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We classify all additive invariants of open Petri nets: these are N-valued invariants
which are additive with respect to sequential and parallel composition of open Petri
nets. In particular, we prove two classification theorems: one for open Petri nets and
one for monically open Petri nets (i.e. open Petri nets whose interfaces are specified by
monic maps). Our results can be summarized as follows. The additive invariants of
open Petri nets are completely determined by their values on a particular class of single-
transition Petri nets. However, for monically open Petri nets, the additive invariants are
determined by their values on transitionless Petri nets and all single-transition Petri
nets. Our results confirm a conjecture of John Baez (stated during the AMS’ 2022
Mathematical Research Communities workshop).

1 Introduction
A Petri net is a directed bipartite graph with bipartition (S, T ) consisting of a set S of species and
a set T of transitions. They were invented by Carl Petri in 1939 [20] as a graphical representation
of a set S of chemical compounds that can be combined by way of a set of reactions T , into new
compounds. For example, consider the following Petri net representing the electrolysis E : 2H2O→
2H2 + O2 of water to make oxygen and hydrogen gas. It consists of only one transition — namely
E — and three species: H2O, H2 and O2 as drawn below.
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In general, the applications of Petri nets need not be confined to chemistry. Indeed, they can
represent many kinds of processes (concurrent, asynchronous, distributed, parallel, nondetermin-
istic and stochastic, to name a few) in which some entities (the species) undergo transformations
(transitions) in order to be converted into other kinds of entities [2, 10, 11, 14, 15, 17, 19, 24].

Formally, a Petri net P with finitely many species S and transitions T is a graph with
source and target maps s, t : T → NS , where NS is the free commutative monoid on S. We denote
a Petri net P by the quadruple (S, T, s, t). In the example above, the source and target maps s
and t are defined by:

s(E)(H2O) = 2, s(E)(H2) = 0, s(E)(O2) = 0,

t(E)(H2O) = 0, t(E)(H2) = 2, t(E)(O2) = 1.

For a transition τ ∈ T and species σ ∈ S, the quantity s(τ)(σ) represents the number of input arcs
which emanate from the species σ to the transition τ . Similarly, the quantity t(τ)(σ) represents
the number of output arcs which emanate from the transition τ to the species σ. We say that
σ ∈ S is an input species (resp. output species) of the transition τ ∈ T if s(τ)(σ) > 0 (resp.
t(τ)(σ) > 0). Accordingly, the total number of input arcs into and output arcs out of a transition
τ are given by: ∑

σ∈S

s(τ)(σ) (1)

and ∑
σ∈S

t(τ)(σ). (2)

In the example of electrolysis, the transition E has two input arcs and three output arcs. The
molecule H2O is its input species and the molecules H2 and O2 are its output species.

1.1 Invariants of composable Petri nets
The study of composable Petri nets was introduced by Baldan, Corradini, Ehrig, Heckel, and
König [4, 5]. Baez and Pollard [3] used the formalism of decorated cospans to introduce tensoring
of open Petri nets. In the same vein as our decomposition lemmas that appear in Section 3, Nielsen,
Priese and Sassone [18] showed that a finite Petri net is built from single-place and single-transition
Petri nets via a collection of operations on nets known as combinators. Gadduci and Heckel [9]
presented a theorem (referred to as the Kindred theorem) for the decomposition of graphs into
fundamental components.

Many fields have vast databases that record many kinds of chemical reactions and their associ-
ated Petri nets [13, 16, 21, 23]. These are studied empirically by computationally seeking patterns,
motifs [22], and numerical invariants that arise in this data. Often due to the sheer size of the
Petri nets in such databases, it is convenient to think of a large Petri net as being built out of
smaller constituent nets which are “glued” together to form the entire net. This compositional
structure of Petri nets is particularly useful when one wishes to study structural measurements
that are isomorphism-invariant and which are compositional in the sense that they behave nicely
with respect to this kind of gluing. In this article, as is customary in many areas of mathematics
(cf. algebraic topology, graph theory etc.) we will adopt the term invariant as a more concise
substitute for the term “isomorphism-invariant measurement”.

The literature on Petri nets contains other uses of the term invariant (e.g. P- and T- invariants)
which are topological properties which do not depend on the initial marking of a Petri net. This
usage is very similar to ours; however, in this article we are not concerned with markings and
instead we are interested in invariants which satisfy the following two requirements:

1. For a Petri net built out of smaller parts, the overall invariant value should be determinable
solely from the values on the pieces.

2. It is computationally cheap to compute the invariant on the whole Petri net from its values
on the pieces.
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The first requirement is in a similar vein to that of the work of Baldan, Corradini, Ehrig, and
Heckel [4] (which studies compositional invariants different from the ones studied in this article).
On the other hand, the second requirement is born from the overarching question which, sitting in
the background, motivates this paper; namely: “which structural invariants of very large, real-world
Petri nets can be used to synthetically generate Petri nets with comparable structural statistics?”
Although this question is beyond the scope of the present paper, it serves as a motivation to deter-
mine isomorphism-invariant measurements which are both compositional and easily computable,
even on truly vast Petri nets.

There are several software systems for graphical modeling. In particular, AlgebraicPetri.jl
supports the definition and composition of open Petri nets. More recently, Catcolab [6] implements
a more dynamic modeling setting that includes motif analysis [1] for stock and flow diagrams,
which is a strategy that could be generalized to identify the atoms of a Petri net. Together, these
tools demonstrate the feasibility of implementing additive invariants for open Petri nets. Such
an implementation would allow us to generate large synthetic Petri nets whose invariants satisfy
certain constraints.

To that end, this paper focuses on one of the first, obvious requirements that one might put
on an invariant so as to render its compositional computation efficient, that is, additivity. By this
we mean that we are interested in invariants F which can be computed on any large Petri net P
as a sum F (P ) =

∑N
i=1 F (Pi) whenever P is built as a gluing of many small nets P1, . . . , PN . In

this paper we completely determine all of the additive invariants for composable Petri nets. Our
results show that additivity forces the invariants to describe simple structural requirements. Thus
one can think of a ladder of semantic complexity of isomorphism-invariant mappings on Petri nets
where additive invariants occupy lower rungs compared to invariants such as mass action kinetics
which is a map, defined in [3], from Petri nets into differential equations that respects gluing.

1.2 Contributions
In this paper, we will classify all N-valued invariants of open Petri nets which are additive with
respect to composition and monoidal product in the category of open Petri nets, OPetri. In
particular we show that the additive invariants of open Petri nets are completely determined by
their values on a particular class of single-transition Petri nets.

We also give a similar classification for the N-valued invariants for the category of open Petri
nets with monic legs, MOPetri, which embeds faithfully into OPetri. All additive invariants on
OPetri nets are also additive invariants on MOPetri. However, the converse is not true. We show
that the additive invariants on MOPetri are determined by their values on all single-transition
Petri nets as well as transitionless Petri nets.

The classification of these additive invariants relies on two decomposition lemmas for open Petri
nets. Given the large literature on open Petri nets in applied category theory, these lemmas are of
independent significance.

The paper is structured as follows. In Section 2 we introduce the category of open Petri nets,
OPetri and the category of open Petri nets with monic legs, MOPetri. We then introduce
many of the notions that we use in the decomposition lemmas and in classifying invariants. These
include particular classes of transitionless and single transition Petri nets. In Section 3 we give
the decomposition lemmas. In Section 4 we show in Theorem 4.4 that in fact all invariants of
open Petri nets are additive. Finally, we classify the additive invariants of open Petri nets in
Theorem 4.7 and of monically open Petri nets in Theorem 4.12.

Acknowledgements We thank John Baez for leading and guiding this project. Furthermore,
we would like to thank the American Mathematical Society for its support and the organisers
of the AMS’ 2022 MRC (Mathematics Research Communities) on Applied Category Theory for
setting up this collaboration. Additionally, we thank the referees for a number of insightful remarks
that led to the expansion of the discussion on related work, improvement in exposition, and a few
simplifications.
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2 Preliminaries
2.1 Open Petri nets
Open Petri nets are Petri nets equipped with sets of input and output species acting as interfaces.
Formally, an open Petri net is a Petri net P and a cospan of sets X

i−→ S
o←− Y where S is the

species set of the Petri net P . The pair P = (X i−→ S
o←− Y, P ) is an open Petri net decorated

by the Petri net P .
Baez and Pollard show [3, Theorem 6] that open Petri nets should be thought of as morphisms

in a symmetric monoidal category OPetri of open Petri nets. The objects of this category are finite
sets, the morphisms are isomorphism classes of open Petri nets, and composition — similarly to
other cospan categories [12] — is roughly obtained by pushout. One should think of this as gluing
Petri nets together along shared interfaces. We invite the reader to consult Baez and Pollard’s
paper [3, Theorem 6] for a thorough account on how to define the category OPetri by applying
Fong’s theory of decorated cospans [7].

The composition and tensor product of two open Petri nets are applied in many of the proofs
throughout Sections 4 and 3. For clarity, we give their explicit definition here. Let

P =
(

X
i−→ S

o←− Y,
(
s, t : T → NS

))
, and

Q =
(

Y
i′

−→ S′ o′

←− Z,
(

s′, t′ : T ′ → NS′
))

,

be two open Petri nets. To compose P and Q, first we form the pushout:

S +Y S′

S S′

X Y Z

i′ o

i o i′ o′

⌟

where the maps i′ and o are the canonical morphisms from S and S′ to the pushout object S +Y S′.
Then the composite is the open Petri net

P ;Q :=
(

X
i′◦i−−→ S +Y S′ o◦o′

←−− Z,
(

s̄, t̄ : T + T ′ → NS+Y S′
))

where the maps s̄, t̄ : T + T ′ → NS+Y S′
are given by

s̄(τ)(σ̄) =
{∑

σ∈S|i′(σ)=σ̄ s(τ)(σ) τ ∈ T∑
σ′∈S′|o(σ′)=σ̄ s′(τ)(σ′) τ ∈ T ′ , (3)

and

t̄(τ)(σ̄) =
{∑

σ∈S|i′(σ)=σ̄ t(τ)(σ) τ ∈ T∑
σ′∈S′|o(σ′)=σ̄ t′(τ)(σ′) τ ∈ T ′ . (4)

The monoidal product ⊕ in OPetri is defined on objects as their disjoint union. For two open
Petri nets P =

(
X

i−→ S
o←− Y, P =

(
s, t : T → NS

))
andQ =

(
X ′ i′

−→ S′ o′

←− Y ′, Q =
(

s′, t′ : T ′ → NS′
))

,
their monoidal product is

P ⊕Q :=
(

X + X ′ i+i′

−−→ S + S′ o+o′

←−−− Y + Y ′,
(

s + s′, t + t′ : T + T ′ → NS+S′
))

,

where S + S′ and T + T ′ are the disjoint unions of the species and transitions sets of P and Q,
respectively. The map s + s′ : T + T ′ → S + S′ sends τ ∈ T to s(τ) ∈ S, and τ ′ ∈ T ′ to s′(τ ′) ∈ S′.
Similarly, the map t + t′ : T + T ′ → S + S′ sends τ ∈ T to t(τ) ∈ S, and τ ′ ∈ T ′ to t′(τ ′) ∈ S′.

Compositionality, Volume 7, Issue 4 (2025) 4
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In addition to invariants of open Petri nets we are also interested in invariants for a subclass
of open Petri nets defined as follows.

Definition 2.1. A monically open Petri net — or mope net for short — is an open Petri
nets whose underlying cospan consists of a pair of monomorphisms.

Since the composition of two mope nets is, again, a mope net, these open Petri nets form a
category MOPetri which is a wide subcategory of OPetri. In OPetri, composing open Petri
nets can identify two species in the decoration of one of the factors. For example, an input species
and an output species of a transition may be identified so that they appear as a single catalyst in
the composite. This identification is not possible in MOPetri. Instead, composition in MOPetri
preserves the relation between each transition and its input and output species.

2.2 Transitionless open Petri nets
In several constructions throughout the main sections of this paper, we refer to Petri nets with no
transitions. For ease of notation, we introduce the following definition.

Definition 2.2. For a finite set S, let 0S denote the unique Petri net with S species and no
transitions. Then the source and target maps are both the unique morphism ! : 0→ NS . Explicitly,
0S := (S, 0, !, !).

A transitionless open Petri net is an open Petri net whose decoration is transitionless.
These are generated from several building blocks as we show in the following lemma.

Lemma 2.3. Any transitionless open Petri net is generated via the tensor product and composite
from the following (transitionless) open Petri nets:

µ := (2→ 1← 1, 01),
η := (0→ 1← 1, 01),
δ := (1→ 1← 2, 01),
ϵ := (1→ 1← 0, 01).

Proof. An open Petri net with no transitions is equivalent to a cospan in FinSet. By Lemma
3.6 of [8], cospans in FinSet are generated by the cospans underlying the morphisms µ, η, δ, and
ϵ. ■

Of particular interest are two types of transitionless open Petri nets.

Definition 2.4. A boundary mope net is a mope net either of the form

ηS :=
(

0→ S
1S←− S, 0S

)
or ϵS :=

(
S

1S−→ S ← 0, 0S

)
,

for a finite set S.

A

B

C

Figure 1: The boundary mope net ϵ3.

Compositionality, Volume 7, Issue 4 (2025) 5
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Remark 2.5. Note that the boundary mope nets η1 and ϵ1 are in fact the generators η and ϵ defined
in Lemma 2.3. Additionally, there are several useful relations between these boundary mope nets.

δ;µ = id1,

η2;µ = η1

δ;ϵ2 = ϵ1

Furthermore for a finite set S, we have

η1 ⊕ · · · ⊕ η1︸ ︷︷ ︸
|S| times

= ηS

and
ϵ1 ⊕ · · · ⊕ ϵ1︸ ︷︷ ︸

|S| times

= ϵS .

2.3 Atomic Petri nets
Next we introduce classes of open Petri nets which will form the building blocks for our decompo-
sition lemmas in Section 3.

Definition 2.6. An atomic Petri net is a Petri net with a single transition such that each species
is connected to the transition as an input and/or as an output.

Definition 2.7. For integers m, n define Pm,n to be the atomic Petri net whose transition has m
distinct input species and n distinct output species.

Explicitly, Pm,n has a single transition τ and m + n distinct species.

S = {1, ..., m + n}

with source and target maps

s(τ)(i) =
{

1 i = 1, ..., m

0 i = m + 1, ..., m + n
, t(τ)(i) =

{
0 i = 1, ..., m

1 i = m + 1, ..., m + n
.

Example 2.8. Figure 2 gives four examples of Petri nets with a single transition. The Petri nets in
(a), (b), and (c) are all atomic. The Petri nets in Figure 2 (a) and (b) are not of the form Pm,n

for any m, n. In (a), this is because there is a species that is both an input species and an output
species for the transition. We call this type of species a catalyst of the transition. On the other
hand, (b) is not of the form Pm,n because there is a species connected to the transition by two
output arcs. Finally, (c) depicts the Petri net P2,2. It has two distinct input species, each of which
is connected to the transition by a single input arc. Likewise, it has two distinct output species,
each of which is connected to the transition by a single output arc.

Finally the Petri net in (d) it not atomic because it contains a species that does not participate
in the transition.

Each atomic Petri net has a type signature called a body type which we define below.

Definition 2.9. Let P = (s, t : T → NS) by any Petri net. For a transition τ ∈ T , let Sτ ⊆ S be the
subset of species which participate in the transition τ . So Sτ = {σ ∈ S|s(τ)(σ) ̸= 0 or t(τ)(σ) ̸= 0}.
Then the transition τ ∈ T is represented by the multiset

{[(s(τ)(σ), t(τ)(σ))]|σ ∈ Sτ}

of pairs of natural numbers N × N \ {(0, 0)}. We refer to this multiset as the body type of a
transition τ .

Compositionality, Volume 7, Issue 4 (2025) 6
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(a) (b)

(c) (d)

Figure 2: (a) An atomic Petri net containing a catalyst. (b) An atomic Petri net with a single transition that
has two output arcs connected to the same species. (c) The atomic Petri net P2,2. (d) A non-atomic Petri net
with a single transition that has a species that does not participate in the transition.

There is a 1-1 correspondence between body types and isomorphism classes of atomic Petri
nets. Indeed, consider the body type β = [(a1, b1), ..., (an, bn)]. Then, let Pβ be an atomic Petri
net with a transition τ and n distinct species S = {1, ..., n} with source and target maps s(τ)(i) =
ai, t(τ)(i) = bi. The Petri net Pβ is a canonical representative of the isomorphism class of atomic
Petri nets that correspond to body type β.
Remark 2.10. Note that Pm,n = Pβ for body type

β = [(1, 0), · · · , (1, 0)︸ ︷︷ ︸
m-times

, (0, 1) · · · , (0, 1)︸ ︷︷ ︸
n-times

].

Definition 2.11. For natural numbers m, n, let Pm,n be the open Petri net decorated by Pm,n

and whose underlying cospan is the identity.
Likewise for body type β, let Pβ be the open Petri net decorated by Pβ and whose underlying

cospan is the identity. We call an open Petri net of this form a body net.

Figure 3 gives an example of the body net P1,1.
Remark 2.12. If P is any open Petri net whose decoration has a single transition and whose
underlying cospan is the identity, then P is isomorphic to the monoidal product of a body net Pβ

and an identity open Petri net.

3 Decomposition Lemmas
Petri nets in the wild are often quite complicated, with hundreds of transitions. In this section
we first prove a decomposition theorem for open Petri nets which decomposes an open Petri
net into transitionless and single-transition open Petri nets. One of the main advantages of this
decomposition theorem is that it applies to mope nets as well as generic open Petri nets. Then we
will prove Lemma 3.7 which gives a canonical decomposition of open Petri nets into transitionless
open Petri nets and open Petri nets decorated with Petri nets of the form Pm,n. This factorization
involves both composition and the monoidal product.

We start first by showing that any open Petri net is canonically the composite of transitionless
open Petri nets and an open Petri net whose underlying cospan is the identity.

Compositionality, Volume 7, Issue 4 (2025) 7
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X X

Figure 3: The open atomic Petri net P1,1.

Lemma 3.1. Let P be an open Petri net. Then P can be decomposed as

P = Q;R;Q′,

where Q and Q′ are decorated by transitionless Petri nets and the legs of R are identities. If P is
monic, then so are Q and Q′.

Proof. Let P be the Petri net defined by

P =
(

X
i−→ S

o←− Y, P =
(
S, T, s, t : T → NS

))
.

Consider the Petri nets
Q =

(
X

i−→ S
1S←− S, 0S

)
,

R =
(

S
1S−→ S

1S←− S, P
)

,

and
Q′ =

(
S

1S−→ S
o←− Y, 0S

)
.

Note that if P is monic, then so are Q and Q′.
First, we show that Q ;R = (X i−→ S

1S←− S, P ). Consider the composition of cospans:

S

S S

X S S

i 1S 1S 1S

1S 1S⌟

That the decoration is P follows straightforwardly from the explicit definition of the composition
of open Petri nets given in Section 2.

Similarly (Q;R);Q′ consists of the cospan X
i−→ S

o←− Y and the decoration P .
■

We are now ready to prove our first decomposition Lemma of open Petri nets into atomic
factors.

Lemma 3.2. If P is an open Petri net with N transitions, then

P = Q;G1;G2; · · · ;GN ;Q′,

where Q and Q′ are transitionless open Petri nets and each Gi satisfies:

• Its underlying cospan is the identity.

Compositionality, Volume 7, Issue 4 (2025) 8
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• Its decoration has a single transition.

Proof. By Lemma 3.1 is suffices to prove the theorem for open Petri nets whose underlying cospan
is the identity. We do this by induction on N . Suppose P is of the form

P = (S 1S−→ S
1S←− S, P = (S, T, s, t : T → NS)),

where T has elements τ1, τ2, . . . , τN .
If N = 0 or N = 1 then the result is trivial. Now suppose that N ≥ 2 and that the result holds

for all open Petri nets with fewer than N transitions.
Define T̃ = {τ1, ..., τN−1} and the Petri nets

P̃ = (S, T̃ , s|T̃ , t|T̃ ), GN = (S, {τN}, s|{τN }, t|{τN }).

Let GN be the open Petri net (S 1S−→ S
1S←− S, GN ). By construction GN satisfies the requisite

criteria. Then P = (S 1S−→ S
1S←− S, P̃ );GN . This result is a straightforward application of the

definition of composing open Petri nets.
By the induction hypothesis there exist open Petri nets G1, · · · ,GN−1 satisfying the criteria

such that
(S 1S−→ S

1S←− S, P̃ ) = G1 ; · · · ;GN−1 .

Thus P = G1 ; · · · ;GN−1 ;GN . ■

Remark 3.3. The order of the Petri nets Gi depended on the choice of ordering of the transi-
tions. Therefore, this decomposition is unique up to isomorphism and permutations of Gi. Since
composition involves pushouts, everything is unique up to isomorphism.
Remark 3.4. By Lemma 3.1, if P is a mope net then its factors according to the decomposition in
Lemma 3.2 are mope nets as well.
Remark 3.5. By Remark 2.12, each Gi is the monoidal product of a body net and an identity open
Petri net.

A B

C D

E

α

β γ

X

1
2
3

Y

4

5

Figure 4: A mope net with three transitions.

Example 3.6. Consider the mope net P =
(

X
i−→ S

o←− Y, P =
(
S, T, s, t : T → NS

))
, where S =

{A, B, C, D, E} and T = {α, β, γ} shown in Figure 4. Let

Q =
(

X
i−→ S

1S←− S, 0S

)
, and

Q′ =
(

S
1S−→ S

o←− Y, 0S

)
.

Compositionality, Volume 7, Issue 4 (2025) 9
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For i = 1, 2, 3, let

Gi =
(

S
1S−→ S

1S←− S, Pi =
(
S, Ti, s|Ti

, t|Ti
: Ti → NS

))
,

where T1 = {α}, T2 = {β}, and T3 = {γ}. Using Lemma 3.2, P can be decomposed as follows

P = Q;G1;G2;G3;Q′.

See Figure 5 for a depiction of this decomposition.
As an example of Remark 3.3, this decomposition does not depend on the order of G1,G2,G3.

Composing them in a permuted order yields the same composite mope net.

A

B

C

D

E

A B

C

D

E

α

A B

C

D

E

β

A B

C

D

E

γ

A

B

C

D

E

Figure 5: The decomposition of the mope net depicted in Figure 4 into transitionless mope nets Q and Q′

(farthest left and farthest right) and single-transition mope nets G1, G2, and G3 (middle mope nets).

Next we state and prove our secound decomposition Lemma of open Petri nets into Pn,m factors.

Lemma 3.7. Any open Petri net P can be factored as

Q; (G0 ⊕ G1 ⊕ G2 ⊕ · · · ⊕ GN ) ;Q′,

where:

• Q and Q′ are transitionless open Petri nets,

• G0 is an identity morphism in OPetri, and

• For i = 1, · · · , N , Gi is a body net decorated with an atomic Petri net isomorphic to Pmi,ni
.

Proof. First, we define the Petri nets that will be involved in our composite.
For each transition τ ∈ T we will define an open Petri net Gτ which has a unique input species

for each input arc incoming to τ and a unique output species for each output arc outgoing from τ .
In particular, the sets

Iτ :=
∑
σ∈S

s(τ)(σ), Oτ :=
∑
σ∈S

t(τ)(σ),

represent the input and output arcs to the transition τ . Define Sτ := Iτ + Oτ . Define the Petri
net Gτ to have a single transition and species Sτ . Its source and target maps are defined so that
there is a single input arc from each species in Iτ to the transition and there is a single output arc
from the transition to each species in Oτ . Note that Gτ is isomorphic to P|Iτ |,|Oτ |. Let Gτ be the
open Petri net (

Sτ
1Sτ−−→ Sτ

1Sτ←−− Sτ , Gτ = (Sτ , 1, sτ , tτ )
)

.

Next, let S0 be the species in S which are neither the input species nor the output species of
any transition. Let G0 be the identity morphism on S0.

Consider the monoidal product G = G0⊕
(⊕

τ∈T Gτ

)
. Explicitly,

G =
(

S̃
1S̃−→ S̃

1S̃←− S̃,
(
G = S̃, T, s̃, t̃

))
,
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where S̃ = S0 +
∑

τ∈T Sτ .
Next we want to create transitionless open Petri nets Q and Q′ which glue together the species

in G which arose from the same species in the original Petri net P . We begin by defining a map
h̃ : S̃ → S which maps each species of G to the species in P to which it corresponds.

For each transition τ , let fτ : Iτ → S be the unique map such that for each σ ∈ S, fτ is the
constant σ map on s(τ)(σ). Likewise, let gτ : Oτ → S be the unique map such that for each σ ∈ S,
gτ is the constant σ map on t(τ)(σ). Together these induce a map hτ := [fτ , gτ ] : Sτ → S. Let h0
be the inclusion of S0 into S. Then let h̃ : S̃ → S be the universal morphism induced by h0 and
hτ for τ ∈ T .

Finally, we define

Q :=
(

X
i−→ S

h←− S̃, 0S

)
, Q′ :=

(
S̃

h−→ S
o←− Y, 0S

)
.

We will show that P = Q ;G ;Q′. First consider Q ;G. The composition of the underlying cospans
is as follows:

S

S S̃

X S̃ S̃

hi 1S̃ 1S̃

1S h⌟

The decoration of the composite is (S, T, s′, t′) where s′ : T → NS is defined by

s′(τ)(σ) =
∑

σ̃∈S̃|h(σ̃)=σ

s̃(τ)(σ̃)

=
∑

σ̃∈S0|h0(σ̃)=σ

+
∑
υ∈T

∑
σ̃∈Sυ|hυ(σ̃)=σ

s̃(τ)(σ̃)

=
∑

σ̃∈Sτ |hτ (σ̃)=σ

s̃(τ)(σ̃) (5)

=
∑

σ̃∈Iτ |fτ (σ̃)=σ

sτ (σ̃) +
∑

σ̃∈Oτ |gτ (σ̃)=σ

sτ (σ̃)

=
∑

s(τ)(σ)

1 +
∑

t(τ)(σ)

0 (6)

= s(τ)(σ).

Note that Equation 5 follows from the fact that for s̃(τ)(σ̃) is 0 unless σ̃ ∈ Sτ . Equation 6
follows from the fact that fτ is the constant σ̃ map on s(τ)(σ̃), and thus fτ (σ̃) = σ if and only if
σ̃ ∈ s(τ)(σ).

The above calculations prove that s′ = s. An identical argument shows that t′ = t as well.
Therefore the composite Q ;G is decorated by the original Petri net P .

Finally, we must show that (Q ;G);Q′ is P. First we examine the composite of their underlying
cospans:

S

S S

X S̃ Y

hi h o

1S 1S⌟

Note that S +S̃ S = S because h : S̃ → S is surjective. That the decoration of the composite is
P again is a straightforward application of the definition of composing open Petri nets. ■
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Example 3.8. Consider the open Petri net depicted in Figure 6.
Applying the Lemma 3.7 this Petri net can be decomposed as

Q ;(G0⊕G1⊕G2⊕G3);Q′

where G0 is decorated with a transitionless Petri net and G1,G2,G3 are decorated with the atomic
Petri nets. Here, α has two input arcs and one output arc, so the atomic Petri net P2,1 decorates
G1; likewise, β has one input arc and one output arc, so P1,1 decorates G2; and γ has one input
arc and two output arcs, so P1,2 decorates G3. The decomposition is depicted in Figure 7.

A B

C D

E

α

β γ

X

1
2
3
4

Y

5

6

Figure 6: An open Petri net with three transitions.

𝐴
𝐴

𝐴

𝐴

𝐵

𝐵

𝐵

𝐶

𝐶

𝐶

𝐶

𝐶

𝐷

𝐷
𝐷

𝐷

𝐸

𝐸

𝐸

𝛼

𝛽

𝛾

1

2

3

4

5

6

Figure 7: The decomposition of the open Petri net depicted in Figure 6 into atomic Petri nets as defined by
Lemma 3.7. The decomposition is Q ;(G0 ⊕ G1 ⊕ G2 ⊕ G3); Q′. Graphically each Gi is enclosed by a grey box
and they are shown in numerical order from top to bottom.
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4 Additive Invariants of Open Petri Nets
This section is devoted to the classification theorems of additive invariants for open Petri nets and
monically open Petri nets. These are discussed in Sections 4.2 and 4.3, respectively. We begin by
establishing that all functors from OPetri to BN are monoidal. First a definition.

Definition 4.1. An additive invariant of open Petri nets is a monoidal functor OPetri→ BN
where BN is the one-object category induced by the monoid (N, +). The monoidal product of BN
is also given by +.

4.1 Every invariant of OPetri is additive
Before proving our main classification theorems, we first prove that all functors OPetri → BN
are in fact monoidal. Therefore our classification of monoidal functors OPetri→ BN is in fact a
classification of all functors OPetri→ BN.

We remind the reader of the Eckmann-Hilton argument, which states that in any monoidal
category, composition and the monoidal product coincide when restricted to endomorphisms of the
unit object. As a consequence, for open Petri nets with empty interfaces, composition coincides
with their direct sum. Specifically, if an open Petri net Q has an empty codomain, then: Q◦id∅ =
Q = Q⊕id∅. Likewise if Q′ has an empty domain. Then:

Q◦Q′ = (Q⊕id∅) ◦ (id∅ ⊕Q′) = (Q◦id∅)⊕ (id∅ ◦ Q′) = Q⊕Q′ .

This follows naturally from the interchange law of monoidal categories. With this in mind, we
begin with the following Lemma.

Lemma 4.2. Let F : OPetri → BN be a functor, and let P be an open Petri net. If P is
transitionless, then F (P) = 0.

Proof. By Lemma 2.3, any transitionless open Petri nets can be generated by the open Petri nets
µ, η, δ, and ϵ. Therefore it is sufficient to show that F is trivial on these open Petri nets.

Since F is functorial, F (idS) = 0 for all species set S. Thus, δ;µ = id1 implies that

0 = F (δ;µ) = F (δ) + F (µ).

Since F (δ) and F (µ) are natural numbers, this implies that F (δ) = 0 and F (µ) = 0.
It remains to show that F vanishes on η = η1 and ϵ = ϵ1 as well. From the standard relations

η1 = η2;µ and ϵ1 = δ;ϵ2 as in 2.5, we obtain

F (η1;ϵ1) = F (η2) + F (µ) + F (δ) + F (ϵ2)
= F (η2) + F (ϵ2)
= F (η2;ϵ2).

As composition and direct sum coincide when both open Petri nets have empty domain and
codomain, and since ηm;ϵm decomposes as the direct sum ηm;ϵm =

⊕m
i=1(η1;ϵ1), it follows that

F (η2;ϵ2) = 2F (η1;ϵ1).

Since (N, +) is a cancellative monoid, this implies 0 = F (η1;ϵ1) = F (η1) + F (ϵ1). Therefore,
F (η) = 0 and F (ϵ) = 0, as required. ■

Remark 4.3. Notice that the result above holds for any cancellative monoid where the identity is
the only element with an inverse. Further, the classification of invariants as a linear combination
of generators relies on the monoid being abelian and cancellative.

Theorem 4.4. Every functor OPetri→ BN is monoidal.
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Proof. Let P and Q be the open Petri nets

P =
(

X
i−→ S

o←− Y,
(
s, t : T → NS

))
Q =

(
U

i′

−→ S′ o′

←− V,
(

s′, t′ : T ′ → NS′
))

.

Then
P ⊕Q = (P ;idY )⊕ (idU ;Q) = (P ⊕idU );(idY ⊕Q).

Therefore, it suffices to show for each open Petri net P and each finite set M that F (P ⊕idM ) =
F (P).

We begin by considering the open Petri net

R := (ηX ⊕ ηM );(P ⊕idM );(ϵY ⊕ ϵM ),

whose domain and codomain are both ∅. Since composition and direct sum coincide in such cases
and using the interchange law, we have

R = (ηX ;P ;ϵY )⊕ (ηM ;idM ;ϵM ),
= (ηX ;P ;ϵY );(ηM ;idM ;ϵM ).

It follows that,

F (ηX+M ) + F (P ⊕idM ) + F (ϵY +M ) = F (R) = F (ηX) + F (P) + F (ϵY ) + F (ηM ) + F (ϵM ).

This derivation uses that ηX ⊕ ηM = ηX+M , and likewise that ϵY ⊕ ϵM = ϵY +M .
Finally, by Lemma 4.2, all of the boundary terms are 0, revealing that F (P ⊕idM ) = F (P).

■

4.2 Classifying additive invariants of open Petri nets
We begin by proving the functoriality of the maps Fm,n : OPetri→ BN that take an open Petri
net to the number of transitions having m input arcs and n output arcs. These will form the
building blocks of our classification of additive invariants.

Lemma 4.5. There is a monoidal functor Fm,n : OPetri→ BN such that for an open Petri net
P with decoration P , Fm,n(P) is the number of transitions in P with m input arcs and n output
arcs.

Proof. For an object S in OPetri, the identity open Petri net is idS =
(

S
1S−→ S

1S←− S, 0S

)
. Since

0S has no transitions, we obtain Fm,n

(
S

1S−→ S
1S←− S, 0S

)
= 0.

Consider two open Petri nets P = (X → S ← Y, P ) and P ′ = (Y → S′ ← Z, P ′), such that P
and P ′ have T and T ′ as transition sets, respectively. Recall that the Petri net decorating P ;P ′

has transition set T + T ′. For τ ∈ T , suppose that τ has k input arcs in P . Equations 1 and 3
imply that τ has k input arcs in Petri net decorating P ′ ;P. Likewise for output arcs and for
τ ′ ∈ T ′. Therefore, Fm,n(P ;P ′) = Fm,n(P ′) + Fm,n(P). Similarly, for open Petri nets P and Q,
we have Fm,n(P ⊕Q) = Fm,n(P) + Fm,n(Q). ■

Example 4.6. Consider the open Petri net in Figure 6. The transition labeled α has two input arcs
and one output arc, so F2,1 applied to this open Petri net is 1. The transition β has one input arc
and one output arc. Therefore, F1,1 applied to this open Petri net is 1. Finally, the transition γ
has one input arc and two output arcs; F1,2 applied to this open Petri net is 1. For all other m, n,
Fm,n applied to these open Petri nets is 0.

We are now ready to present the proof of one of our main results, Theorem 4.7.

Theorem 4.7. For any two m, n ∈ N, there is a functor

Fm,n : OPetri→ BN
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which maps each open Petri net to the total number of transitions with exactly n input arcs and m
output arcs. Furthermore, any additive invariant G : OPetri → BN is completely determined —
as a linear combination of the functors Fm,n defined above — by its values on the family Pm,n. In
particular, we have

G(−) =
∑

m,n∈N
G(Pm,n)Fm,n(−).

Proof. In Lemma 4.5 we verified that the maps Fm,n : OPetri→ BN as defined in the first sentence
of the Theorem statement are indeed monoidal functors. Next we show that any monoidal functor
F : OPetri→ BN satisfies

F =
∑

m,n∈N
F (Pm,n)Fm,n.

First, for the open Petri net Pm̄,n̄ observe that
∑

m,n∈N F (Pm,n)Fm,n(Pm̄,n̄) = F (Pm̄,n̄) be-
cause Fm,n(Pm̄,n̄) is 1 if m = m̄ and n = n̄ and 0 otherwise.

Now let P = (X −→ S ←− Y, P ) be any open Petri net. Let Q;
(⊕N

i=0 Gi

)
;Q′ be the decomposi-

tion of P as given in Lemma 3.7. Thus, using this decomposition of P, we can invoke the additivity
of F together with Lemma 4.2 to obtain

F (P) = F (Q) + F (G0) +
N∑

i=1
F (Gi) + F (Q′) =

N∑
i=1

F (Gi).

Likewise
∑

m,n F (Pm,n)Fm,n is an additive invariant and so

∑
m,n

F (Pm,n)Fm,n(P) =
N∑

i=1

∑
m,n

F (Pm,n)Fm,n(Gi)

For i = 1, ..., N , Gi is decorated with an atomic Petri net Pmi,ni . Therefore, Gi is isomorphic
to Pmi,ni

and hence F (Gi) =
∑

m,n F (Pm,n)Fm,n(Gi). Thus, as desired, we have that

∑
m,n

F (Pm,n)Fm,n(P) =
N∑

i=1

∑
m,n

F (Pm,n)Fm,n(Gi) =
N∑

i=1
F (Gi) = F (P).

■

4.3 Classifying additive invariants of monically open Petri nets
In this section, we show that the invariants of mope nets are linear combinations of some countable
generating sets. These play the role of Fm,n in the classification of additive invariants for all open
Petri nets. In this case, the generators correspond to the two subclasses of mope nets which we have
already encountered, namely body nets and boundary nets, which were defined in Definitions 2.9
and 2.4, respectively.

Our first set of generating functors consist of functors Fβ for body types β. These are defined
in Lemma 4.8 and capture invariants of body nets. The second set of generating functors consist of
functors Fa,z where {ak}k∈N and {zk}k∈N are non-decreasing sequences satisfying the law in Equa-
tion 7. These are defined in Lemma 4.9 and capture invariants having to do with the underlying
cospan of the open Petri net.

Lemma 4.8. Let β be a body type. There is a monoidal functor Fβ : MOPetri→ BN such that
for a mope net M with decoration P , Fβ(M) is the number of transitions in P with type β.

Proof. That Fβ is 0 on the identity and respects the monoidal product follows the same reasoning
as in the proof of Lemma 4.5.

Consider two mope nets M = (X → S ← Y, P ) and M′ = (Y → S′ ← Z, P ′) such that P and
P ′ have T and T ′ as transition sets, respectively. Recall that the Petri net decoratingM ;M′ has
transition set T + T ′. For τ ∈ T , suppose that τ has body type β. Since the legs ofM andM′ are
monic, no two input and/or output species to τ are identified. Thus, τ also has body type β in the
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Petri net decorating M ;M′. Likewise if τ does not have body type β in the Petri net decorating
M, then τ does not have body type β in the Petri net decorating M ;M′. The same is true for
transitions in the Petri net decorating M′. Therefore Fβ(M ;M′) = Fβ(M) + Fβ(M′). ■

Lemma 4.9. Let {ak}k∈N and {zk}k∈N be non-decreasing sequences of natural numbers that satisfy

k(a1 + z1) = ak + zk (7)

for all k ∈ N. Then there is a functor Fa,z : MOPetri → BN defined such that for a mope net
M = (X → S ← Y, P )

Fa,z(M) = (a|S| − a|X|) + (z|S| − z|Y |).

Proof. First, Fa,z is not only integer-valued but in fact natural-valued, since a, z are non-decreasing.
And by direct computation Fa,z(idS) = (a|S| − a|S|) + (z|S| − z|S|) = 0.

We now verify that Fa,z respects composition. Consider two mope netsM = (X → S ← Y, P )
andM′ = (Y → S′ ← Z, P ′). By the monotonicity of the legs ofM andM′, there are |S|+|S′|−|Y |
species in the decoration of M ;M′. Therefore,

F (M) + F (M′) = (a|S| − a|X| + z|S| − z|Y |) + (a|S′| − a|Y | + z|S′| − z|Z|)
= (|S|+ |S′| − |Y |)(a1 + z1)− a|X| − z|Z|

= (a|S|+|S′|−|Y | + z|S|+|S′|−|Y |)− a|X| − z|Z|

= (a|S|+|S′|−|Y | − a|X|) + (z|S|+|S′|−|Y | − z|Z|)
= F (M ;M′).

Hence, Fa,z is functorial. ■

We next turn to show that any functor must satisfy a certain law and the value of this functor
on transitionless mope net is determined by its value on boundary mope nets.

Lemma 4.10. Let F : MOPetri → BN be a functor and let M = (X → S ← Y, 0S) be a
transitionless mope net. Then the following holds

(a) k(F (η1) + F (ϵ1)) = F (ηk) + F (ϵk) for all natural k.

(b) F (M) = (F (ηS)− F (ηX)) + (F (ϵS)− F (ϵY )).

Proof. The composite mope net

η|X|;M ; ϵ|Y | = (0→ S ← 0, 0S)

is isomorphic to (η1;ϵ1) composed with itself |S| times. Therefore,

|S|(F (η1) + F (ϵ1)) = F (ηX) + F (M) + F (ϵY ). (8)

Applying Equation 8 to the case where M is the identity mope net on S and |S| = k proves
the first assertion that k(F (η1) + F (ϵ1)) = F (ηk) + F (ϵk).

Finally to prove (b), applying the equality |S|(F (η1) + F (ϵ1)) = F (ηS) + F (ϵS) to Equation 8
and rearranging implies that F (M) = (F (ηS)− F (ηX)) + (F (ϵS)− F (ϵY )). ■

We will next prove a crucial result that is similar in nature to Theorem 4.4. Note that the
proof technique in Theorem 4.4 (specifically Lemma 4.2) cannot be extended to mope nets since
it requires the use of the non-monic open Petri nets µ and δ.

Lemma 4.11. Let F : MOPetri→ BN be a functor. Let M be any endomorphism in MOPetri
and let idS be the identity mope net with S species. Then F (M⊕ idS) = F (M).
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Proof. Let M be a mope net with domain and codomain X. Define

P := (ηX ⊕ ηS);(M⊕ idS);(ϵX ⊕ ϵS)

Note that ηX ⊕ ηS = ηX+S and likewise ϵX ⊕ ϵS = ϵX+S . Applying F shows that

F (P) = F (η|X+S|) + F (M⊕ idS) + F (ϵ|X+S|) = |X + S|(F (η1) + F (ϵ1)) + F (M⊕ idS). (9)

The second equality follows from the equality proven in Lemma 4.10.
On the other hand, rearranging the factors of P yields

P = (ηX ;M;ϵX)⊕ (ηS ;idS ;ϵS).

The monoidal product of two open Petri nets whose feet are both the empty set is isomorphic to
their composite. Since the two factors of P satisfy this criteria, we have

P = (ηX ;M;ϵX);(ηS ;idS ;ϵS)

Applying F to this equality yields

F (P) = F (ηX)+F (M)+F (ϵX)+F (ηX)+F (idS)+F (ϵS) = |X +S|(F (η1)+F (ϵ1))+F (M). (10)

Again, the second equality follows from applying the equality proven in Lemma 4.10 twice.
Comparing Equation 9 and Equation 10 and cancelling in N, we establish the claim. ■

We are now ready for the main result of this section.

Theorem 4.12. Every functor F : MOPetri→ BN decomposes as

Fa,z +
∑

β

dβFβ

as β ranges over body types for coefficients dβ ∈ N and non-decreasing sequences {ak}k∈N and
{zk}k∈N satisfying the condition in Equation 7.

Proof. The functors have been introduced in Lemma 4.8 and Lemma 4.9.
Now let F : MOPetri → BN be any functor. Define sequences ak = F (ηk) and zk = F (ϵk)

along with coefficients dβ = F (Pβ).
First we show that the sequences a and z are non-decreasing. Note that

ηk+1 = ηk;(k → k + 1← k + 1, 0k+1).

Applying F to both sides and appealing to functoriality implies that ak+1 = F (ηk+1) is greater
than or equal to ak = F (ηk). Therefore, the sequence a is non-decreasing and likewise for z.
Furthermore, they also satisfy the condition in Equation 7 by Lemma 4.10.

Let M = (X → S ← Y, P ) be any mope net. By Corollary 3.1, M = Q ;G1 ; · · · ;Gn ;Q′ where
Q and Q′ are transitionless mope nets and the Gi are body nets. Since Q and Q′ are transitionless,
Fβ(Q) = 0 and Fβ(Q′) = 0 for all body types β. Therefore, functoriality of F , Fa,z, and the
Fβ implies that it suffices to show that F (Q) + F (Q′) = Fa,z(Q) + Fa,z(Q′) and that F and
Fa,z +

∑
β dβFβ agree on Gi for all i.

The proof of Lemma 3.1 in fact shows thatQ = (X → S
1S←− S, 0S) andQ′ = (S 1S−→ S ← Y, 0S).

Note that F (Q ;Q′) = F (X → S ← Y, 0S). By Lemma 4.10, this equals

(F (ηS)− F (ηX)) + (F (ϵS)− F (ϵY ))

which by definition of a and z equals (a|S| − a|X|) + (z|S| − z|Y |). Therefore,

F (Q) + F (Q′) = F (Q ;Q′)
= (a|S| − a|X|) + (z|S| − z|Y |)
= Fa,z(Q) + Fa,z(Q′).
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For each i, let τi be the single transition of Gi and let βi be the body type of τi. Let Si

be the species in the decoration of Gi which are neither source nor target species of τi. Then
Gi = Pβi ⊕1Si . In other words, since each Gi is body mope net, it is isomorphic to the monoidal
product of an irreducible body net and an identity mope net. Recall that the canonical irreducible
body nets Pβ are defined in Definition 2.9. By Lemma 4.11 any functor MOPetri → BN agree
on Gi and Pβi

.
Since F and Fβi

are 0 on the identity and Fβi
(Pβi

) = 1 we have,

F (Gi) = F (Pβi
) = F (Pβi

)Fβi
(Pβi

) = F (Pβi
)Fβi

(Gi).

For body types β ̸= βi,
Fβ(Gi) = Fβ(Pβi

) = 0.

Finally, the underlying cospan of Gi is the identity, so Fa,z(Gi) = 0. All together, this implies that
F and Fa,z +

∑
β dβFβ agree on Gi.

■

5 Final Remarks
This paper presents an in-depth study of additive invariants for open Petri nets, conceptualized as a
monoidal functor from a symmetric monoidal cospan category, OPetri, to BN. Our research makes
significant strides in both the development and classification of all N-valued additive invariants.

We have shown that all functors from OPetri to BN are monoidal, and thus additive invariants.
Our study characterizes these invariants for both general open nets in OPetri and the subcategory
MOPetri, which comprises those open Petri nets whose underlying cospan has monomorphic legs.
Further, we found that the additive invariants are completely characterized by their values on
specific classes of Petri nets: for general open Petri nets, the generators are single-transition
nets, whereas for MOPetri, they include both all single-transition and transitionless Petri nets.
In exploring the broader applicability for our main classification theorems, we identify a special
subclass of cancellative monoids, characterized by the unique property that the identity is the sole
element with an inverse.

The classification of these additive invariants relies strongly on key decomposition lemmas for
open Petri nets, which assert that any open Petri net can be canonically factorized, using tensor
or composite operations, into single-transition and transitionless open Petri nets. These Lemmas
are of independent interest given the significant literature on open Petri nets in applied category
theory.

In this study, we focused on the invariants of open Petri nets with the codomain BN. The
classification problem of functors out of OPetri, however seems very challenging in general. Despite
the progress made in this paper, several avenues remain open for future research, particularly in
exploring invariants within different monoids. Investigating invariants beyond numerical values,
such as Z/2-valued of open Petri nets, raises further inquiry into whether such invariants could
provide new insights not captured by N-valued invariants, similar to how Z/2-valued co/homology
invariants in topology reveal aspects not visible in Z-valued invariants.

Furthermore, our exploration of additive invariants confirms their role as compositional seman-
tics for Petri nets. Mass action kinetics, while a highly descriptive invariant on open Petri nets, are
computationally impractical for verification and specification. Conversely the relative simplicity
of the additive invariants presented in this paper, make them particularly practical for developing
domain-specific Petri nets. An additive invariant can represent constraints either imposed by do-
main experts or discovered empirically through real-world applications. The compositional nature
of these invariants is critical for constraint verification and for modularly constructing networks
to fulfill specific constraint requirements. These features are well-suited for integration into the
software packages AlgebraicPetri.jl and Catcolab [6]. Although not currently implemented in full,
we have developed a working prototype. A full implementation would involve (1) a decomposition
for open Petri nets into atomic components and (2) a mechanism to define additive invariants by
assigning values to each atomic net.
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To sum up, this paper promote for a more algebraic and compositional understanding of Petri
nets. It lays the groundwork of valuable theoretical insights with potential applications in computa-
tional biology, computer science, network theory, and systems design with a deeper understanding
of complex systems.
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