq as a function Iq : Mq → G that is defined on tuples
of equivalence classes of discrete random variables. By Proposition 2.5, entropy I1 satisfies the
equation

I1(XY ) = I1(X) + X.I1(Y )
for all X, Y ∈ M , where X.I1(Y ) is the result of the action of X ∈ M on I1(Y ) ∈ G via averaged
conditioning. Finally, by Definition 2.7, for all q ≥ 2 and all Y1, . . . , Yq ∈ M , one has

Iq(Y1; . . . ; Yq) = Iq−1(Y1; . . . ; Yq−1) − Yq.Iq−1(Y1; . . . ; Yq−1).

3 A Generalization of Hu’s Theorem
In this section, we formulate and prove a generalization of Hu’s theorem. Our treatment can be
read mostly independently from the previous sections, but is motivated by Summary 2.17. First, in
Section 3.1, we formulate the main result of this work, Theorem 3.2, together with its Corollary 3.3
that allows it to be applied to Kolmogorov complexity in Section 4 and the generalization error
in Section 5. The formulation relies on a group-valued measure whose construction we motivate
visually in Section 3.2. Afterwards, in Section 3.3, we deduce some general consequences on how
(conditional) interaction terms of different degrees can be related to each other. The proofs can
be found in Appendix C.

3.1 A Formulation of the Generalized Hu Theorem
Let M be a commutative, idempotent monoid. We assume that M is finitely generated, meaning
there are elements X1, . . . , Xn ∈ M such that all elements in M can be written as arbitrary finite
products of the elements X1, . . . , Xn. Since M is commutative and idempotent, all elements in M
are of the form XI =

∏
i∈I Xi for some subset I ⊆ [n] = {1, . . . , n}, and XIXJ := XI ·XJ = XI∪J .

Additionally, fix an abelian group G and an additive monoid action . : M × G → G.
For each ∅ ≠ I ⊆ [n], we denote by pI an abstract atom. The only property we require of them

is to be pairwise different, i.e., pI ̸= pJ if I ̸= J . Then, set X̃ as the set of all these atoms:

X̃ :=
{

pI | ∅ ≠ I ⊆ [n]
}

. (4)

The atoms pI represent all smallest parts (the intersections of sets with indices in I minus the sets
with indices in [n] \ I) of a general Venn diagram for n sets.

For i ∈ [n], we denote by X̃i :=
{

pI ∈ X̃ | i ∈ I
}

a set which we can imagine to be depicted
by a “disk” corresponding to the variable Xi, and we denote by X̃I :=

⋃
i∈I X̃i the union of the

“disks” corresponding to the joint variable XI . Clearly, we have X̃ = X̃[n]. This is actually the
simplest construction that leads to the X̃i being in general position, as we have the following for
all ∅ ≠ I ⊆ [n]: ⋂

i∈I

X̃i \
⋃

j∈[n]\I

X̃j = {pI}. (5)

We remark that X̃ depends on n and could therefore also be written as X̃(n). We will in most
cases abstain from this to not overload the notation. In general, X̃ has 2n −1 elements. Therefore,
for n = 2, n = 3 and n = 4, X̃ has 3, 7, and 15 elements, respectively, see Figures 1, 2 and 3.

Remember that for a set Σ, 2Σ is its powerset, i.e., the set of its subsets.

Definition 3.1 ((G-Valued) Measure). Let G be an abelian group and Σ a set. A G-valued measure
(on Σ) is a function µ : 2Σ → G with the property

µ(A1 ∪ A2) = µ(A1) + µ(A2)

for all disjoint A1, A2 ⊆ Σ.
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Figure 1: The generalized Hu theorem, visualized for a commutative, idempotent monoid M generated by X, Y ,
and for F1 and F2. The measure µ turns sets into elements of the abelian group G and disjoint unions into
sums.

Theorem 3.2 (Generalized Hu Theorem; See Section C.1 and Proof 4). Let M be a commutative,
idempotent monoid generated by X1, . . . , Xn, G an abelian group, . : M × G → G an additive
monoid action, and X̃ = X̃(n).

1. Assume F1 : M → G is a function that satisfies the following chain rule: for all X, Y ∈ M ,
one has

F1(XY ) = F1(X) + X.F1(Y ). (6)

Construct Fq : Mq → G for q ≥ 2 inductively by

Fq(Y1; . . . ; Yq) := Fq−1(Y1; . . . ; Yq−1) − Yq.Fq−1(Y1; . . . ; Yq−1) (7)

for all Y1, . . . , Yq ∈ M .

Then there exists a G-valued measure µ : 2X̃ → G such that for all q ≥ 1 and J, L1, . . . , Lq ⊆
[n], the following identity holds:

XJ .Fq(XL1 ; . . . ; XLq ) = µ

(
q⋂

k=1
X̃Lk

\ X̃J

)
. (8)

Concretely, one can define µ as the unique G-valued measure that is on individual atoms
pI ∈ X̃ defined by

µ(pI) :=
∑

∅̸=K⊇Ic

(−1)|K|+|I|+1−n · F1(XK), (9)

where Ic = [n] \ I is the complement of I in [n].3

2. Conversely, assume that µ : 2X̃ → G is a G-valued measure. Assume there is a sequence of
functions Fq : Mq → G that satisfy Equation (8). Then F1 satisfies Equation (6) and Fq is
related to Fq−1 as in Equation (7).

Sketch of Proof. Part 1 can be shown as follows: When specializing Equation (8) to the case
XJ = 1 and q = 1, one obtains

F1(XK) = µ(X̃K) =
∑

I : I∩K ̸=∅

µ(pI),

3Alternatively, noting that F1(X∅) = 0 and writing K = K′ ∪ Ic for some unique K′ ⊆ I, we can also write
µ(pI) =

∑
K⊆I

(−1)|K|+1 · F1(XKXIc ).

Compositionality, Volume 7, Issue 1 (2025) 10
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Figure 2: A visualization of the generalized Hu theorem for a commutative, idempotent monoid generated by
X1, X2, X3. On the left-hand-side, three subsets of the abstract set X̃ are emphasized, namely X̃12 ∩ X̃13,
X̃1 \ X̃3, and X̃12 ∩ X̃3. On the right-hand-side, Equation (8) turns them into elements of the abelian group
G, namely F2(X12; X13), X3.F1(X1), and F2(X12; X3), respectively. Many decompositions of information
functions into sums directly follow from the theorem by using that µ turns disjoint unions into sums, as
exemplified by the equation F2(X12; X13) = X3.F1(X1) + F2(X12; X3).

which follows from the Möbius inversion formula on a poset [52, 3.7.1 Proposition] from Equa-
tion (9). The general formula for q > 1 then follows by induction using the properties of the
monoid action. Part 2 follows by a direct computation.

More details can be found in Appendix C.1.

The following corollary will be applied to Kolmogorov complexity in Section 4 and the gener-
alization error in machine learning in Section 5.

Corollary 3.3 (Hu’s Theorem for Two-Argument Functions; see Proof 5). Let M be a commu-
tative, idempotent monoid generated by X1, . . . , Xn, G an abelian group, and X̃ = X̃(n). Assume
that K1 : M × M → G is a function satisfying the following chain rule:

K1(XY ) = K1(X) + K1(Y | X), (10)

where we define K1(X) := K1(X | 1) for all X ∈ M . Construct Kq : Mq × M → G for q ≥ 2
inductively by

Kq

(
Y1; . . . ; Yq | Z

)
:= Kq−1

(
Y1; . . . ; Yq−1 | Z

)
− Kq−1

(
Y1; . . . ; Yq−1 | YqZ

)
. (11)

Then there exists a G-valued measure µ : 2X̃ → G such that for all L1, . . . , Lq, J ⊆ [n], the following
identity holds:

Kq(XL1 ; . . . ; XLq
| XJ) = µ

(
q⋂

k=1
X̃Lk

\ X̃J

)
. (12)

Concretely, one can define µ as the unique G-valued measure that is on individual atoms pI ∈ X̃
defined by

µ(pI) :=
∑

∅̸=K⊇Ic

(−1)|K|+|I|+1−n · K1(XK), (13)

where Ic = [n] \ I is the complement of I in [n].

Compositionality, Volume 7, Issue 1 (2025) 11
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Figure 3: A visualization of the generalized Hu theorem for a commutative, idempotent monoid M generated
by X1, X2, X3, X4. To reduce clutter, we restrict to a visualization of the abstract sets X̃i and the atoms pI , as
well as the corresponding information functions. On the right-hand-side, for computing µ(pI) for the 15 atoms
pI , we use Lemma 3.4.

We conclude by discussing how Hu’s theorem can be visualized, for which we will prove one
further elementary lemma. For I = {i1, . . . , iq} ⊆ [n], set

ηI := X[n]\I .Fq(Xi1 ; . . . ; Xiq ). (14)

For the special case that Fq = Iq is interaction information, these functions were discussed in [6] as
generators of all information functions of the form XJ .Iq(XL1 ; . . . ; XLq

). The following lemma gives
an explanation for this: the functions ηI generate the information measure (or, more generally:
G-valued measure) µ, which in turn generates all other information functions:

Lemma 3.4. Let ∅ ≠ I ⊆ [n] be arbitrary. Then ηI = µ(pI).

Proof. According to Equation (5), we have⋂
i∈I

X̃i \ X̃[n]\I = {pI}. (15)

Thus, the lemma follows from Theorem 3.2.

Thus, Theorem 3.2 can be visualized as follows: For each element X1, . . . , Xn, draw a disk X̃i

such that they intersect “in general position”, meaning that all intersections of (part of) the disks
are present. Assign the function ηI to each atom pI , as in the preceding lemma. Furthermore,
assign subsets of X̃ to information functions according to Equation (8). See Figures 1 and 3 for
examples. In Figure 2, we exemplify how to use these diagrams to visually represent and prove
identities of information functions. Note that in all figures, we write sets I = {i1, . . . , ik} for
simplicity just as the sequence i1i2 . . . ik.

3.2 Explicit Construction of the G-Valued Measure µ

Assume all notation as in part 1 of Theorem 3.2. In this subsection, we explain how one could
“guess” Equation (9) without knowledge of Möbius inversion theory. This section is meant as
motivation, and other sections do not depend on it.

The high-level idea is the following: we have the sequence of functions F1, F2, . . . , as our data
to work with. We also know that Fq is constructed from Fq−1 for all q ≥ 2, which means that
we should be able to express the measure µ in terms of F1 alone. Additionally, we must have
F1(XK) = µ(X̃K) in the end. Thus, our aim is to explain how, for arbitrary ∅ ≠ I ⊆ [n], we can
express µ(pI) using only terms µ(X̃K) with K ⊆ [n]. This idea, while carried out differently, is
also at the heart of the proof of the existence of information diagrams given in [63, 64].
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We now look at some examples for n and I and derive µ(pI) from the µ(X̃K). In the following
visual computations, each Venn diagram always depicts the measure of the grey area. We frequently
make use of the fact that µ is a G-valued measure. For n = 1 and I = {1} = 1,4 we obtain:

.

For n = 2 and I = {1} = 1, we have:

.

For n = 2 and I = {2} = 2, we get the same situation with 1 and 2 exchanged:

.

Next, we look at the case n = 2, I = {1, 2} = 12:

.

Finally, for n = 3 and I = {1, 2} = 12, we obtain:

4For simplicity, we write sets as a sequence of their elements.
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.

In all cases, we managed to achieve our goal to only use terms of the form µ(X̃K). Additionally,
a close look at the coefficients shows that these examples obey Equation (9), as desired.

3.3 General Consequences of the Explicit Construction of µ

Assume the setting as in part 1 of Theorem 3.2, which we now consider proven. In this section,
we consider general consequences of Hu’s theorem that specifically use the explicit construction,
Equation (9), of the G-valued measure µ : 2X̃ → G. Corollary 3.5 explains how three different
information functions can be expressed with respect to each other.

Corollary 3.5 (See Proof 6). Recall the functions ηI from Equation (14). We obtain the following
identities:

1. Let 1 ≤ q ≤ n and ∅ ≠ I = {i1, . . . , iq} ⊆ [n]. Then

ηI =
∑

∅̸=K⊇Ic

(−1)|K|+|I|+1−n · F1(XK).

2. Let K ⊆ [n] arbitrary. Then
F1(XK) =

∑
I⊆[n]

I∩K ̸=∅

ηI .

3. Let 1 ≤ q ≤ n and ∅ ≠ J = {j1, . . . , jq} ⊆ [n] be arbitrary. Then

Fq(Xj1 ; . . . ; Xjq ) =
∑
I⊇J

ηI .

4. For ∅ ≠ I ⊆ [n], we have

ηI =
∑
J⊇I

(−1)|J|−|I| · F|J|(Xj1 ; . . . ; Xj|J|).

5. Let K ⊆ [n] arbitrary. Then one has

F1(XK) =
∑

∅̸=J⊆K

(−1)|J|+1 · F|J|(Xj1 ; . . . ; Xj|J|).

6. Let 1 ≤ q ≤ n and ∅ ≠ J = {j1, . . . , jq} ⊆ [n]. Then one has

Fq(Xj1 ; . . . ; Xjq ) =
∑

∅̸=K⊆J

(−1)|K|+1 · F1(XK).

4 Hu’s Theorem for Kolmogorov Complexity
In this section, we establish the generalization of Hu’s theorem for two-argument functions, Corol-
lary 3.3, for different versions of Kolmogorov complexity. All of these versions satisfy a chain rule
up to certain error terms. These can all be handled in our framework, but the most exact chain rule
holds for Chaitin’s prefix-free Kolmogorov complexity, on which we therefore focus our attention.
Our main references are [15, 28, 34]. In this whole section, we work with the binary logarithm,
which we denote by log, instead of the natural logarithm ln.

This section is written with minimal prerequisites on the reader. We proceed as follows: in
Section 4.1, we explain the preliminaries of prefix-free Kolmogorov complexity. Then in Section 4.2,
we state the chain rule of Chaitin’s prefix-free Kolmogorov complexity, which holds up to an
additive constant. We reformulate this chain rule in Section 4.3 to satisfy the general assumptions
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of Corollary 3.3 for two-argument functions. In Section 4.4, we then define interaction complexity
analogously to interaction information, and make the resulting Hu theorem explicit.

Then in Section 4.5, we combine the two Hu theorems for interaction complexity and Shannon
interaction information and show that expected interaction complexity is up to an error term
equal to interaction information. This leads to the remarkable result that in all degrees, the “per-
bit” expected interaction complexity equals interaction information for sequences of well-behaved
probability measures on increasing sequence lengths.

Finally, the Sections 4.6 and 4.7 then summarize the resulting chain rules for standard prefix-free
Kolmogorov complexity and plain Kolmogorov complexity, leaving more concrete interpretations
of the resulting Hu theorems to future work.

Most proofs for this section can be found in Appendix D.

4.1 Preliminaries on Prefix-Free Kolmogorov Complexity
Let the alphabet be given by {0, 1}. The set of binary strings is given by

{0, 1}∗ := {ϵ, 0, 1, 00, 01, 10, 11, 000, . . . },

where ϵ is the empty string. The above lexicographical ordering defines a bijection N → {0, 1}∗

that we use to identify natural numbers with binary strings. Concretely, this identification maps

0 7→ ϵ, 1 7→ 0, 2 7→ 1, 3 7→ 00, 4 7→ 01, 5 7→ 10, . . . (16)

We silently switch between viewing natural numbers as “just numbers” and viewing them as binary
strings and vice versa.

If x, y ∈ {0, 1}∗ are two binary strings, then we can concatenate them to obtain a new binary
string xy ∈ {0, 1}∗. A string x ∈ {0, 1}∗ is a proper prefix of the string y ∈ {0, 1}∗ if there is a
string z ∈ {0, 1}∗ with z ̸= ϵ such that y = xz. A set A ⊆ {0, 1}∗ is called prefix-free if no element
in A is a proper prefix of any other element in A.

Let X and Y be sets. A partial function f : X 99K Y is a function f : A → Y defined on a subset
A ⊆ X . A decoder for a set X is a partial function D : {0, 1}∗ 99K X .5 A decoder can be thought
of as decoding the code words in {0, 1}∗ into source words in X . A decoder D : {0, 1}∗ 99K X is
called a prefix-free decoder if its domain A ⊆ {0, 1}∗ is prefix-free.6

For a binary string x, l(x) is defined to be its length, meaning the number of its symbols. Thus,
for example, we have l(ϵ) = 0 and l(01) = 2. Let D : {0, 1}∗ 99K X be a decoder. We define the
length function LD : X → N ∪ {∞} via

LD(x) := min
{

l(y) | y ∈ {0, 1}∗, D(y) = x
}

,

which is ∞ if D−1(x) = ∅.
In the following, we make use of the notion of a Turing machine. This can be imagined as a

machine with very simple rules that implements an algorithm. We will not actually work with
concrete definitions of Turing machines; instead, we let Church’s Thesis 4.1 do the work, which we
describe below — it will guarantee that any function that intuitively resembles an algorithm could
equivalently be described by a Turing machine. Concrete definitions can be found in Chapter 1.7
of [34].

A partial computable function is any partial function T : {0, 1}∗ 99K {0, 1}∗ that can be com-
puted by a Turing machine. The Turing machine halts on precisely the inputs on which T is defined.
We do not distinguish between Turing machines and the corresponding partial computable func-
tions: If T is a partial computable function, then we say that T is a Turing machine. If x ∈ {0, 1}∗

is in the domain of the Turing machine T , we say that T halts on x and write T (x) < ∞. If T
does not halt on x, we sometimes write T (x) = ∞.

By the Church-Turing thesis, partial computable functions are precisely the partial functions
for which there is an “algorithm in the intuitive sense” that computes the output for each input.
We reproduce the formulation from [34]:

5Often, the word code is used instead of decoder. We find “decoder” less confusing.
6In the literature, this is often called a prefix code. We choose the name “prefix-free” as it avoids possible

confusions.
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Thesis 4.1 (Church’s Thesis). The class of algorithmically computable partial functions (in the
intuitive sense) coincides with the class of partial computable functions.

We now define two prefix-free decoders for binary sequences. To do that, we first define the
corresponding encoders: define the encoder (·)′ : {0, 1}∗ → {0, 1}∗ by

x′ := 1l(l(x))0l(x)x.7 (17)

Note that the natural number l(x) is viewed as a binary string using the identification in Equa-
tion (16).

The decoder corresponding to (·)′ is a partial computable function D′ : {0, 1}∗ 99K {0, 1}∗ that
is only defined on inputs of the form x′. The underlying algorithm reads until the first 0 to know
the length of the bitstring representing l(x). Then it reads until the end of l(x) to know the length
of x. Subsequently, it can read until the end of x to know x itself, which it then outputs. This
decoder is prefix-free: if x′ is a prefix of y′, then l(x) = l(y) and x is a prefix of y, from which
x = y and thus x′ = y′ follows.

Let a pairing function {0, 1}∗ × {0, 1}∗ → {0, 1}∗ be given by

(x, y) 7→ x′y.

Note that we can algorithmically recover both x and y from x′y: reading the string x′y from the
left, the algorithm first recovers l(x) and then x, after which the rest of the string automatically
is y.

A Turing machine T : {0, 1}∗ 99K {0, 1}∗ is called a prefix-free machine if it is a prefix-free
decoder. The input is then imagined to be a code word encoding the output string. There is a
bijective, computable enumeration, called standard enumeration, T1, T2, T3, . . . , of all prefix-free
machines ([34], Section 3.1). Computable here means the following: if we would encode the set of
rules of any Turing machine as a binary sequence, then the map from natural numbers to binary
sequences corresponding to the standard enumeration is itself computable.

A Turing machine T : {0, 1}∗ 99K {0, 1}∗ is called a conditional Turing machine if for all x such
that T halts on x we have x = y′p for some elements y, p ∈ {0, 1}∗; p is then called the program,
and y the input. A universal conditional prefix-free machine is a conditional prefix-free machine
U : {0, 1}∗ 99K {0, 1}∗ such that for all i ∈ N and y, p ∈ {0, 1}∗, we have U(y′i′p) = Ti(y′p),
and U does not halt on inputs of any other form. Here, again, i is viewed as a binary string via
Equation (16). One can show that such universal conditional prefix-free machines indeed do exist
([34], Theorem 3.1.1).

For the rest of this article, let U be a fixed universal conditional prefix-free machine.

Definition 4.2 (Prefix-Free Kolmogorov Complexity). The conditional prefix-free Kolmogorov
complexity is the function K : {0, 1}∗ × {0, 1}∗ → N given by

K(x | y) := min
{

l(p)
∣∣ p ∈ {0, 1}∗, U(y′p) = x

}
= min

{
l(i′) + l(q)

∣∣ i ∈ N, q ∈ {0, 1}∗, U(y′i′q) = x
}

= min
{

l(i′) + l(q)
∣∣ i ∈ N, q ∈ {0, 1}∗, Ti(y′q) = x

}
< ∞.

We define the non-conditional prefix-free Kolmogorov complexity by K : {0, 1}∗ → N, K(x) :=
K(x | ϵ). As ϵ′ = 1l(l(ϵ))0l(ϵ) = 0,8 we obtain

K(x) = min
{

l(p) | U(0p) = x
}

.

Here, the 0 can be thought of as simply signaling that there is no input, while each “actual” input
starts with a 1 due to the definition of y′.

7In the literature, this is viewed as a code for the natural numbers instead of {0, 1}∗. But both viewpoints are
equivalent due to the bijection N ∼= {0, 1}∗.

8Here, we used l(ϵ) = 0, which is a natural number corresponding to the string ϵ that is plucked back into the
formula.
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Definition 4.3 (Joint Conditional Prefix-Free Kolmogorov Complexity). Define Concat : ({0, 1}∗)n →
{0, 1}∗ by Concat(x1, . . . , xn) := x′

1 · · · x′
n−1xn. For x1, . . . , xn ∈ {0, 1}∗ and y1, . . . , ym ∈ {0, 1}∗,

we define the (joint conditional) prefix-free Kolmogorov complexity by

K
(
x1, . . . , xn | y1, . . . , ym

)
:= K

(
Concat(x1, . . . , xn) | Concat(Y1, . . . , ym)

)
.

We then simply set K
(
x1, . . . , xn

)
:= K

(
x1, . . . , xn | ϵ

)
.

4.2 The Chain Rule for Chaitin’s Prefix-Free Kolmogorov Complexity

Let f, g : X → R be two functions on a set X . We adopt the following notation from [28]: f
+
< g

means that there is a constant c ≥ 0 such that f(x) < g(x) + c for all x ∈ X . We write f
+
> g if

g
+
< f . Finally, we write f

+= g if f
+
< g and f

+
> g, which means that there is a constant c ≥ 0 such

that
∣∣f(x) − g(x)

∣∣ < c for all x ∈ X . If we want to emphasize the inputs, we may, for example,
also write f(x) += g(x).

Let x ∈ {0, 1}∗ be arbitrary and K(x) its prefix-free Kolmogorov complexity. Let x∗ ∈ {0, 1}∗

be chosen as follows: we look at all y ∈ {0, 1}∗ of length l(y) = K(x) such that U(0y) = x.
Among those, we look at all y such that U computes x on input 0y with the smallest number of
computation steps. And finally, among those, we define x∗ to be the lexicographically first string.
Based on this, Chaitin’s prefix-free Kolmogorov complexity is given by

Kc : {0, 1}∗ × {0, 1}∗ → R, Kc(x | y) := K(x | y∗)

and Kc(x) := Kc(x | ϵ).
Clearly, there is a program that, on input x′K(x), outputs x∗ — we simply run U(0y) for

all programs y of length K(x) in parallel, and the one that outputs x the fastest and is lexico-
graphically first among those is the output x∗. Vice versa, given x∗, one can compute x′K(x) by
simply computing U(0x∗)′l(x∗). In this sense, x∗ and x′K(x) can be said to “contain the same
information”. In the literature, Chaitin’s prefix-free Kolmogorov complexity is, for this reason, also
often defined by Kc(x | y) := K(x | y, K(y)).

The following result might have for the first time been written down in [26], and was attributed
therein to Leonid Levin.

Theorem 4.4 (Chain Rule for Chaitin’s Prefix-Free Kolmogorov Complexity). The following
identity holds:

Kc(x, y) += Kc(x) + Kc(y | x). (18)
Here, both sides are viewed as functions ({0, 1}∗)2 → R that map inputs of the form (x, y).

Proof. See [34], Theorem 3.8.1 for the proof of the inequality Kc(x, y)
+
< Kc(x) + Kc(y | x). The

proof of the other direction, namely Kc(y | x)
+
< K(x, y) − K(x), in [34] seems incorrect to us, as

it only seems to show that the constant is independent of x and not of y. See the proof in [15] for
that direction.

4.3 A Reformulation of the Chain Rule in Terms of Our General Framework
Our goal is to express the result, Equation (18), in terms of the assumptions of Corollary 3.3. To
do this, we need to find a framework under which the chain rule becomes exact instead of correct
up to a constant, and in which the inputs come from a monoid. We will solve this by identifying
functions whose difference is bounded by a constant.

For n ≥ 0 any fixed natural number, we define Maps
(
({0, 1}∗)n,R

)
as the abelian group of

functions from ({0, 1}∗)n to R. We define the equivalence relation ∼Kc on Maps
(
({0, 1}∗)n,R

)
by

F ∼Kc H :⇐⇒ F
+= H.

The reason we put Kc in the subscript of ∼Kc is that later, we will investigate different equivalence
relations ∼K and ∼C for prefix-free and plain Kolmogorov complexity. Note that the functions F
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with F ∼Kc 0, i.e., F
+= 0, form a subgroup of Maps

(
({0, 1}∗)n,R

)
. Consequently, we obtain an

abelian group Maps
(
({0, 1}∗)n,R

)
/ ∼Kc with elements written as [F ]Kc.

Now, let the variables X1, . . . , Xn be defined as the following projections:

Xi : ({0, 1}∗)n → {0, 1}∗, x = (x1, . . . , xn) 7→ xi.

Then, for any i1, . . . , ik ∈ [n], we can form the product variable Xi1 · · · Xik
:

Xi1 · · · Xik
: ({0, 1}∗)n → ({0, 1}∗)k, x = (x1, . . . , xn) 7→ (xi1 , . . . , xik

).

These strings of projections form the elements of the monoid M̃ = {X1, . . . , Xn}∗, with multipli-
cation simply given by concatenation. Then from Kc : {0, 1}∗ × {0, 1}∗ → R, we can define the
function

[Kc]Kc : M̃ × M̃ → Maps
(
({0, 1}∗)n,R

)
/ ∼Kc,

(Y, Z) 7→ [Kc(Y | Z)]Kc,

with Kc(Y | Z) simply being the function that inserts tuples from ({0, 1}∗)n into the variables Y
and Z:

Kc(Y | Z) : ({0, 1}∗)n → R, x 7→ Kc(Y (x) | Z(x)).

Similarly as before, one can then define Kc(Y ) : ({0, 1}∗)n → R by Kc(Y ) := Kc(Y | ϵ) with ϵ ∈ M̃
being the empty string of variables. In the same way, [Kc]Kc(Y ) := [Kc]Kc(Y | ϵ) = [Kc(Y )]Kc.
Since ϵ(x) = ϵ for all x ∈ ({0, 1}∗)n, these definitions are compatible with the earlier definition
Kc(x) := Kc(x | ϵ) for x ∈ {0, 1}∗: we have

(
Kc(Y )

)
(x) = Kc

(
Y (x)

)
.

Proposition 4.5 (See Proof 7). For arbitrary Y, Z ∈ M̃ , we have the exact equality

[Kc]Kc(Y Z) = [Kc]Kc(Y ) + [Kc]Kc(Z | Y ) (19)

of elements in Maps
(
({0, 1}∗)n,R

)
/ ∼Kc.

To obtain a commutative, idempotent monoid, we show that we can permute and “reduce” the
elements in M̃ without affecting the resulting functions in Maps

(
({0, 1}∗)n,R

)
/ ∼Kc: for arbitrary

Y = Xi1 · · · Xik
∈ M̃ we define the reduction Y ∈ M̃ by

Y := XI :=
∏
i∈I

Xi, with I :=
{

i ∈ [n]
∣∣ ∃s ∈ [k] : is = i

}
. (20)

Here, the factors Xi with i ∈ I are assumed to appear in increasing order of the index i.

Lemma 4.6 (See Proof 8). For all Y, Z ∈ M̃ , we have the equality

[Kc]Kc

(
Y | Z

)
= [Kc]Kc

(
Y | Z

)
in Maps

(
({0, 1}∗)n,R

)
/ ∼Kc.

Now, define the equivalence relation ∼ on M̃ by Y ∼ Z if Y = Z, with (·) : M̃ → M̃ defined as
in Equation (20). We define M := M̃/ ∼. Each element [Y ] ∈ M is then represented by Y since
Y = Y ; it is of the form Y = XI for some I ⊆ [n]. Additionally, if I ̸= J , then obviously we have
XI ≁ XJ , and consequently, there is a one-to-one correspondence between representatives of the
form XI and elements in M . Therefore, we can write elements in M for convenience, and by abuse
of notation, simply as [Y ] = XI . We then define the multiplication in M by [Y ] · [Z] := [Y Z],
which in the new notation can be written as XI · XJ = XI∪J and thus makes M a well-defined
commutative, idempotent monoid generated by X1, . . . , Xn. We define, by abuse of notation,
[Kc]Kc : M × M → Maps

(
({0, 1}∗)n,R

)
/ ∼Kc in the obvious way on representatives, which

is well-defined by Lemma 4.6. Overall, we obtain by Corollary 3.3 a Hu theorem for Chaitin’s
prefix-free Kolmogorov complexity, which we next explain in more detail.
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4.4 Hu’s Theorem for Chaitin’s Prefix-Free Kolmogorov Complexity
We now deduce a Hu theorem for Chaitin’s prefix-free Kolmogorov complexity. We formulate it
without the abstraction of equivalence classes from the previous subsection (which is mainly impor-
tant for the proof), with the goal to obtain an intrinsically more interesting version. For formulating
the result, we first name the higher-degree terms analogously to the interaction information from
Definition 2.7:

Definition 4.7 (Interaction Complexity). Define Kc1 := Kc : {0, 1}∗ × {0, 1}∗ → R and Kcq :
({0, 1}∗)q × {0, 1}∗ → R inductively by

Kcq(y1; . . . ; yq | z) := Kcq−1(y1; . . . ; yq−1|z) − Kcq−1(y1; . . . ; yq−1 | yq, z).

We call Kcq the interaction complexity of degree q.

For example, Kc2(x; y) = Kc1(x) − Kc1(x | y) measures the reduction of the encoding length
of x when having access to y. E.g., if x is thought of as “data” and y thought of as a “theory”,
then Kc2(x; y) measures the extent to which y helps in compressing x. See also the last para-
graph in Section 6.3 for more interpretation of the potential meaning of these quantities. The
interpretation of higher-order terms is future work.

For Y1, . . . , Yq, Z ∈ M̃ = {X1, . . . , Xn}∗, define Kcq(Y1; . . . ; Yq | Z) ∈ Maps
(
({0, 1}∗)n,R

)
by

Kcq(Y1; . . . ; Yq | Z) : x 7→ Kcq

(
Y1(x); . . . ; Yq(x) | Z(x)

)
.

One can easily inductively show that

Kcq(Y1; . . . ; Yq | Z) += Kcq−1(Y1; . . . ; Yq−1 | Z) − Kcq−1(Y1; . . . ; Yq−1 | YqZ). (21)

The full proof of the following theorem can be found in Appendix D, Proof 9. The main
ingredient is the chain rule, Proposition 4.5, together with Corollary 3.3.

Theorem 4.8 (See Proof 9). Let X̃ = X̃(n). There exists a measure µ : 2X̃ → Maps
(
({0, 1}∗)n,R

)
such that for all L1, . . . , Lq, J ⊆ [n], the relation

Kcq

(
XL1 ; . . . ; XLq

| XJ

) += µ

(
q⋂

k=1
X̃Lk

\ X̃J

)
(22)

of functions ({0, 1}∗)n → R holds. Concretely, µ can be defined as the unique measure that is on
individual atoms pI ∈ X̃ defined by

µ(pI) :=
∑

∅≠K⊇Ic

(−1)|K|+|I|+1−n · Kc1(XK), (23)

where Ic = [n] \ I is the complement of I in [n].

Remark 4.9. In Theorem 4.8, the equality holds up to a constant independent of the input in
({0, 1}∗)n. However, there is a dependence on q, the degree, and n, the number of generating
variables. We now briefly analyze this.

For analyzing the dependence on q, we note that the inductive step of the proof of the generalized
Hu Theorem 3.2 uses the theorem for degree q−1 twice. That means that the number of comparisons
doubles in each degree, leading to a dependence of q of the form O(2q). Can one do better than
this? One idea might be to not define Kcq inductively, but with an inclusion-exclusion–type formula
motivated by Corollary 3.5, part 6. One sensible definition is the following:

Kcq(y1; . . . ; yq | z) :=
∑

K⊆[q]

(−1)|K|+1 · Kc1(yKz)

with
yK :=

∏
k∈K

y′
k. (24)
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However, this now leads to 2q summands, which one would, for a proof of Hu’s theorem, individually
compare with the evaluation of µ on a “disk” in X̃ = X̃(n). As in the general definition Equa-
tion (24), the order of the factors in yK does not follow the ordering of the generators x1, . . . , xn,
we expect there a reordering of the factors to be necessary for the comparison. This has each time
a cost of O(1), thus again leading to a dependence of the form O(2q). We currently do not see a
way to improve this.

Now, for each of the 2q comparisons, we would like to know the dependence on n. One possible
algorithm for bringing yKz “in order” works as follows: assuming that all of yk, k ∈ K, and z are
given by a permutation (with omissions) of x1, . . . , xn, then we have to specify q + 1 permutations,
which each involves to specify the position of n elements. The position is one of 1, . . . , n plus
“omission”, which together has a cost of log(n + 1). Overall, this leads to a dependence on n of
O
(
(q + 1) · n · log(n + 1)

)
.

Overall, the dependence on q and n together is thus O
(
2q · (q + 1) · n · log(n + 1)

)
.

Figure 4: A visualization of Hu’s theorem for Kolmogorov complexity for three variables X, Y, Z. On the left-
hand-side, three subsets of the abstract set X̃Y Z are emphasized, namely X̃Y ∩ X̃Z, X̃ \ Z̃, and X̃Y ∩ Z̃.
On the right-hand-side, Equation (22) turns them up to a constant error into the Kolmogorov complexity terms
Kc2(XY ; XZ), Kc(X | Z), and Kc2(XY ; Z), respectively. Many decompositions of complexity terms into
sums directly follow from the theorem by using that µ turns disjoint unions into sums, as exemplified by the
equation Kc2(XY ; XZ) += Kc(X | Z) + Kc2(XY ; Z).

As an Example, we recreate Figure 2 for the case of Kolmogorov complexity in Figure 4. We
can also translate back from the notation with variables to the more familiar notation in which
elements of {0, 1}∗ are inserted in the formulas. If we do this, then the example equation from
Figure 4 becomes

Kc2(x, y; x, z) += Kc(x | z) + Kc2(x, y; z),
where both sides are viewed as functions ({0, 1}∗)3 → R.

4.5 Expected Interaction Complexity is Interaction Information
Recall Definition 2.7 of the interaction information of q discrete random variables Y1, . . . , Yq, de-
noted Iq(Y1; . . . ; Yq). Additionally, recall that for another discrete random variable Z defined on
the same sample space, we can define the averaged conditioning Z.Iq(Y1; . . . ; Yq), see Definition 2.3,
which is again an information function. Its evaluation on a probability measure P on the sample
space is denoted Z.Iq(Y1; . . . ; Yq; P ).

In this section, we want to establish a relationship between interaction information of random
variables defined on ({0, 1}∗)n with values in ({0, 1}∗)k for some k on the one hand, and the
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expectation of interaction complexity as defined in Definition 4.7 on the other hand. The deviation
from an equality between interaction information and interaction complexity will be quantified by
the Kolmogorov complexity of probability mass functions.

For this aim, we first need to interpret outputs of Turing machines as rational numbers: If T is
a Turing machine and T (x) = m′n for some m, n ∈ {0, 1}∗, then interpret m, n as natural numbers
via the identification map in Equation (16), and consequently m′n as the rational number m/n,
see also Li and Vitányi [34], Section 1.7.3. Interpret the output as 0 if it is not of the form m′n.

Definition 4.10 (Kolmogorov Complexity of Probability Mass Functions). Let P : ({0, 1}∗)n → R

be a probability mass function. Its Kolmogorov complexity is defined by

K(P ) := min
p∈{0,1}∗

{
l(p)

∣∣ ∀q ∈ N, ∀x ∈ ({0, 1}∗)n :
∣∣Tp(x′q) − P (x)

∣∣ ≤ 1/q
}

,

where Tp is the p’th prefix-free Turing machine.

Definition 4.11 (Computability of Probability Mass Functions). A probability mass function
P : ({0, 1}∗)n → R is called computable if K(P ) < ∞.

In other words, a probability mass function P is computable if there exists a prefix-free Turing
machine Tp that can, for all natural numbers q, approximate P up to precision 1/q.

We now unify the viewpoint of the variables Xi as “placeholders” with the viewpoint that
they are random variables: remember that the Xi : ({0, 1}∗)n → {0, 1}∗ are given by projec-
tions: Xi(x) = xi. They form the monoid M̃ = {X1, . . . , Xn}∗, with multiplication given by
concatenation. Furthermore, we defined an equivalence relation ∼ with Y ∼ Z if Y = Z.

Now, interpret ({0, 1}∗)n as a discrete sample space. Then the strings in Y ∈ M̃ can be
interpreted as random variables on ({0, 1}∗)n with values in ({0, 1}∗)k for some k. The concate-
nation of these strings is identical to the product of random variables defined in Equation (3).
Now, remember that in Section 2.2 we also defined an equivalence relation for random vari-
ables, which we now call ∼r to distinguish it from ∼. For Y : ({0, 1}∗)n → ({0, 1}∗)ky and
Z : ({0, 1}∗)n → ({0, 1}∗)kz , we have Y ∼r Z if there exist functions fZY : ({0, 1}∗)ky → ({0, 1}∗)kz

and fY Z : ({0, 1}∗)kz → ({0, 1}∗)ky such that fZY ◦ Y = Z and fY Z ◦ Z = Y .

Lemma 4.12 (See Proof 10). For all Y, Z ∈ M̃ , we have

Y ∼ Z ⇐⇒ Y ∼r Z.

That is, the equivalence relations ∼ and ∼r are identical.

This shows that the commutative, idempotent monoids M = {X1, . . . , Xn}∗/ ∼ and M(X1, . . . , Xn)
from Definition 2.15 are the same. The only difference is simply that the neutral element in
{X1, . . . , Xn}∗/ ∼ was denoted ϵ, whereas the one of M(X1, . . . , Xn) was denoted 1. We denote
both monoids simply by M from now on. For the following theorems, recall that a probability
measure P ∈ ∆(Ω) has a Shannon entropy I1(P ) which equals I1(idΩ; P ), see Definitions 2.1, 2.2.
Our aim is to generalize the following theorem:

Theorem 4.13 ([34], Theorem 8.1.1). We have

0 ≤

( ∑
x∈({0,1}∗)n

P (x)Kc(x) − I1(P )
)

+
< K(P ),

where both sides are viewed as functions in computable probability measures P : ({0, 1}∗)n → R

with finite entropy I1(P ) < ∞. That is, up to K(P ) + c for some constant c independent of P ,
entropy equals expected Kolmogorov complexity.

In the following theorem, if we write f = g + O(h) for functions f, g, h : X → R, we mean that
there exists a c ≥ 0 such that |f(x) − g(x)| < c · h(x) for all x ∈ X . This is in contrast to our use of
that notation in the following parts, Sections 4.6 and 4.7, where the inequality only needs to hold
starting from some threshold value x0 ∈ X .
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We prove the result in Appendix D, Proof 11, with the main ingredients being Hu’s theorems
for both Shannon entropy — which follows using Summary 2.17 from Theorem 3.2 — and Chaitin’s
prefix-free Kolmogorov complexity (Theorem 4.8). Both together allow a reduction to the well-
known special case, Theorem 4.13.

Theorem 4.14 (See Proof 11). Let X1, . . . , Xn : ({0, 1}∗)n → {0, 1}∗ be the (random) variables
given by Xi(x) = xi. Let M = {X1, . . . , Xn}∗/ ∼ = M(X1, . . . , Xn) be the idempotent, com-
mutative monoid generated by X1, . . . , Xn, with elements written as XI for I ⊆ [n]. Then for all
q ≥ 1 and Y1, . . . , Yq, Z ∈ M , the following relation holds:∑

x∈({0,1}∗)n

P (x) ·
(
Kcq(Y1; . . . ; Yq | Z)

)
(x) = Z.Iq(Y1; . . . ; Yq; P ) + O

(
K(P )

)
, (25)

where both sides are viewed as functions in computable probability mass functions P : ({0, 1}∗)n →
R with finite entropy I1(P ) < ∞.

Remark 4.15. Similar to Remark 4.9, one can also for this theorem wonder about the dependence
on n and q. A similar analysis shows that our techniques lead to a dependence of the form

O
(

2q
(
(q + 1)n log(n + 1) + K(P )

))
.

Corollary 4.16. Assume that (Pm)m∈N is a sequence of computable probability mass functions
Pm : ({0, 1}∗)n → R with finite entropy. Additionally, we make the following two assumptions:

• Pm has all its probability mass on elements x = (x1, . . . , xn) ∈ ({0, 1}∗)n with sequence
lengths l(xi) = m for all i ∈ [n];

• K(Pm) grows sublinearly with m, i.e.,

lim
m→∞

K(Pm)
m

= 0.

Let q ≥ 1 and Y1, . . . , Yq, Z ∈ M be arbitrary. Then the “per-bit” difference between expected
interaction complexity and interaction information goes to zero for increasing sequence length:

lim
m→∞

∑
x∈({0,1}m)n Pm(x) ·

(
Kcq(Y1; . . . ; Yq | Z)

)
(x) − Z.Iq(Y1; . . . ; Yq; Pm)

m
= 0.

Proof. This follows immediately from Theorem 4.14.

Example 4.17. As an example to Corollary 4.16, consider the case that we have n parameters
p1, . . . , pn ∈ (0, 1) for Bernoulli distributions. Let Pm be the probability mass function given on
x ∈ ({0, 1}m)n by

Pm(x) :=
n∏

i=1
P pi

m (xi) :=
n∏

i=1

m∏
k=1

p
x

(k)
i

i · (1 − pi)1−x
(k)
i .

That is, Pm consists of n independent probability mass functions P pi
m that correspond to m in-

dependent Bernoulli distributions with parameter pi. We have K(Pm) = O(log m) since m is
the only moving part in the preceding description for Pm, with p1, . . . , pn being independent of
m. Consequently, Corollary 4.16 can be applied, meaning that the per-bit difference between an
expected interaction complexity term and the corresponding interaction information goes to zero.
This generalizes the observation after [28], Theorem 10, to n > 1 and more complicated interaction
terms.

4.6 Hu’s Theorem for Prefix-Free Kolmogorov Complexity
We now argue that there is also a Hu theorem for prefix-free Kolmogorov complexity. It requires
a logarithmic error term and is therefore less strong than the corresponding theorem for Chaitin’s
prefix-free Kolmogorov complexity. Additionally, we need to now use O-notation, since the equal-
ities only hold for almost all inputs: for three functions f, g, h : ({0, 1}∗)n → R, different from
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Section 4.5, we now write f = g + O(h) if there is a constant c ≥ 0 and a threshold x0 ∈ ({0, 1}∗)n

such that ∣∣f(x) − g(x)
∣∣ ≤ c · h(x)

for all x ≥ x0. The latter condition means that x is greater than or equal to x0 in at least one
entry, where {0, 1}∗ is ordered lexicographically.

[34], Exercise 3.9.6, shows the following relation:

K(y | x∗) = K(y | x) + O
(

log K(x) + log K(y)
)
. (26)

Overall, this results in the following chain rule for prefix-free Kolmogorov complexity:

Theorem 4.18 (Chain Rule for Prefix-Free Kolmogorov Complexity). The following identity
holds:

K(x, y) = K(x) + K(y | x) + O
(

log K(x) + log K(y)
)
. (27)

Here, both sides are viewed as functions {0, 1}∗ × {0, 1}∗ → R that map inputs of the form (x, y).

Proof. Combine Theorem 4.4 with Equation (26).

To get a precise chain rule, we can, similarly to the case of Chaitin’s prefix-free Kolmogorov com-
plexity and motivated by Equation (26), define a new equivalence relation ∼K on Maps

(
({0, 1}∗)n,R

)
by

F ∼K H :⇐⇒ F (x) = H(x) + O

(
n∑

i=1
log K(xi)

)
, where x = (x1, . . . , xn) ∈ ({0, 1}∗)n.

We denote the equivalence class of a function F by [F ]K ∈ Maps
(
({0, 1}∗)n,R

)
/ ∼K . Then, we

again use the monoid M = {X1, . . . , Xn}∗/ ∼ and define

[K]K : M × M → Maps
(
({0, 1}∗)n,R

)
/ ∼K ,

(Y, Z) 7→ [K(Y | Z)]K

with
K(Y | Z) : x 7→ K

(
Y (x) | Z(x)

)
.

Again, this is well-defined by the same arguments as in Lemma 4.6, only that this time, we don’t
need to use the chain rule in the proof. Furthermore, we can prove an analog of the chain rule
given in Proposition 4.5.

Proposition 4.19 (See Proof 12). For arbitrary Y, Z ∈ M , the following equality

[K]K(Y Z) = [K]K(Y ) + [K]K(Z | Y )

of elements in Maps
(
({0, 1}∗)n,R

)
/ ∼K holds.

Thus, [K]K : M × M → Maps
(
({0, 1}∗)n,R

)
/ ∼K satisfies all conditions of Corollary 3.3 and

we obtain a corresponding Hu theorem for prefix-free Kolmogogorov complexity. This could be
worked out similarly to Theorem 4.8, which we leave to the interested reader.

4.7 Hu’s Theorem for Plain Kolmogorov Complexity
Here, we briefly consider Hu’s theorems for plain Kolmogorov complexity C : {0, 1}∗ ×{0, 1}∗ → R.
Recall the O-notation from Section 4.6.

The plain Kolmogorov complexity C : {0, 1}∗×{0, 1}∗ → R is defined in the same way as prefix-
free Kolmogorov complexity, but it allows the set of halting programs to not form a prefix-free set,
see [34], Chapter 2. This version satisfies the following chain rule:

Theorem 4.20 (Chain Rule for Plain Kolmogorov Complexity). The following identity holds:

C(x, y) = C(x) + C(y | x) + O
(

log C(x, y)
)
. (28)

Here, both sides are viewed as functions {0, 1}∗ × {0, 1}∗ → R that are defined on inputs of the
form (x, y).
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Proof. This is proved in [34], Theorem 2.8.

To get a precise chain rule, we can, similarly as for (Chaitin’s) prefix-free Kolmogorov com-
plexity, define a new equivalence relation ∼C on Maps

(
({0, 1}∗)n,R

)
by

F ∼C H :⇐⇒ F (x) = H(x) + O
(

log C(x)
)
, where x = (x1, . . . , xn) ∈ ({0, 1}∗)n.

We denote the equivalence class of a function F by [F ]C ∈ Maps
(
({0, 1}∗)n,R

)
/ ∼C . Using again

the monoid M = {X1, . . . , Xn}∗/ ∼, one can define

[C]C : M × M → Maps
(
({0, 1}∗)n,R

)
/ ∼C

(Y, Z) 7→ [C(Y | Z)]C

with
C(Y | Z) : x 7→ C

(
Y (x) | Z(x)

)
.

Again, this is well-defined by the same arguments as in Lemma 4.6, and as for prefix-free Kol-
mogorov complexity, we do not need to use the chain rule in the proof. Furthermore, we can prove
an analog of the chain rules given in Proposition 4.5 and Proposition 4.19:

Proposition 4.21 (See Proof 13). For arbitrary Y, Z ∈ M , the equality

[C]C(Y Z) = [C]C(Y ) + [C]C(Z | Y )

of elements in Maps
(
({0, 1}∗)n,R

)
/ ∼C holds.

Thus, [C]C : M × M → Maps
(
({0, 1}∗)n,R

)
/ ∼C satisfies all conditions of Corollary 3.3, and

we obtain a corresponding Hu theorem for plain Kolmogogorov complexity. This could again be
worked out similarly to Theorem 4.8.

5 Further Examples of the Generalized Hu Theorem
In this section, we establish further examples of the premises of Theorem 3.2 and Corollary 3.3,
which essentially boils down to finding a chain rule for a function with the correct type signature.
For the case of Shannon entropy, the premises were summarized in Summary 2.17. We mostly
leave investigations of the specific meaning of the resulting higher-order terms to future work,
though we do briefly look at the second degree terms for both Kullback-Leibler divergence and
the generalization error in machine learning. To keep things simple, we diverge from Sections 2
by only working with finite discrete random variables, in the cases where the monoid is based on
random variables. As a result, we do not have to worry about questions of convergence and can
replace ∆f (Ω) by ∆(Ω) and Meascon by Meas everywhere.

Concretely, we investigate Tsallis q-entropy (Section 5.1), Kullback-Leibler divergence (Sec-
tion 5.2), q–Kullback-Leibler divergence (Section 5.3), and cross-entropy (Section 5.4). We also
study arbitrary functions on commutative, idempotent monoids (Section 5.5), the special case of
submodular information functions (Section 5.6), and the generalization error from machine learn-
ing (Section 5.7). Some of the proofs for chain rules are found in Appendix E. The whole section
is written in a self-contained way that requires minimal knowledge from the reader.

5.1 Tsallis q-Entropy
We now investigate the Tsallis q-entropy, which was introduced in [55]. We follow the investigations
in [57] and translate them into our framework.

That is, assume a finite, discrete sample space Ω, n finite, discrete random variables X1, . . . , Xn

on Ω, and the monoid M(X1, . . . , Xn) generated by equivalence classes of these random variables,
see Definition 2.15. Now, fix an arbitrary number q ∈ R \ {1}. Then we define the monoid action

.q : M(X1, . . . , Xn) × Meas
(
∆(Ω),R

)
→ Meas

(
∆(Ω),R

)
,
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which we define for X ∈ M(X1, . . . , Xn), F ∈ Meas
(
∆(Ω),R

)
, and P ∈ ∆(Ω) by

(X.qF )(P ) :=
∑

x∈EX

PX(x)q · F (P |X=x).

This is well-defined — meaning that equivalent random variables act in the same way — by the same
arguments as in Proposition 2.11. That it is a monoid action can be proved as in Proposition 2.6.
Now, define for arbitrary q ∈ R \ {1} the q-logarithm by

lnq : (0, ∞) → R, lnq(p) := pq−1 − 1
q − 1 .

We have limq→1 lnq(p) = ln(p), as can be seen using l’Hospital’s rule. Finally, we can define the
Tsallis q-entropy Iq

1 : M(X1, . . . , Xn) → Meas
(
∆(Ω),R

)
by

[
Iq

1 (X)
]
(P ) := −

∑
x∈EX

PX(x) lnq PX(x) =
∑

x∈EX
PX(x)q − 1

1 − q
.

This can be shown to be well-defined similarly as in Proposition 2.10. Since limq→1 lnq p = ln p,
we consequently also have limq→1 Iq

1 (X; P ) = I1(X; P ). That is, the q-entropy generalizes the
Shannon entropy.

The following chain rule guarantees the existence of a corresponding Hu theorem.

Proposition 5.1 (See Proof 14). Iq
1 : M(X1, . . . , Xn) → Meas

(
∆(Ω),R

)
satisfies the chain rule

Iq
1 (XY ) = Iq

1 (X) + X.qIq
1 (Y )

for all X, Y ∈ M(X1, . . . , Xn).

5.2 Kullback-Leibler Divergence
In this section, we study the chain rule of Kullback-Leibler divergence. It resembles the one
described in [57], chapter 3.7, in the language of information cohomology. A more elementary
formulation of the chain rule can also be found in [17], Theorem 2.5.3, which is applied in their
Section 4.4 to prove a version of the second law of thermodynamics. In the end, we will also briefly
study and interpret KL divergence of degree 2, in analogy to mutual information I2, in Example 5.3.

Let again the monoid M(X1, . . . , Xn) of n discrete random variables on Ω be given. For P, Q ∈
∆(Ω), we write P ≪ Q if for all ω ∈ Ω, the following implication is true: Q(ω) = 0 =⇒ P (ω) = 0.
In the literature, P is then called absolutely continuous with respect to the measure Q. We set

∆̃(Ω)2 :=
{

(P, Q) ∈ ∆(Ω)2 ∣∣ P ≪ Q
}

.

We will silently make use of the fact that P ≪ Q implies PX ≪ QX and P |X=x ≪ Q|X=x for all
discrete random variables X : Ω → EX and x ∈ EX .

We now define G := Meas
(

∆̃(Ω)2,R
)

. We write elements F ∈ G applied to inputs (P, Q) as

F (P∥Q). Define for X ∈ M(X1, . . . , Xn) and F ∈ Meas
(

∆̃(Ω)2,R
)

, and P ≪ Q ∈ ∆(Ω) the
monoid action by:

(X.F )(P∥Q) :=
∑

x∈EX

PX(x)F
(
P |X=x∥Q|X=x

)
.

Similarly as before, this is a well-defined, additive monoid action. In the following, we use the
convention that 0 · x = 0 for x ∈ R ∪ {±∞} and ln(0) = −∞. Finally, we define the function
D1 : M(X1, . . . , Xn) → Meas

(
∆̃(Ω)2,R

)
as the Kullback-Leibler divergence, given for all X ∈

M(X1, . . . , Xn) and P ≪ Q ∈ ∆(Ω) by[
D1(X)

]
(P∥Q) := D1

(
X; P∥Q

)
:= −

∑
x∈EX

PX(x) ln QX(x)
PX(x) .

This is well-defined, and we obtain:
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Figure 5: Binary symmetric channels for the joint distributions P and Q in Example 5.3. For a uniform prior
P (X) = Q(X), P and Q have the same marginals P (Y ) = Q(Y ), but differ in their conditionals P (Y | X)
and Q(Y | X). This leads for small ϵ > 0 to an arbitrarily large negative mutual Kullback-Leibler divergence[
D2(X; Y )

]
(P ∥Q).

Proposition 5.2 (See Proof 15). D1 : M(X1, . . . , Xn) → Meas
(

∆̃(Ω)2,R
)

satisfies the chain rule
for all X, Y ∈ M(X1, . . . , Xn):

D1(XY ) = D1(X) + X.D1(Y ).

Example 5.3. In [25], the following situation is discussed: X and Y are finite sets, and Ω = X ×Y.
One can consider the two marginal variables

X : X × Y → X , (x, y) 7→ x,

Y : X × Y → Y, (x, y) 7→ y.

A channel from X to Y is a conditional distribution P (Y | X). Together with a prior distribution
P (X), it forms a joint P (X, Y ) over X × Y. Now, take two distributions P ≪ Q ∈ ∆(X × Y).
Then, as noted in [25], the chain rule Proposition 5.2 shows the following:

D1
(
P∥Q

)
= D1

(
P (X)∥Q(X)

)
+
∑
x∈X

P (x) · D1
(
P (Y | x)∥Q(Y | x)

)
.

Note that for ease of notation, we write P (X) for PX , D1
(
P (X)∥Q(X)

)
for
[
D1(X)

]
(P∥Q), P (x)

for PX(x), P (Y | x) for (P |X=x)Y , etc.
In our context, the “mutual Kullback-Leibler divergence” D2(X; Y ) is of interest. With respect

to P and Q, it is given according to Equation (7) and using symmetry of D2 (which follows from
Theorem 3.2 due to set operations being symmetric) as follows:[

D2(X; Y )
]
(P∥Q) = D1

(
P (Y )∥Q(Y )

)
−
∑
x∈X

P (x) · D1
(
P (Y | x)∥Q(Y | x)

)
.

It is well-known that a simple use of Jensen’s inequality proves the non-negativity of the Kullback-
Leibler divergence D1. We also know that mutual information I2 is non-negative. Can the same
be said about the mutual Kullback-Leibler divergence D2?

The answer is no. Consider the case X = Y = {0, 1}, and let the prior distributions P (X) =
Q(X) both be uniform. Furthermore, let P (Y | X) and Q(Y | X) be binary symmetric channels
( [17], Section 7.1.4), given as in Figure 5. Note that the marginal distributions P (Y ) and Q(Y )
are identical, and so

D1
(
P (Y )∥Q(Y )

)
= 0.

We now work with binary logarithms log. For the second term, we then obtain∑
x∈{0,1}

P (x) · D1
(
P (Y | x)∥Q(Y | x)

)
=

∑
x∈{0,1}

P (x)
∑

y∈{0,1}

P (y | x) log P (y | x)
Q(y | x)

= 1
4 ·

[
log P (0 | 0)

Q(0 | 0) + log P (1 | 0)
Q(1 | 0) + log P (0 | 1)

Q(0 | 1) + log P (1 | 1)
Q(1 | 1)

]
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= 1
4 ·
[

− 4 − 2 log(1 − ϵ) − 2 log(ϵ)
]

= −1 − 1
2 ·
[

log(1 − ϵ) + log(ϵ)
]

Note that for very small ϵ, log(1 − ϵ) becomes negligible and log(ϵ) approaches −∞, and so the
term above approaches +∞. Overall, this means that[

D2(X; Y )
]
(P∥Q) = −

∑
x∈{0,1}

P (x) · D1
(
P (Y | x)∥Q(Y | x)

)
< 0

is negative, and even unbounded, reaching −∞ as Q becomes deterministic. We can compare this
conceptually to mutual information as follows: I2(X; Y ) is the average reduction of uncertainty
in Y when learning about X. Similarly, we can interpret D2(X; Y ) as the average reduction
of Kullback-Leibler divergence between two marginal distributions in Y when learning about X.
However, in this case, the divergence only becomes visible when the evaluation of X is known,
since there is no difference in the marginals P (Y ) and Q(Y ). Thus, the “reduction” is actually
negative.

5.3 q–Kullback-Leibler Divergence
Similarly to the Tsallis q-entropy from Section 5.1, one can also define a q–Kullback-Leibler diver-
gence, as is done in [57], Chapter 3.7.9 The monoid action .q : M(X1, . . . , Xn)×Meas

(
∆̃(Ω)2,R

)
→

Meas
(

∆̃(Ω)2,R
)

is now given by

(X.qF )(P∥Q) :=
∑

x∈EX

PX(x)qQX(x)1−q · F
(
P |X=x∥Q|X=x

)
.

Now, we define the q–Kullback-Leibler divergence Dq
1 : M(X1, . . . , Xn) → Meas

(
∆̃(Ω)2,R

)
for

all X ∈ M(X1, . . . , Xn) and P ≪ Q ∈ ∆(Ω) as the following generalization of standard Kullback-
Leibler divergence:

[
Dq

1(X)
]
(P∥Q) :=

∑
x∈EX

PX(x) lnq
PX(x)
QX(x) =

∑
x∈EX

PX(x)qQX(x)1−q − 1
q − 1 .

Proposition 5.4 (See Proof 16). Dq
1 : M(X1, . . . , Xn) → Meas

(
∆̃(Ω)2,R

)
satisfies the chain rule

Dq
1(XY ) = Dq

1(X) + X.qDq
1(Y )

for all X, Y ∈ M(X1, . . . , Xn).

5.4 Cross-Entropy

We choose the same monoid action . : M(X1, . . . , Xn) × Meas
(

∆̃(Ω)2,R
)

→ Meas
(

∆̃(Ω)2,R
)

as

for the Kullback-Leibler divergence. The cross-entropy C1 : M(X1, . . . , Xn) → Meas
(

∆̃(Ω)2,R
)

is given by: [
C1(X)

]
(P∥Q) := C1

(
X; P∥Q

)
:= −

∑
x∈EX

PX(x) ln QX(x).

Proposition 5.5. C1 satisfies the chain rule for all X, Y ∈ M(X1, . . . , Xn):

C1(XY ) = C1(X) + X.C1(Y ).

9Our definition differs from the one given in [57] by using a slightly different definition of the q-logarithm. We
did this to be consistent with the definition of the Tsallis q-entropy above.
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Proof. This follows with the same arguments as Proposition 5.2.

Remark 5.6. One can easily show the following well-known relation between cross-entropy C1,
Shannon entropy I1, and Kullback-Leibler divergence D1:[

C1(X)
]
(P∥Q) =

[
I1(X)

]
(P ) +

[
D1(X)

]
(P∥Q).

This means that the study of Cq is entirely subsumed by that of Iq and Dq. Since we already looked
at D2 in Example 5.3, we omit looking at C2 here.

5.5 Arbitrary Functions on Commutative, Idempotent Monoids
Let M be any commutative monoid, and R : M → G be any function into an abelian group
G. Define the two-argument function R1 : M × M → G by R1(A | B) := R(AB) − R(B). Set
R1(A) := R1(A | 1) = R(A) − R(1), where 1 ∈ M is the neutral element. These definitions mean
that the chain rule is satisfied by definition, making Hu’s theorem a purely combinatorial fact. The
reader can verify the following proposition:

Proposition 5.7. R1 : M × M → G satisfies the chain rule

R1(AB) = R1(A) + R1(B | A)

for all A, B ∈ M .

Therefore, if M is also idempotent and finitely generated, then R1 : M × M → G satisfies all
conditions of Corollary 3.3, and one obtains a corresponding Hu theorem.

5.6 Submodular Information Functions
Using the framework of Section 5.5, we can study the submodular information functions from [22,
38, 53], which they use to formulate generalizations of conditional independence and the causal
Markov condition. Alternatively, we could also analyze general submodular set functions [46], but
decided to restrict to submodular information functions since they are closer to our interests.

Recall that a lattice is a tuple L = (L, ∨, ∧) consisting of a set L together with commutative,
associative, and idempotent operations ∨, ∧ : L×L → L that satisfy the absorption rules a∨(a∧b) =
a and a∧ (a∨ b) = a. Given a lattice L, one can define a corresponding partial order on L by a ≤ b
if a = a ∧ b.

From now on, let (L, ∨, ∧) be a finite lattice, meaning that L is a finite set. One can define
0 :=

∧
a∈L a, the meet of the finitely many elements in L. By the axioms above, this is neutral

with respect to the join operation, that is b ∨ 0 = b. Note that 0 ∧ b = 0 for all b ∈ L due to
the second absorption rule above. Consequently, 0 ≤ b for all b ∈ L. [22, 38, 53] then study the
concept of a submodular (information) function. We follow the version outlined in [53]:

Definition 5.8 (Submodular Information Function). Let L be a finite lattice. Then a function
R : L → R is called a submodular information function if all of the following conditions hold for
all a, b ∈ L:

1. normalization: R(0) = 0;

2. monotonicity: a ≤ b implies R(a) ≤ R(b);

3. submodularity: R(a) + R(b) ≥ R(a ∨ b) + R(a ∧ b).

In particular, the second property implies R(b) ≥ R(0) = 0, meaning R is non-negative.

They then define the conditional R1 : L×L → R by R1(a | b) := R(a∨ b)−R(a). Furthermore,
to define conditional independence and obtain a generalized causal Markov condition, they define
the conditional mutual information I : L2 × L → R by

I(a; b | c) := R(a ∨ c) + R(b ∨ c) − R(a ∨ b ∨ c) − R(c).

Compositionality, Volume 7, Issue 1 (2025) 28



Lang, Baudot, Quax, and Forré Information Decomposition Diagrams beyond Shannon Entropy

Now, note that (L, ∨, 0) is a finitely generated, commutative, idempotent monoid. Thus, Proposi-
tion 5.7 shows that R1 gives rise to Hu’s theorem for higher-order functions R2, R3, . . . , as defined
in Corollary 3.3. We can easily see that R2 agrees with the definition of I from above:

R2(a; b | c) := R1(a | c) − R1(a | b ∨ c)
= R(a ∨ c) − R(c) − R(a ∨ b ∨ c) + R(b ∨ c)
= I(a; b | c).

As special cases of submodular information functions, [53] consider Shannon entropy on sets of ran-
dom variables, Chaitin’s prefix-free Kolmogorov complexity, other compression-based information
functions, period lengths of time series, and the size of a vocabulary in a text.

5.7 Generalization Error
Before coming to the generalization error, we briefly consider the situation dual to that of Sec-
tion 5.5. Let M be a commutative, idempotent monoid. Let G be an abelian group and E : M → G
be any function. Define Ad : M × M → G by Ad(A | B) := E(B) − E(AB) Here, Ad stands intu-
itively for “advantage”, a terminology that becomes clear in the machine learning example below.
Similarly as in the case of Kolmogorov complexity, define Ad(A) := Ad(A | 1) = E(1) − E(A). The
reader can easily verify the chain rule:

Proposition 5.9. Ad : M × M → G satisfies the chain rule: one has

Ad(AB) = Ad(A) + Ad(B | A)

for all A, B ∈ M .

Consequently, Ad : M × M → G satisfies the assumptions of Corollary 3.3. One then obtains
a corresponding Hu theorem.

We now specialize this investigation to the generalization error from machine learning [37, 47].
In this case, let J = [n] be a finite set and the monoid be given by 2J = (2J , ∪, ∅), i.e., ∪ is
the operation and ∅ the neutral element. This monoid is idempotent, commutative, and finitely
generated by {1}, . . . , {n}.

For all j ∈ J , let Xj be a measurable space. Let (Xj)j∈J be the random variable of feature tuples
with values in

∏
j∈J Xj . Similarly, let Y be another measurable space and Y the random variable of

labels in Y. A typical assumption is that there exists a joint distribution P := P
(
(Xj)j∈J , Y

)
from

which “the world samples the data”. Additionally, let ∆(Y) be the space of probability measures
on Y, and L : ∆(Y) × Y → R := R ∪ {+∞} a loss function that compares a model distribution
over labels to the true label.

For all A ⊆ J , assume that F(A) ⊆ Maps
(∏

a∈A Xa, ∆(Y)
)

is a class of functions10 that, given
a feature tuple with indices in A, predicts a distribution over Y. We call this the set of hypotheses
for predicting the labels given features in A. For a hypothesis q ∈ F(A) and xA ∈

∏
a∈A Xa, we

denote the output by q(Y | xA) := q(xA) ∈ ∆(Y). A learning algorithm with access to features in
A is supposed to find a hypothesis q ∈ F(A) that minimizes the generalization error :

E(A) := inf
q∈F(A)

E(x̂,ŷ)∼P

[
L
(
q(Y | x̂A) ∥ ŷ

)]
.

Then, as above, define AdY : 2J × 2J → R by

AdY

(
XA | XB

)
:= E(B) − E(A ∪ B).11

From Proposition 5.9, we obtain the following chain rule:

AdY (XA∪B) = AdY (XA) + AdY (XB | XA). (29)

10Further below, we will make the assumption that A ⊆ B implies F(A) ⊆ F(B), in a suitable sense. We make
no other assumptions on the collection of F(A) for A ⊆ J .

11There is a one-to-one correspondence between all A ∈ 2J and all variables XA with A ∈ 2J . We simply denote
the monoid of all XA again by 2J , with the multiplication rule becoming XAXB = XA∪B .
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To interpret this chain rule sensibly, we make one further assumption: namely that, when having
access to more features, the learning algorithm can still use all hypotheses that simply ignore these
additional features. More precisely, for B ⊆ C ⊆ J , let us interpret each map qB ∈ F(B) as a
function q̃B :

∏
c∈C Xc → ∆(Y) by

q̃B

(
(xc)c∈C

)
:= qB

(
(xb)b∈B

)
.

The assumption is that q̃B ∈ F(C), for all B ⊆ C ⊆ J and qB ∈ F(B). Overall, we can interpret
this as F(B) ⊆ F(C). It follows that E(B) ≥ E(C). Consequently, for all A, B ⊆ J (without any
inclusion imposed), it follows

AdY (XA | XB) = E(B) − E(A ∪ B) ≥ 0. (30)

The meaning of this is straightforward: AdY (XA | XB) measures what a perfect learning algorithm
can gain from knowing all the features in A if it already has access to all the features in B — the
advantage motivating the notation AdY (XA | XB). The chain rule, Equation (29), thus says the
following: for a perfect learning algorithm, the advantage from getting access to features in A ∪ B
equals the advantage it receives from the features in A, plus the advantage it receives from B when
it already has access to A.

We can then ask: is then the “mutual advantage”, as defined from Equation (11) by

Ad2
Y (XA; XB) := AdY (XA) − AdY (XA | XB),

necessarily also positive, as we expect from the case of entropy and mutual information? The
answer is no, as the following simple example shows:

Example 5.10. Let J = {1, 2}, X1 = X2 = Y = {0, 1}, X1, X2 two independent Bernoulli
distributed random variables, and Y be the result of applying a XOR gate to X1 and X2. In other
words, the joint distribution P (X1, X2, Y ) ∈ ∆

(
{0, 1}3) is the unique distribution with

P
(
X1 = 0, X2 = 0, Y = 0

)
= 1/4,

P
(
X1 = 0, X2 = 1, Y = 1

)
= 1/4,

P
(
X1 = 1, X2 = 0, Y = 1

)
= 1/4,

P
(
X1 = 1, X2 = 1, Y = 0

)
= 1/4.

We define the loss function L : ∆
(
{0, 1}

)
× {0, 1} → R as the cross-entropy loss: L

(
q(Y ) ∥ y

)
:=

− log q(y), where log is the binary logarithm. Furthermore, we define F(A) :=
{

q : XA →
∆({0, 1})

}
as the space of all possible prediction functions with access to features in A ⊆ J = {1, 2}.

Now, note that if one does not have access to both features, i.e. A ̸= {1, 2}, then it is impossible
to do better than random, since X1 ⊥⊥ Y and X2 ⊥⊥ Y . Thus, in that case, the best prediction is
q(ŷ | x̂A) = 1/2, irrespective of x̂ and ŷ. If, however, one has access to both features, then perfect
prediction is possible, since Y is a deterministic function of (X1, X2). Using − log(1/2) = 1 and
− log(1) = 0, this leads to the following generalization errors:

E
(
∅
)

= 1, E
(
{1}
)

= 1, E
(
{2}
)

= 1, E
(
{1, 2}

)
= 0.

Consequently, the mutual advantage of X1 with X2 is given by

Ad2
Y (X1; X2) = AdY (X1) − AdY (X1 | X2)

= E
(
∅
)

− E
(
{1}
)

− E
(
{2}
)

+ E
(
{1, 2}

)
= −1
< 0.

Thus, in this example, the mutual advantage is negative. Rearranging the inequality, we can read
this as AdY (X1) < AdY (X1 | X2). In general, beyond the specifics of this example, the inequality

AdY (XA) < AdY (XA | XB)
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means that features in A ⊆ J are more predictive of Y if we already have access to features in
B. This indicates a case of feature interaction or synergy: the contribution of a set of features
in predicting Y is greater than the individual contribution of each single feature. Intuitively, we
expect such situations in many machine learning applications, and think it might be worthwhile to
investigate the meaning of the higher degree interaction terms Adq

Y appearing in Hu’s theorem as
in Corollary 3.3.

6 Discussion
6.1 Major Findings: a Generalization of Hu’s Theorem and its Applications
In this work, we have systematically abstracted away from the details of Shannon’s information
theory [48, 49] to generalize Hu’s theorem [32] to new situations. To obtain information diagrams,
one simply needs a finitely generated commutative, idempotent monoid M — also known under the
name of a join-semilattice — acting additively on an abelian group G, and a function F1 : M → G
satisfying the chain rule of information: F1(XY ) = F1(X) + X.F1(Y ). Alternatively, with M and
G being as above, the additive monoid action and F1 together can be replaced by a two-argument
function K1 : M × M → G satisfying the chain rule: K1(XY ) = K1(X) + K1(Y | X). The
proof of the main result — Theorem 3.2 together with Corollary 3.3 — is very similar to the one
given in [63] for the case of Shannon entropy; the main insight is that it is possible to express the
basic atoms of an information diagram with an inclusion-exclusion type expression over “unions of
disks”:

µ(pI) =
∑

∅̸=K⊇Ic

(−1)|K|+|I|+1−n · F1(XK) =
∑
K⊆I

(−1)|K|+1 · F1(XKXIc).

This formula is visually motivated in Section 3.2. Relations to different interaction terms are
explored in Section 3.3.

With the monoid given by equivalence classes of (countably infinite) discrete random variables,
the abelian group by measurable functions on probability measures, and the additive monoid ac-
tion by the conditioning of information functions, we recover information diagrams for Shannon
entropy, see Summary 2.17. Beyond this classical case, we obtained Hu’s theorems for several ver-
sions of Kolmogorov complexity [34] (Section 4), Tsallis q-entropy [55], Kullback-Leibler divergence,
q–Kullback-Leibler divergence, cross-entropy [57], general functions on commutative, idempotent
monoids, submodular information functions [53], and the generalization error from machine learn-
ing [37, 47] (all in Section 5). For Kolmogorov complexity, we generalized the well-known theme
that “expected Kolmogorov complexity is close to Shannon entropy”:

“expected interaction complexity” ≈ “interaction information”.

For well-behaved probability distributions, this results in the limit of infinite sequence length in
an actual equality of the per-bit quantities for the two concepts (Section 4.5).

6.2 The Cohomological Context of this Work
The main context in which our ideas developed is information cohomology [5, 9, 57, 58]. The setup
of that work mainly differs by using partition lattices instead of equivalence classes of random
variables and generalizing this further to so-called information structures. The functions satisfy-
ing the chain rule are reformulated as so-called “cocycles” in that cohomology theory, which are
“cochains” whose “coboundary” vanishes:

(δF1)(X; Y ) := X.F1(Y ) − F1(XY ) + F1(X) = 0.

That gives these functions a context in the realm of many cohomology theories that were success-
fully developed in mathematics. The one defined by Gerhard Hochschild for associative algebras is
maybe most closely related [30]. For the special case of probabilistic information cohomology, [5, 57]
were able to show that Shannon entropy is not only a cocycle, but is in some precise sense the
unique cocycle generating all others of degree 1. Thus, Shannon entropy finds a fully cohomological
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interpretation. Arguably, without the abstract nature of that work and the consistent emphasis
on abstract structures like monoids and monoid actions, our work would not have been possible.

There is one way in which information cohomology tries to go beyond Shannon information
theory: it tries to find higher degree cocycles that differ from the interaction terms Fq. This
largely unsolved task has preliminary investigations in [57], Section 3.6, and [21]. In that sense,
information cohomology can be viewed as a generalization of Hu’s theorem. Since some limitations
in the expressiveness of interaction information are well-known [33], we welcome any effort to make
progress on that task.

6.3 Unanswered Questions and Future Directions
Further generalizations On the theoretical front, it should be possible to generalize Hu’s
theorem further from commutative, idempotent monoids to what [57] calls conditional meet semi-
lattices. As these locally are commutative, idempotent monoids, the generalization can probably
directly use our result.

A transport of ideas More practically, we hope that the generalization of Hu’s theorem leads
to a transport of ideas from the theory of Shannon entropy to other functions satisfying the chain
rule. There are many works that study information-theoretic concepts based on the interaction
information functions and thus ultimately Shannon entropy, for example O-information [27, 43],
total correlation [60], dual total correlation [29], and information paths [3, 6]. All of these can
trivially be defined for functions satisfying the chain rule that go beyond Shannon entropy, and
can thus be generalized to all the example applications in Sections 4 and 5. Most of the basic
algebraic properties should carry over since they often follow from Hu’s theorem itself. It is our
hope that studying such quantities in greater generality may lead to new insights into the newly
established application areas of Hu’s theorem.

Additionally, it should not be forgotten that even Shannon interaction information itself de-
serves to be better understood. Understanding these interaction terms in a more general context
could help for resolving some of the persisting confusions about the topic. One of them surrounds
the possible negativity of interaction information I3(X; Y ; Z) of three (and more) random vari-
ables [4, 8], which is sometimes understood as meaning that there is more synergy than redundancy
present [61, 62]. Similarly, we saw in Example 5.10 that the mutual feature advantage I2

Y (XA; XB)
can be negative as well, which has a clear interpretation in terms of synergy. Example 5.3 shows
that the mutual Kullback-Leibler divergence D2(X; Y ) of two distributions P ≪ Q can be negative
if knowing X “reveals” the divergence of P and Q in Y . We would welcome more analysis in this
direction, ideally in a way that transcends any particular applications and could thus shed new
light on the meaning of classical interaction information.

Further chain rules It goes without saying that we were likely not successful in finding all
functions satisfying a chain rule. One interesting candidate seems to be differential entropy h
([17], Theorem 8.6.2):

h(X, Y ) = h(X) + h(Y | X).

However, it seems to us that differential entropy is not well-behaved. For example, if X is a random
variable with values in R, then even if h(X) exists, the differential entropy of the joint variable
(X, X) with values in R2 is negative infinity:

h(X, X) = −∞.

In particular, we have h(X) ̸= h(X, X), and so Hu’s theorem cannot hold.
As clarified, for example, in [59], differential entropy is measured relative to a given base mea-

sure. Given that (X, X) takes values only in the diagonal of R2, which has measure 0, explains why
the differential entropy degenerates. To remedy this, one would need to change the base measure
to also live on the diagonal; it is unclear to us how to interpret this, or if a resulting Hu theorem
could indeed be deduced.
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Another possible candidate is quantum entropy, also called von Neumann entropy, which also
allows for a conditional version that satisfies a chain rule ([14], Theorem 1). Interestingly, condi-
tional quantum entropy, also called partial quantum information, can be negative [13, 31], which
contrasts it from classical Shannon entropy.

In analogy to the Kullback-Leibler divergence (Section 5.2), also quantum entropy admits a
relative version, which has many applications in quantum information theory [56]. In [23], a chain
rule for quantum relative entropy was proven, which, however, is an inequality. In [39], Proposition
1 and Example 1, one can find a chain rule–type statement for quantum relative entropy that
generalizes the one for non-relative quantum conditional entropy. We leave the precise meaning or
interpretation of these results in the context of our work to future investigations.

Kolmogorov complexity and information decompositions In the context of Kolmogorov
complexity, we would welcome a more thorough analysis of the size of the constants involved in
Theorems 4.8 and 4.14, potentially similar to [65]. More precisely, it would be worthwhile to
improve on the dependence on q or n that we explain in Remarks 4.9 and 4.15.

More broadly, one could try to understand complex interactions that go beyond interaction
information in the context of Kolmogorov complexity.12 For example, partial information decom-
position (PID) [61, 62]13 aims to complement the usual information functions with unique informa-
tion, shared information, and complementary information. It argues that the mutual information
of a random variable Z with a joint variable (X, Y ) can be decomposed as follows:

I2
(
(X, Y ); Z

)
= UI(X \ Y ; Z)︸ ︷︷ ︸

unique

+ UI(Y \ X; Z)︸ ︷︷ ︸
unique

+ SI(X, Y ; Z)︸ ︷︷ ︸
shared

+ CI(X, Y ; Z)︸ ︷︷ ︸
complementary

.

Here, UI(X \ Y ; Z) is the information that X provides about Z that is not also contained in Y ;
SI(X, Y ; Z) is the information that X and Y both share about Z; and finally, CI(X, Y ; Z) is
the information that X and Y can only together provide about Z, but neither on its own. SI
is also called “redundant information”, and CI “synergistic information”. This then leads to an
interpretation of interaction information as a difference of shared and complementary information:

I3(X, Y, Z) = SI(X, Y ; Z)︸ ︷︷ ︸
shared

− CI(X, Y ; Z)︸ ︷︷ ︸
complementary

.

While it is known that such functions exist, no proposals have yet satisfied all axioms that are
considered desirable. In this sense, the search for shared, redundant, and synergistic information
in the framework of PID is still ongoing [35]. See also [10, 24, 40] for related work.

We could imagine that attempting a similar decomposition for Kolmogorov complexity could
provide new insights. To argue that this might be possible, we can look, for example, at the thought
experiment of x and y being binary strings encoding physical theories, and z being a binary string
containing data about a physical phenomenon. Then a hypothesized “algorithmic complementary
information” CI(x, y; z) would intuitively be high if the theories x and y only together allow
explaining (parts of) the data z; a high shared information SI(x, y; z) would mean that x and y
are theories that are equally able to explain (parts of) the data in z. One hope is that averaging
such quantities leads to a partial information decomposition in the usual information-theoretic
sense, thus providing a new bridge that helps with the transport of ideas between fields:

“expected algorithmic PID” ?
≈ “PID”.

6.4 Conclusion
To restate our main finding, we can say: whenever you find a chain rule

F1(XY ) = F1(X) + X.F1(Y ),
you will under mild conditions obtain information diagrams. Most of their implications are yet to
be understood.

12Or in the context of any other of the application areas in Section 5 of our generalized Hu theorem.
13The only privately communicated version, [62], of [61], has a stronger emphasis on the axiomatic framework

and is more up to date.
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Appendix

A Measure Theory for Countable Discrete Spaces
In this section, we investigate some technical details related to the measurability of certain func-
tions. For more background on measure theory, any book on the topic suffices, for example [54]
and [45]. As the results are elementary, we leave most of them to the reader to prove.

Recall that for a measurable space Z, the space of probability measures ∆(Z) on Z carries the
smallest σ-algebra that makes all evaluation maps

evA : ∆(Z) → [0, 1], P 7→ P (A)

for measurable A ⊆ Z measurable. Also recall that discrete random variables are functions X :
Ω → EX such that both Ω and EX are discrete, meaning they are countable and all of their
subsets are measurable. Finally, recall that for a discrete sample space Ω, ∆f (Ω) is the measurable
subspace of probability measures P ∈ ∆(Ω) with finite Shannon entropy H(P ).

Lemma A.1. Let X : Ω → EX be a random variable. Then the function

X∗ : ∆(Ω) → ∆(EX), P 7→
(

PX : A 7→ P
(
X−1(A)

))
is measurable.

Proof. This is elementary and left to the reader to prove.

To investigate the measurability of the Shannon entropy function and “conditioned” information
functions, we need the result that pointwise limits of measurable functions are again measurable:

Lemma A.2. Let (fn)n∈N be a sequence of measurable functions fn : X → R from a measurable
space X to the real numbers R. Assume that the pointwise limit function

f : X → R, x 7→ lim
n→∞

fn(x)

exists. Then f is also measurable.

Proof. See [45], Corollary 8.10.

Corollary A.3. Let X : Ω → EX be a discrete random variable. Then the corresponding Shannon
entropy function

H(X) : ∆f (Ω) → R, P 7→ H(X; P ) := −
∑

x∈EX

PX(x) ln PX(x)

is measurable.

Proof. We already know from Lemma A.1 that the function P 7→ PX is measurable. Therefore,
we can reduce to the case X = idΩ, i.e.: we need to show that the function

H : ∆f (Ω) → R, P 7→ −
∑
ω∈Ω

P (ω) ln P (ω)

is measurable. Note that P (ω) = evω(P ). evω is measurable by definition of the σ-algebra on
∆f (Ω). Also, ln : R>0 → R is known to be measurable. Since also limits of measurable functions
are measurable by Lemma A.2, the result follows.

Lemma A.4. Let X : Ω → EX be a discrete random variable and x ∈ EX any element. Then the
function

(·)|X=x : ∆(Ω) → ∆(Ω), P 7→ P |X=x,

with P |X=x defined as in Equation (1), is measurable.
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Proof. This is elementary and left to the reader to prove.

Corollary A.5. Let Ω be a discrete measurable space and F : ∆f (Ω) → R a conditionable
measurable function, meaning that for all discrete random variables X : Ω → EX and all P ∈
∆f (Ω), the series

(X.F )(P ) =
∑

x∈EX

PX(x) · F
(
P |X=x

)
converges unconditionally. Then the function X.F : ∆f (Ω) → R is also measurable.

Proof. We have
(X.F )(P ) =

∑
x∈EX

(evx ◦X∗)(P ) ·
(
F ◦ (·)|X=x

)
(P ).

The result follows from the measurability of evx : ∆(EX) → R, X∗ as stated in Corollary A.1, F ,
(·)X=x : ∆(Ω) → ∆(Ω) as proven in Lemma A.4, and finally the fact that limits of measurable
functions are measurable, see Lemma A.2.

B Proofs for Section 2

Proof 1 for Proposition 2.10. Let P : Ω → [0, 1] be any probability measure with finite entropy.
Since Y ≾ X, there is a function fY X : EX → EY such that fY X ◦ X = Y . We obtain

I1(Y ; P ) = −
∑

y∈EY

P
(
Y −1(y)

)
ln P

(
Y −1(y)

)
= −

∑
y∈EY

PX

(
f−1

Y X(y)
)

ln PX

(
f−1

Y X(y)
)

= −
∑

y∈EY

∑
x∈f−1

Y X
(y)

PX(x) ln
∑

x′∈f−1
Y X

(y)

PX(x′)

(1)
≤ −

∑
y∈EY

∑
x∈f−1

Y X
(y)

PX(x) ln PX(x)

= I1(X; P ).

In step (1) we use that − ln is a monotonically decreasing function and
∑

x′∈f−1
Y X

(y) PX(x′) ≥ PX(x)
for each x ∈ f−1

Y X(y).

Proof 2 for Proposition 2.11. We have fXY and fY X with fXY ◦ Y = X and fY X ◦ X = Y .
For every conditionable measurable function F : ∆f (Ω) → R and probability measure P : Ω → R,
we obtain

(X.F )(P ) =
∑

x∈im X

PX(x)F (P |X=x)

(1)=
∑

y∈im Y

PX

(
fXY (y)

)
F
(
P |X=fXY (y)

)
(2)=

∑
y∈im Y

PY (y)F (P |Y =y)

= (Y.F )(P ).

In step (1), we use that fXY : im Y → im X is a bijection. Step (2) can easily be verified.

Proof 3 for Proposition 2.14. All required properties follow from Lemma 2.13: first of all, the
multiplication · : M × M → M is well-defined, i.e., does not depend on the representatives of the
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factors [X], [Y ] by property 0. We get [1] · [X] = [X] = [X] · [1] from property 1. [X] · [Y ] = [Y ] · [X]
follows from property 3. We have [X] · [X] = [X] due to property 4.

We now prove the rule ([X] · [Y ]) · [Z] = [X] ·([Y ] · [Z]). For any two random variables U, V ∈ M̂ ,
we write ZUV ∈ M̂ for a chosen random variable with UV ∼ ZUV . Then, we obtain:(

[X] · [Y ]
)

· [Z] = [ZZXY Z ] (⋆)= [ZXZY Z
] = [X] ·

(
[Y ] · [Z]

)
.

For step (⋆), one uses the equivalence ZZXY Z ∼ ZXZY Z
that follows from Lemma 2.13.

C Proofs for Section 3
C.1 Proof of the Generalized Hu Theorem 3.2 and Corollary 3.3
All notation and assumptions are as in Theorem 3.2.

Lemma C.1. Let µ be the measure given on atoms by Equation (9). For all I ⊆ [n], we have
F1(XI) = µ(X̃I).

Proof. This is an application of a version of the inclusion-exclusion principle [7], a special case of
the Möbius inversion formula on a poset [52, 3.7.1 Proposition]. It states the following: For any
two functions f, g : 2[n] → G, the following implication holds:

g(I) =
∑
K⊇I

f(K) =⇒ f(I) =
∑
K⊇I

(−1)|K|−|I|g(K).

Set µ(p∅) := −F1(X[n]). We apply the principle to the functions g(I) := (−1)|I|µ(pIc) and f(K) :=
(−1)|K|+1F1(XK). Then Equation (9) implies the premise of the inclusion-exclusion principle.
From the conclusion, we obtain:

(−1)|I|+1F1(XI) =
∑
K⊇I

(−1)|K|−|I| · (−1)|K|µ(pKc),

which implies

F1(XI) = −
∑
K⊇I

µ(pKc) = −
∑

K : K∩I=∅

µ(pK) = F1(X[n]) −
∑

∅̸=K : K∩I=∅

µ(pK).

In the last step we used µ(p∅) = −F1(X[n]). Thus, showing that F1(XI) = µ(X̃I) =
∑

∅̸=K : K∩I ̸=∅ µ(pK)
reduces to the following special case for I = [n]:

F1(X[n]) = µ
(
X̃[n]

)
.

To show this, note that Equation (9) implies

µ
(
X̃[n]

)
=
∑
K

(−1)|K|+1−n

[ ∑
∅̸=I: I⊇Kc

(−1)|I|

]
F1(XK). (31)

Ignoring that ∅ ≠ I, the inner coefficient is given by

∑
I⊇Kc

(−1)|I| = (−1)n−|K|
|K|∑
i=0

(−1)i

(
|K|

i

)
=
{

0, K ̸= ∅
(−1)n, else.

Note that F1(X∅) = 0, so the last case is irrelevant. Also, note that the condition I ̸= ∅ only
restricts the inner sum in Equation (31) when K = [n]. Thus, in that case, we need to subtract 1
from the result just computed and obtain:

µ
(
X̃[n]

)
= (−1)n+1−n · (−1) · F1(X[n]) = F1(X[n]),

proving the claim.
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Proposition C.2. For all n ∈ N≥0, for µ being the G-valued measure constructed from F1 as in
Equation (9), for all L1, J ⊆ [n], the following identity holds:

XJ .F1(XL1) = µ(X̃L1 \ X̃J)

Proof. This follows immediately from Lemma C.1 and the chain rule, Equation (6), together with
the fact that µ is a measure.

We have now done all the hard work for finishing the proof of Theorem 3.2:

Proof 4 for Theorem 3.2. Part 1. This is a simple inductive argument, using Proposi-
tion C.2 for q = 1, and Equation (7) for showing the step from q − 1 to q.

Part 2. For part 2, using Equation (8), we observe

XJ .F1(XI) − F1(XJ∪I) + F1(XJ) = µ(X̃I \ X̃J) − µ(X̃J ∪ X̃I) + µ(X̃J) = 0.

Thus, F1 satisfies Equation (6). For q ≥ 2, using Equation (8) again, we similarly observe

Fq−1(XL1 ; . . . ; XLq−1) − XLq
.Fq−1(XL1 ; . . . ; XLq−1) = Fq(XL1 ; . . . ; XLq

).

That finishes the proof.

Proof 5 for Corollary 3.3. Define G̃ := Maps(M, G) as the group of functions from M to G.
Define, using currying, the function K̃1 : M → G̃ by[

K̃1(X)
]
(Y ) := K1(X | Y ).

Define the additive monoid action . : M × G̃ → G̃ by

(X.F )(Y ) := F (XY )

for all X, Y ∈ M . Note that we need M to be commutative to show that this is indeed a monoid
action. Then clearly, K̃1 satisfies the chain rule.

Define K̃q : Mq → G̃ as in Theorem 3.2 inductively by

K̃q(Y1; . . . ; Yq) := K̃q−1(Y1; . . . ; Yq−1) − Yq.K̃q−1(Y1; . . . ; Yq−1).

By induction, one can show that Kq(Y1; . . . ; Yq | Z) =
[
K̃q(Y1; . . . ; Yq)

]
(Z) for all Y1, . . . , Yq, Z ∈

M .
By the conclusion of Theorem 3.2, we obtain a G̃-valued measure µ̃ : 2X̃ → G̃ with

µ̃

(
q⋂

k=1
X̃Lk

\ X̃J

)
= XJ .K̃q(XL1 ; . . . ; XLq

).

Now, define µ : 2X̃ → G by µ(A) :=
[
µ̃(A)

]
(1) for all A ⊆ X̃. Clearly, since µ̃ is a G̃-valued

measure, µ is a G-valued measure. The results immediately follow from these definitions and Hu’s
Theorem.

C.2 Further Proofs for Section 3

Proof 6 for Corollary 3.5. We proceed as follows:

1. This follows from Lemma 3.4 and Equation (9).
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2. By Lemma 3.4 and Theorem 3.2, we have∑
I⊆[n]

I∩K ̸=∅

ηI = µ
({

pI

∣∣ I ⊆ [n], ∃k ∈ K : k ∈ I
})

= µ(X̃K) = F1(XK).

3. Using Lemma 3.4 and Theorem 3.2 again, we obtain

Fq(Xj1 ; . . . ; Xjq
) = µ

( ⋂
j∈J

X̃j

)
=

∑
I,∀j∈J:j∈I

ηI =
∑
I⊇J

ηI .

4. This is formally a consequence of 3 and the inclusion-exclusion principle [7].

5. This follows by combining results 2 and 4.

6. This follows by combining results 1 and 3, or by the inclusion-exclusion principle [7] applied
to result 5.

D Proofs for Section 4

Proof 7 for Proposition 4.5. Let Y, Z ∈ M̃ be arbitrary. In the following, for functions
f : ({0, 1}∗)n → R, we write f = f(x) for simplicity, and mean by it the function mapping x to
f(x). We obtain:

Kc(Y Z) = Kc
(
(Y Z)(x)

)
+= Kc

(
Y (x)′Z(x)

)
+= Kc

(
Y (x)

)
+ Kc

(
Z(x) | Y (x)

)
+= Kc(Y ) + Kc(Z | Y ).

In the computation, the associativity rule in the second step holds as we can write a program of
constant size that translates between the different nestings of the strings.14 In the third step we
use Theorem 4.4. The result follows.

Proof 8 for Lemma 4.6. We have

[Kc]Kc(Y | Z) (1)= [Kc]Kc(Y Z) − [Kc]Kc(Z)
(2)= [Kc]Kc(Y Z) − [Kc]Kc(Z)
(3)= [Kc]Kc(Y | Z).

In the computation, steps (1) and (3) follow from Proposition 4.5. For step (2) one can show
that Kc(Y Z) += Kc(Y Z) and Kc(Z) += Kc(Z) in the same way as the associativity rule in
Proposition 4.5 was shown.

Proof 9 for Theorem 4.8. Remember M = M̃/ ∼ and the function [Kc]Kc : M × M →
Maps

(
({0, 1}∗)n,R

)
/ ∼Kc, which we now denote by [Kc] = [Kc]1 := [Kc]Kc. From this, we can

inductively define [Kc]q : Mq × M → Maps
(
({0, 1}∗)n,R

)
/ ∼Kc as in Corollary 3.3 by

[Kc]q(Y1; . . . ; Yq | Z) := [Kc]q−1(Y1; . . . ; Yq−1 | Z) − [Kc]q−1(Y1; . . . ; Yq−1 | YqZ).

14For this, we use that we can algorithmically extract all xi for indices appearing in Y and Z from the strings
(Y Z)(x) and also Y (x)′Z(x). This argument uses that the encoding x 7→ x′ is prefix-free.
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From Equation (21), one can inductively show that

[Kc]q(Y1; . . . ; Yq | Z) = [Kcq(Y1; . . . ; Yq | Z)] (32)

for all Y1, . . . , Yq, Z ∈ M . Note that Kcq was defined on M̃ and not M , which means that we plug
in representatives of equivalence classes at the right-hand-side. Using Lemma 4.6 and induction,
one can show that this is well-defined. Then, construct µ : 2X̃ → Maps

(
({0, 1}∗)n,R

)
explicitly

as in Equation (23). Define, now, the measure [µ] : 2X̃ → Maps
(
({0, 1}∗)n,R

)
/ ∼Kc by

[µ](A) := [µ(A)] ∀A ⊆ X̃. (33)

Then Equation (32) shows that

[µ](pI) =
∑

∅≠K⊇Ic

(−1)|K|+|I|+1−n[Kc]1(XK). (34)

Consequently, [µ] is the measure that results in Corollary 3.3, see Equation (13). We obtain for all
L1, . . . , Lq, J ⊆ [n]:[

µ

(
q⋂

k=1
X̃Lk

\ X̃J

)]
= [µ]

(
q⋂

k=1
X̃Lk

\ X̃J

)
(Equation (33))

= [Kc]q(XL1 ; . . . ; XLq
| XJ) (Proposition 4.5, Corollary 3.3)

=
[
Kcq(XL1 ; . . . ; XLq

| XJ)
]

(Equation (32)).

As two representatives of the same equivalence class in Maps
(
({0, 1}∗)n,R

)
differ by a constant,

the result follows.

Lemma D.1. Let P : ({0, 1}∗)n → R be a computable probability mass function. Let K ⊆ [n]
a subset and PK the corresponding maginal distribution. Then PK is also computable, and the
relation

K(PK)
+
< K(P ).

between their Kolmogorov complexities holds.

Proof. We know that P is computable, and so there exists a prefix-free Turing machine Tp of length
l(p) = K(P ) such that ∣∣Tp(x′q) − P (x)

∣∣ ≤ 1/q

for all q ∈ N and x ∈ ({0, 1}∗)n. Now, fix q ∈ N. Let (xi)i∈N be a computable enumeration of
({0, 1}∗)n. Define the approximation Pq : ({0, 1}∗)n 99K R of P by

Pq(xi) := Tp

(
(xi)′(4q · 2i)

)
.

Then for all subsets I ⊆ N, we have∣∣∣∣∣∑
i∈I

Pq(xi) −
∑
i∈I

P (xi)
∣∣∣∣∣ ≤

∑
i∈I

∣∣∣Tp

(
(xi)′(4q · 2i)

)
− P (xi)

∣∣∣
≤

∞∑
i=1

1
4q · 2i

(35)

= 1
4q

.

Consequently, by setting I = N and using
∑

i∈N P (xi) = 1, one can determine iq such that for the
first time we have ∣∣∣∣∣

iq∑
i=1

Pq(xi) − 1
∣∣∣∣∣ ≤ 1

2q
. (36)
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Note that iq can be algorithmically determined by computing one Pq(xi) at a time and checking
when the condition holds. Now, for arbitrary xK ∈ ({0, 1}∗)|K| and q ∈ N, we define

T (x′
Kq) :=

iq∑
i=1

(xi)K =xK

Pq(xi).

We now show that T (x′
Kq) approximates PK(xK) up to an error of 1/q:

∣∣T (x′
Kq) − PK(xK)

∣∣ =

∣∣∣∣∣∣∣∣
iq∑

i=1
(xi)K=xK

Pq(xi) − PK(xK)

∣∣∣∣∣∣∣∣
≤

∣∣∣∣∣∣∣∣
iq∑

i=1
(xi)K=xK

Pq(xi) −
iq∑

i=1
(xi)K=xK

P (xi)

∣∣∣∣∣∣∣∣+

∣∣∣∣∣∣∣∣
iq∑

i=1
(xi)K =xK

P (xi) − PK(xK)

∣∣∣∣∣∣∣∣
(35)
≤ 1

4q
+ PK(xK) −

iq∑
i=1

(xi)K=xK

P (xi)

= 1
4q

+
∣∣∣∣∣1 −

iq∑
i=1

P (xi)
∣∣∣∣∣

≤ 1
4q

+
∣∣∣∣∣1 −

iq∑
i=1

Pq(xi)
∣∣∣∣∣+
∣∣∣∣∣

iq∑
i=1

Pq(xi) −
iq∑

i=1
P (xi)

∣∣∣∣∣
(36),(35)

≤ 1
4q

+ 1
2q

+ 1
4q

= 1/q.

Now, note that T is computable, since it uses in its definition only the computable enumeration
(xi)i∈N, the number iq for which we described an algorithm, and the Turing machine Tp inside the
definition of Pq. Thus, T is a prefix machine TpK

for a bitstring pK of length l(pK) ≤ l(p) + c =
K(P ) + c, where c ≥ 0 is some constant. It follows K(PK) ≤ l(pK) ≤ K(P ) + c, and we are
done.

Proof 10 for Lemma 4.12. Assume that Y ∼ Z. Then Lemma 2.13 parts 3 and 415 show that
Y ∼r Y = Z ∼r Z, and so Y ∼r Z by transitivity.

On the other hand, if Y ∼r Z, then also XI = Y ∼r Z = XJ for some I, J ⊆ [n], again by
Lemma 2.13 parts 3 and 4. Let I =

{
i1 < · · · < i|I|

}
and J =

{
j1 < · · · < j|J|

}
. Then there exist

functions fJI and fIJ such that fJI ◦ XI = XJ and fIJ ◦ XJ = XI . That is, for all x ∈ ({0, 1}∗)n

we have

fJI(xi1 , . . . , xi|I|) = (xj1 , . . . , xj|J|),
fIJ(xj1 , . . . , xj|J|) = (xi1 , . . . , xi|I|).

The first equation shows J ⊆ I, as otherwise, changes in xJ\I lead to changes in the right-hand-
side, but not the left-hand-side. In the same way, the second equation shows I ⊆ J , and overall we
obtain I = J . That shows Y ∼ Y = XI = XJ = Z ∼ Z; due to transitivity, it follows Y ∼ Z.

Proof 11 for Theorem 4.14. We generalize the proof strategy that [34] use for their Lemma
8.1.1, which is a special case of our theorem for n = 2, q = 2, Y1 = X1, Y2 = X2, and Z = ϵ = 1.

15What we denoted by ∼ in that lemma is denoted ∼r here.
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We prove this in several steps by first handling convenient subcases. In the special case q = 1,
Z = ϵ = 1, and Y1 = XK for some K ⊆ [n], we can look at the marginal PK of P and obtain∑

x∈({0,1}∗)n

P (x)
(
Kc(XK)

)
(x) =

∑
xK∈({0,1}∗)|K|

PK(xK)
(
Kc(XK)

)
(xK)

= I1(PK) + O
(
K(PK)

) (
Theorem 4.13

)
= I1(XK ; P ) + O

(
K(P )

)
,

(
Lemma D.1

)
,

which is the wished result. Now, let

µ :2X̃ → Maps
(
({0, 1}∗)n,R

)
,

(
Equation (23)

)
µr :2X̃ → Meascon

(
∆f

(
({0, 1}∗)n

)
,R
) (

Equation 9
)

be the measures corresponding to Chaitin’s prefix-free Kolmogorov complexity Kc : M × M →
Maps

(
({0, 1}∗)n,R

)
and Shannon entropy I1 : M → Meascon

(
∆f

(
({0, 1}∗)n

)
,R
)

, remembering
that ∆f

(
({0, 1}∗)n

)
is the space of finite-entropy probability measures (or mass functions) on our

countable16 sample space ({0, 1}∗)n.17 Let I ⊆ [n] be any subset. Then we obtain∑
x∈({0,1}∗)n

P (x)
(
µ(pI)

)
(x) (23)=

∑
x∈({0,1}∗)n

P (x)
∑

∅≠K⊇Ic

(−1)|K|+|I|+1−n
(
Kc(XK)

)
(x)

=
∑

∅≠K⊇Ic

(−1)|K|+|I|+1−n
∑

x∈({0,1}∗)n

P (x)
(
Kc(XK)

)
(x)

(⋆)=
∑

∅̸=K⊇Ic

(−1)|K|+|I|+1−n
(

I1(XK ; P ) + O
(
K(P )

))

=
( ∑

∅̸=K⊇Ic

(−1)|K|+|I|+1−nI1(XK)
)

(P ) + O
(
K(P )

)
=
(
µr(pI)

)
(P ) + O

(
K(P )

)
,

using our earlier result in step (⋆) and the definition of µr. Now, using that µ and µr are additive
over disjoint unions, we can deduce for all A ⊆ X̃ the equality∑

x∈({0,1}∗)n

P (x)
(
µ(A)

)
(x) =

(
µr(A)

)
(P ) + O

(
K(P )

)
.

Now, let Y1 = XL1 , . . . , Yq = XLq , Z = XJ for some L1, . . . , Lq, J ⊆ [n]. Then, using Hu’s
theorems for interaction information (Theorem 3.2 together with Summary 2.17) and Kolmogorov
complexity 4.8, the result follows by setting A :=

⋂q
k=1 X̃Lk

\ X̃J .

Proof 12 for Proposition 4.19. We have

K(Y Z) = K
(
(Y Z)(x)

)
(1)= K

(
Y (x)′Z(x)

)
+ O(1)

(2)= K
(
Y (x)

)
+ K

(
Z(x) | Y (x)

)
+ O

(
log K

(
Y (x)

)
+ log K

(
Z(x)

))
(3)= K(Y ) + K(Z | Y ) + O

(
n∑

i=1
log K(xi)

)
.

16The fact that ({0, 1}∗)n is not finite but countably infinite is the main reason why we considered countable
sample spaces in Summary 2.17.

17The superscript in µr is used to notationally distinguish it from µ. r can be thought of as meaning “random”.
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where step (1) follows as in Proposition 4.5, step (2) uses Theorem 4.18, and step (3) follows from
the subadditivity of K18 and the logarithm, which holds for large enough inputs.

Proof 13 for Proposition 4.21. Let Y, Z ∈ M be arbitrary. Then, following the same arguments
as in Proposition 4.5 and Proposition 4.19, we are only left with showing the following:

log C
(
Y (x), Z(x)

)
= O

(
log C(x)

)
,

where the left-hand-side is viewed as a function ({0, 1}∗)n → R. In fact, we even have

log C
(
Y (x), Z(x)

)
≤ log C(x) + c

for some constant c starting from some threshold x0: we can find a program in constant length
that takes x, extracts x1, . . . , xn from it, and rearranges and concatenates them in such an order
to obtain Y (x)′Z(x), and the logarithm, being subadditive for large enough inputs, preserves the
inequality.

E Proofs for Section 5

Proof 14 for Proposition 5.1. For notational ease, we write P (x) = PX(x), (P |X=x)Y (y) =
P (y | x) and P (x, y) = PXY (x, y) in this proof. We have[

Iq
1 (X) + X.qIq

1 (Y )
]
(P ) =

[
Iq

1 (X)
]
(P ) +

∑
x∈EX

P (x)q
[
Iq

1 (Y )
]
(P |X=x)

=
∑

x∈EX
P (x)q − 1

1 − q
+
∑

x∈EX

P (x)q

∑
y∈EY

P (y | x)q − 1
1 − q

=
∑

x∈EX
P (x)q − 1 +

∑
(x,y)∈EX ×EY

(
P (x)P (y | x)

)q −
∑

x∈EX
P (x)q

1 − q

=
∑

(x,y)∈EX ×EY
P (x, y)q − 1

1 − q

=
[
Iq

1 (XY )
]
(P ).

Proof 15 for Proposition 5.2. Let X, Y ∈ M(X1, . . . , Xn) and P ≪ Q ∈ ∆(Ω). The following
proof of the chain rule is similar to the one of Lemma 2.4 for Shannon entropy. For simplicity, we
write Q(x) = QX(x), P (y | x) = (P |X=x)Y (y) and P (x, y) = PXY (x, y) in this proof:[

X.D1(Y ) + D1(X)
]
(P∥Q)

= X.D1(Y ; P∥Q) + D1(X; P∥Q)

=
∑

x∈EX

P (x)D1(Y ; P |X=x∥Q|X=x) −
∑

x∈EX

P (x) ln Q(x)
P (x)

(1)= −
∑

x∈EX

P (x)
∑

y∈EY

P (y | x) ln Q(y | x)
P (y | x) −

∑
x∈EX

P (x)
( ∑

y∈EY

P (y | x)
)

ln Q(x)
P (x)

18The subadditivity property for K says that K(x, y) ≤ K(x) + K(y) + O(1): one can construct a prefix-free
Turing machine that extracts x∗ and y∗ from x∗y∗, which is of length K(x) + K(y), and outputs x′y. Note that
since the set of halting programs of the universal Turing machine U is prefix-free, one does not need to indicate the
place of separation between x∗ and y∗.
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= −
∑

(x,y)∈EX ×EY

P (x) · P (y | x) ·

[
ln Q(y | x)

P (y | x) + ln Q(x)
P (x)

]

= −
∑

(x,y)∈EX ×EY

P (x, y) ln Q(x, y)
P (x, y)

=
[
D1(XY )

]
(P∥Q).

In step (1), we used for the second sum that P (y | x) is a probability measure in y and thus sums
to 1.

Proof 16 for Proposition 5.4. Let X, Y ∈ M(X1, . . . , Xn) and P ≪ Q ∈ ∆(Ω) be arbitrary.
The following proof of the chain rule is similar to the one for the q-entropy, Proposition 5.1. For
simplicity, we write Q(x) = QX(x), P (y | x) = (P |X=x)Y (y) and P (x, y) = PXY (x, y) in this
proof:[

Dq
1(X) + X.qDq

1(Y )
]
(P∥Q) =

[
Dq

1(X)
]
(P∥Q) +

[
X.qDq

1(Y )
]
(P∥Q)

=
[
Dq

1(X)
]
(P∥Q) +

∑
x∈EX

P (x)qQ(x)1−q
[
Dq

1(Y )
](

P |X=x∥Q|X=x

)
=
∑

x∈EX
P (x)qQ(x)1−q − 1

q − 1 +
∑

x∈EX

P (x)qQ(x)1−q

∑
y∈EY

P (y | x)qQ(y | x)1−q − 1
q − 1

=
−1 +

∑
(x,y)∈EX ×EY

(
P (x)P (y | x)

)q(
Q(x)Q(y | x)

)1−q

q − 1

=
∑

(x,y)∈EX ×EY
P (x, y)qQ(x, y)1−q − 1
q − 1

=
[
Dq

1(XY )
]
(P∥Q).
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