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This work introduces a general theory of universal pseudomorphisms and develops their
connection to diagrammatic coherence. The main results give hypotheses under which pseu-
domorphism coherence is equivalent to the coherence theory of strict algebras. Applications
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1 Introduction

The main results of this paper are coherence theorems for pseudomorphisms between algebras over a
2-monad T. For example, T may be the 2-monad for plain, symmetric, or braided monoidal categories.
Coherence theorems for pseudomorphisms are, in these cases, coherence theorems for plain, symmetric,
or braided strong monoidal functors. Our main interest is what we call diagrammatic coherence:
general conditions that guarantee commutativity of (formal) diagrams.

Example 1.1. Consider the following diagram (1.2) for a braided monoidal functor

f: (A7+7ﬂ> - (Alv'vﬁ)v

where A and A’ are braided strict monoidal categories with braid isomorphisms [ and monoidal
products + and -, respectively. The two composites around the diagram apply different combinations
of braidings 8 and monoidal constraints fs.

@)+ f(a) - fla) — L flata)- fa) —L—— F(a)- fa+a)
2| | (12)
fla+a+a) fa+5) fla+a+a) f6+1) fla+a+a)

This diagram satisfies a condition called formal because it is determined entirely by the monoidal
functor and braided monoidal category data of f, A, and A’.

Our diagrammatic coherence determines commutativity of formal diagrams like (1.2) by converting
them to different—often simpler—formal diagrams that do not depend on the structure morphisms fs.
The latter are called dissolution diagrams, and the dissolution diagram for (1.2) is given as follows.
(See Example 15.1 for further explanation.)

(f@). 1@ @) == ( f(@). f(@)., fla) ) 2LDEDIC (40) | f(a). fla))
] o L . I
(@), @), fla) ) = ——— (@, f@). f@))
The composites around the above diagram have the same underlying braid, drawn in the center, and

hence the diagram commutes in the free braided monoidal category on the object f(a). Our main
result, Theorem 1.5, shows that the original diagram (1.2) therefore commutes in A’. o
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In the particular example above, one can also use naturality of fo along with axioms for f and
B to determine commutativity of (1.2) directly. Indeed, every formal diagram for f is amenable to
such an approach. The purpose of the diagrammatic coherence results in this work is to provide a
general theory that eliminates the need to determine, for each diagram, which combination of axioms
is necessary.

General Overview

Suppose X is a 2-category and T is a 2-monad on X. Under the respective hypotheses, our results
reduce coherence for T-algebra pseudomorphisms, such as f in Example 1.1 above, to that of individual
T-algebras, such as the free algebra on f(a) in Example 1.1. Indeed, the conclusions of Theorems 1.5
and 1.9 are that coherence for T-algebra pseudomorphisms is equivalent to that of T-algebras, in the
following sense.

Assuming the hypotheses of Theorems 1.5 and 1.9, each 1-cell

¢:C—C" in X
has an associated T-algebra T(C’, ¢) and a universal pseudomorphism
¢: TC — T(C',9) (1.3)
together with an equivalence of T-algebras
A:T(C,¢) — TC'. (1.4)

The universality of (E and the construction of A are explained in Section 6. _

In the case X = (Cat, the 2-category of small categories, the universality of ¢ gives a notion of
formal diagrams for a T-algebra pseudomorphism f. Then, the equivalence (1.4) means that diagrams
in T(C’, ¢) commute if and only if the corresponding diagrams in TC” commute. Thus, the universality

of ¢ and the equivalence A are the essential technical channels by which the coherence theory for
pseudomorphisms reduces to that of T-algebras.

Main applications

We provide three statements of main results. The first, Theorem 1.5, is the simplest. It is formulated
using overly-broad hypotheses that nevertheless hold in many applications of interest. It follows as
a special case of our third statement, Theorem 1.9 below. Recall that a 2-monad T is finitary if it
preserves all filtered colimits.

Theorem 1.5 (Finitary Pseudomorphism Coherence). Suppose T is a finitary 2-monad on a
2-category K that is both complete and cocomplete. Then T admits universal pseudomorphisms

¢: TC — T(C',¢) for ¢:C— C' in %
such that, for each ¢, the induced strict morphism of T-algebras (6.25)
A:T(C ¢) — TC' (1.6)
is a surjective equivalence in T-Algs (Definition 4.6).

Our second statement of main results, Theorem 1.7, is an application with € = Cat, the 2-category
of small categories. We explain some notation, terminology, and motivation before stating Theo-
rem 1.7. The hypotheses of Theorem 1.5 hold when T is one of the three 2-monads {M#, S& B&} for
plain, symmetric, or braided monoidal structure on categories (Notation 11.1). In this notation, the
superscript g indicates general monoidal structure, in contrast to the strictly associative and unital
structure that we will later discuss. In these cases we have the following:
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e In the plain monoidal case T = M8, an M&-algebra is a monoidal category and a pseudomorphism
is a strong monoidal functor.

e In the symmetric case T = S&, an S8-algebra is a symmetric monoidal category and a pseudo-
morphism is a symmetric strong monoidal functor.

e In the braided case T = B&, a B8-algebra is a braided monoidal category and a pseudomorphism
is a braided strong monoidal functor.

The statement of Theorem 1.7 uses the following terms explained further in Section 10.

o A diagram in a T-algebra X’ is a pair (ID, D) consisting of a small category D and a functor
D 2> X’
in Cat.

o A formal diagram for a pseudomorphism f is a diagram that lifts through a canonical strict
morphism of T-algebras defined in (10.3):

A: T(obX', ¢) — X',
where ¢ = for, denotes the restriction of f to objects.
« Each formal diagram (D, D) for f has a dissolution diagram in the free algebra T(obX"):

D
D 2L T(obx?),

obtained by composing with A (1.6).

The dissolution diagram |D| is generally simpler that the original diagram D. Indeed, for T €
{Meg Se Be} Explanation 14.13 (i) shows that A sends monoidal and unit constraints of f to identi-
ties in T(obX’). Example 1.1 from the beginning of this introduction shows a specific formal diagram
(1.2) followed by its corresponding dissolution diagram.

In general, we have the following by Theorem 1.5.

Theorem 1.7 (Strong Monoidal Functor Coherence). Suppose T is one of the three 2-monads
{M&,Se BE} for plain, symmetric, or braided monoidal structure on X = Cat. Suppose given T-algebras
X and X', together with a T-algebra pseudomorphism

f:X—X
and a diagram
D - X'

If (D, D) is a formal diagram for f such that the dissolution |D| commutes in T(obX’), then the
diagram (D, D) commutes in X'.

The assertions of Theorem 1.7 may be summarized informally as follows.

Slogan 1.8. In the cases T € {M&,S8 B8}, commutativity of formal diagrams for f reduces to checking
commutativity of the simpler dissolution diagrams, in which the monoidal and unit constraints of f
are replaced by identities. o

The definitions of T(obX’, ¢), A, and A explain precisely how such a replacement of monoidal and unit
constraints can be done. We give a variety of detailed examples and further discussion in Sections 15
and 16. The interested reader is invited to skip forward for additional motivation, and then back to
the relevant definitions and constructions as needed.
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Main technical result

Our third statement of main results, Theorem 1.9, is the most general and technical. It identifies
more precisely how the different features of our work rely on a collection of interrelated hypotheses.
In particular, Theorem 1.9 states explicitly how the existence of universal pseudomorphisms ¢ (1.3)
relates to existence of a pseudomorphism classifier Q for the 2-monad T. Sections 4 and 5 review those
aspects of pseudomorphism classifiers that will be necessary in this work.

A pseudomorphism classifier can arise under various hypotheses, e.g., those discussed in [BKP89,
Pow89, Lac02]. One aim of our treatment is to explore the relationship between existence of a pseu-
domorphism classifier Q, however it may arise, and existence of universal pseudomorphisms (}5

The proof of Theorem 1.9 is included here. It combines the essential results from the technical
heart of this work, and serves as a high-level summary. Here, we use the following notation.

e T-Alg and T-Algs denote the 2-categories of T-algebras with pseudomorphisms and strict mor-
phisms, respectively, (Definition 2.15).

e 2 and I denote the small categories consisting of two objects and a single nonidentity morphism,
respectively isomorphism (Notation 3.5).

o For each C € X, we write PC = T(C, 1¢) (Definition 9.5).

Further review of 2-monads, and of the limits and colimits necessary for this work, is given in Sections 2
and 3.

Theorem 1.9 (Pseudomorphism Coherence). Suppose T is a 2-monad on a 2-category X and
suppose that

(1) X admits pseudolimits of 1-cells;
(2) K admits cotensors

(a) of the form {2,C} for C € X and
(b) of the form {I,C} for C € X;

(3) T-Algs admits pushouts; and
(4) T-Algs admits coequalizers of P-free pairs (Definition 9.13).
Then the following two conditions are equivalent.
(A) T admits a pseudomorphism classifier (Q, i,¢,0).
(B) T admits universal pseudomorphisms q~5
Moreover, in this case, the following hold for each T-algebra Y and each 1-cell ¢: C —> C’' in K.
(C) The components {y and dy are part of an adjoint surjective equivalence.

(D) The induced strict morphism of T-algebras (6.25) A: T(C',¢) —> TC' is a surjective equivalence
in T-Alg..

Proof. Theorem 4.10 [BKP89]: Suppose X satisfies (1) and (2a). Then (A) implies (C).

Theorem 7.11: Suppose T-Alg satisfies (3). Then (A) and (C) together imply (B), with T(C’, ¢)
constructed as a pushout (7.5) in T- Algs.

Theorem 8.1: Suppose X satisfies (20). Then (A), (B), and (C) together imply (D).

Theorem 8.9: Alternate proof that (A), (B), and (C) together imply (D), under the assumption that
T(C', ¢) is the pushout (7.5) in T-Algs.

Theorem 9.31: Suppose X satisfies (2a) and T- Algs satisfies (4). Then (B) implies (A). O
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Relation to literature

Our approach via universal pseudomorphisms in Section 6 is based on the approach to coherence
for monoidal functors in [JS93, Theorem 1.7] and for pseudofunctors between bicategories in [Gurl3,
Theorem 2.21]. Our use of pseudomorphism classifiers is motivated by their appearance in the 2-
monadic approaches to coherence in [BKP89, Pow89, Lac02].

It is important to note that this work focuses on pseudomorphism coherence rather than the more
general lax morphism coherence. Certain special cases of the latter are treated in work of Epstein
[Eps66], Lewis [Lew74], and Malkiewich-Ponto [MP22]. These coherence theorems focus on plain and
symmetric monoidal structures, with Malkiewich-Ponto extending to bicategorical applications. The
following example due to Lewis illustrates the potential subtlety of lax morphisms.

Non-Example 1.10 ([Lew74, Pages 5—6]). Suppose given monoidal categories A = (A,-, I) and
A" = (A,., I') with monoidal products denoted « and monoidal units denoted I and I’, respectively.
Suppose f: A —> A’ is a lax monoidal functor. The following diagram in A’ does not necessarily
commute.

[0 P S— 7

= Jf“'l (1.11)

FIy -1 —2 L pye p)

In the above diagram, A and p are the left and right unit isomorphisms for A’ respectively, and fj is
the monoidal unit constraint for f.

For a specific case where (1.11) does not commute, let f be the forgetful functor from the category
of abelian groups A = (46, ®, Z), to the category of sets A’ = (Set, x,1). This functor is lax monoidal,
and the function fy: 1 —> 7Z is given by sending the unique element of 1 to 1 € Z. Then the two
composites around the diagram are given by the functions n — (1,n) for the top/right composite and
n —> (n, 1) for the left/bottom composite. o

Thus, the theory of coherence for lax monoidal functors is not equivalent to that of monoidal categories,
where every formal diagram commutes.

In contrast, our results show that often the coherence for T-algebra pseudomorphisms is equivalent
to that of strict T-algebras. Thus, the context for our work is restricted to pseudomorphisms, but
broadened to a general 2-monad T. Remark 8.14 provides further details on a key step where our
restriction to pseudomorphisms is required.

Our results are related to, but somewhat different from, coherence theorems for pseudoalgebras
such as those of Power [Pow89], Hermida [Her01], and Lack [Lac02]. The latter are formulated to show
that there is a left adjoint to the inclusion

T-Alg, — Ps-T-Alg,

such that the components of the unit are equivalences in Ps-T- Alg. Here, Ps-T- Alg is the 2-category
of pseudoalgebras and pseudomorphisms for T. Such coherence results show that pseudoalgebras and
pseudomorphisms for T can be replaced with equivalent strict algebras and strict morphisms. They
do not directly address the diagrammatic coherence questions that are resolved by Theorem 1.7 for
pseudomorphisms.

Outline

This work is organized into three parts. Part I consists of Sections 2 through 5 and reviews relevant
parts of 2-monad theory. Sections 2 and 3 recall basic definitions, limits, and colimits. Sections 4
and 5 recall essential parts of the theory of pseudomorphism classifiers.
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Part II consists of Sections 6 through 9 and contains the core technical work. The definition of
universal pseudomorphisms ¢ and their basic properties are given in Section 6. Section 7 gives a
construction of T(C’, ¢) as a pushout of a pseudomorphism classifier Q, in the case that T- Algs admits
pushouts. Section 8 proves that A is an equivalence in each of two separate results with slightly different
hypotheses. Section 9 identifies hypotheses under which the existence of universal pseudomorphisms
¢ implies the existence of a pseudomorphism classifier Q.

Part IIT contains applications to diagrammatic coherence for 2-monads over Cat. Section 10 gives
a general definition of formal diagrams for such 2-monads T, and the remaining sections focus on
three special cases for plain, symmetric, and braided monoidal structures. Section 11 recalls the
relevant definitions and the standard coherence theorems in those cases. Section 12 contains a novel
simplification in the symmetric monoidal case. Sections 13 and 14 give detailed explanations of the
abstract constructions from Part II for plain, symmetric, and braided monoidal structures.

Section 15 contains a number of examples that apply the results above to check commutativity of
various diagrams for symmetric and braided strong monoidal functors. Section 16 treats two specific
monoidal functors and a diagram (16.12) that is not simplified by the dissolution approach developed
in this work. Both Sections 15 and 16 have been written to minimize explicit dependence on the
preceding theory, and to be read as independently as possible. Some readers may find it interesting
to read those sections immediately after this introduction, and then follow the references from there
back to the main body as necessary.

Part |: Background

2 2-monads

For basic theory of categories and 2-categories, we refer the reader to [ML98, Lacl0, Gurl3, JY21].

Convention 2.1. Throughout this work, we let X denote a 2-category. We denote 1-cells as
¢p:C—C" or ¢v:D— D

We use a relative dimension convention and denote 2-cells as

¢
Tig—¢ o ¢ 1y ¢
v
¢’ o

Definition 2.2. Suppose X is a 2-category. A 2-monad on X is a triple (T, u,n) consisting of
e a 2-functor T: X — X,
 a 2-natural transformation p: T2 — T, and
e a 2-natural transformation n: 14 — T.

These data are required to make the following unity and associativity diagrams commute.

1
T3 T K T2 1,T n* 1t T2 lr*n Tlg
el e b
T? T T T T
We often write a 2-monad as T, leaving p,n implicit. o

/ﬂ? Compositionality, Volume 7, Issue 3 (2025) 7
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Definition 2.3. Suppose T is a 2-monad on X. A T-algebra is a pair (X, z) consisting of
e an object X € X and
o a structure 1-cell z: TX — X in X

such that the following two diagrams commute.

X T2x — > TX
nxl & Twl Jx (2.4)
X —5— X TX ——— X

Definition 2.5. Suppose (X, z) and (Y,y) are T-algebras for a 2-monad T on X. A T-algebra pseu-
domorphism, or T-map, is a pair

(f, fo): (X,z) — (Y,p)

consisting of
e al-cell f: X — Y in X called the underlying 1-cell and

e an invertible 2-cell f, in X as shown below, called the algebra constraint of f.

Tf
TX TY
xJ f')ég ly (2-6)
X 7 Y

These data are required to satisfy unit and multiplication axioms indicated by the two equalities
of pasting diagrams below. In these diagrams, the unlabeled regions commute because X and Y are
assumed to be T-algebras.

X / Y X / Y
nx ny nx
o 27
TX TY = TX (2.7)
xl fe, ly ly xk 1x ly
X—F—Y X—F—Y
TX z X TX z X

N
N
~

2N N
= Y
TQf\‘ 714, ! % T2f\‘ V

2
Ty TY TY Ty 28)

We often abbreviate the pair (f, fo) as f. We say that f is a strict T-map if fo is an identity 2-cell, so
that (2.6) commutes. We will sometimes say “map” or “strict map” when T is clear from context. ¢

/ﬂ; Compositionality, Volume 7, Issue 3 (2025) 8
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Remark 2.9. In the context of Definition 2.5, let & denote the underlying 1-category of X and let
To denote the monad on % underlying T. Suppose that (X,z) and (Y,y) are T-algebras. Then a
l-cell f: X — Y in X is a strict T-map if and only if f is a morphism of Ty-algebras. o

Remark 2.10. Our terms “T-map”, respectively “strict T-map,” are convenient abbreviations for
what are called pseudo or strong T-morphism, respectively strict T-morphism, in the literature. The
more general notion of lax T-morphism, where f, is not assumed to be invertible, will not be used in
this present work. o

Definition 2.11. Suppose (f, fo) and (g, ge) are two T-maps (X, 2) —> (Y, y) for T-algebras X and
Y in K. A T-algebra 2-cell

a: f—yg
is a 2-cell a: f —> ¢ in X such that the following equality holds.

Tf Tf
/\ /\
TX TY TX {Ta TY
fo ~__ 7
1% — Tg
x Y T Y
f Ge v
X Yo Ty X Y
T T
We will also say that « is an algebra 2-cell when T is clear from context. o

Definition 2.12. The composite of T-maps

f

x 4 x L

X/I
is defined as follows.
¢ The underlying 1-cell of f’ o f is the composite of underlying 1-cells.

o The algebra constraint (f’ o f)e is given by the pasting in %X indicated below.

TX il TY LIS TZ
ml f’@ ly f:)zzv lz (2.13)
X 7 Y I VA
That is,
(f'of)e=(f"*fo) o (fo*Tf). (2.14)
Horizontal and vertical composition of algebra 2-cells is given by that of the underlying 2-category,
X. o

Definition 2.15. Suppose X is a 2-category and T is a 2-monad on %. We use the notations
T-Alg and T-Alg
to denote the 2-categories consisting of

o T-algebras as 0-cells,

/ﬂ? Compositionality, Volume 7, Issue 3 (2025) 9
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e T-maps, respectively strict T-maps, as 1-cells, and
e T-algebra 2-cells as 2-cells.

Because every strict T-map is a T-map with identity algebra constraints, there is an identity-on-objects,
locally full and faithful inclusion denoted

i: T-Alg, —— T-Alg. (2.16)

Moreover, each T-algebra, T-map, or T-algebra 2-cell has an underlying object, 1-cell, or 2-cell in
K, respectively. We let u denote the forgetful 2-functors as indicated in the following diagram, with
u=uoi.

T-Algy—— T-Alg

R / (2.17)
X

<

Convention 2.18. The 2-functor i: T-Algs —— T- Alg (2.16) is the identity on objects, 1-cells, and
2-cells. Therefore, we will sometimes leave i implicit and omit it from the notation. For example, any
time that a strict T-map is composed with a general T-map, there may be an implicit usage of i. ¢
Definition 2.19. In the context of Definition 2.15, we use the notations
T

— >

Y
for the free-forgetful 2-adjunction with left 2-adjoint T and right 2-adjoint u. We let n and ¢ denote,
respectively, the unit and counit of T 4 u. For each T-algebra (X, x),

e the unit component nx is the unit of the T-algebra structure on X and

e the counit component €x is the algebra structure cell z: TX — X. o

Convention 2.21. Beginning here, and throughout the rest of this document, we will write

f: X WY

)

using a zigzag arrow, to denote that f is the 1-cell part of a T-map (f, fo). If fe is known to be an
identity, so that f is a strict T-map, we use a straight arrow and write

fX"Y &>

Remark 2.22 (Uniqueness of mates). The following elementary detail about 2-adjunctions will
be useful below. Suppose given a 2-adjunction

between 2-categories K and 4, with unit 77 and counit . For objects C € X and Y € 4, the isomorphism
of categories

A(LC,Y) — %(C,RY) (2.23)
is given by the right adjoint R and composition or whiskering with 7:
— R
f Jom (2.24)

a— Raxn

where a: f — f/ in A(LC,Y). In particular, if f and g are two l-cells in A(LC,Y) such that
Rfon= Rgomn as l-cells in X, then f and g are equal as 1-cells in X. o

/ﬂ? Compositionality, Volume 7, Issue 3 (2025) 10



Gurski and Johnson Universal pseudomorphisms, with applications to diagrammatic coherence for braided and symmetric monoidal functors

3 Cotensors and coequalizers

Completeness and cocompleteness for 2-categories generally refers to the Cat-enriched sense, meaning
not just conical limits and colimits but also including all small Cat-weighted limits and colimits. The
only non-conical such we will employ, in Sections 6 and 8, is that of a cotensor (also called a power).
Below, we recall their defining property and a key application. For the more general theory of 2-
dimensional limits and colimits, we refer the reader to [Kel89, Bor94].

Later in this section we discuss various coequalizers and their relation to T-algebra structures.
These will be used in Section 9.

Definition 3.1. Suppose X is a 2-category, X is an object of X, and C' is a small category. The
cotensor of C' and X is an object of X, denoted {C, X}, equipped with a 2-natural isomorphism

Cat(Ca K(va)) = K(fa{C’X}) (32)

of 2-functors X°? —> cat. If the cotensor {C, X} exists in X for every object X and every small
category C, we say that X has all cotensors. o

Remark 3.3. If X = T-Algs or X = T-Alg for a 2-monad T on Cat, then {C, X} will be the ordinary
functor category Cat(C,uX) equipped with the pointwise T-algebra structure. o

Notation 3.4. If X is a 2-category, we let Ky denote the underlying category of K. If F': X — L
is a 2-functor, we let Fy: Ko —> L( denote the functor obtained by restricting F' to the underlying
categories. o

Notation 3.5. Welet 2 = {0 —> 1} denote the free arrow category, consisting of two objects and one
non-identity morphism. Similarly, let T = {0 = 1} denote the free isomorphism category, consisting of
two objects and an isomorphism between them. o

Remark 3.6. Most of our work below will depend only on cotensors of the form {2, X} and {I, X'}.
Unpacking Definition 3.1 and Notation 3.5 in these cases gives the following direct descriptions of (3.2)
on 1-cells.

i. 1-cells f: W — {2, X} in X are in bijection with triples (f1, f2, @) where fi, fo: W —> X are
1-cells and «: fi —> fo is a 2-cell in K.

it. 1-cells f: W —> {I, X} in X are described similarly, with a being an isomorphism. o

Recall from (2.17) the forgetful functors u from T-Algs and T-Alg to X and the inclusion i from
T-Algs to T-Alg. We need the following two facts about cotensor products; proofs of both can be
found in [BKP89].

Proposition 3.7.

i. [BKP89, Proposition 2.5] Suppose X is a 2-category, and T is a 2-monad on K. If C is a small
category and K admits all cotensors of the form {C, X}, then so do T-Algs and T-Alg. Moreover,
the inclusion i and both forgetful functors u preserve those cotensors.

it. [BKP89, Proposition 3.1] Suppose 4 and B are 2-categories such that A admits cotensors of
the form {2, X}. Suppose V: 4 —> B is a 2-functor that preserves those cotensors. Then the
underlying functor Vo: Ag — Bg has a left adjoint if and only if V has a left 2-adjoint.

Now we turn to a discussion of various coequalizers and their relation to T-algebra structures.

Definition 3.8 (Split coequalizers and u-split pairs). Suppose C is a category, and u: C —> C’
is a functor.

/ﬂ? Compositionality, Volume 7, Issue 3 (2025) 11
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i. A split coequalizer in C' is a diagram of the form below,

t

/}\ /5\ (3.9)

X Y Z
g h
such that the following equations hold.
hf=nh h =gt
f=hg =Y (3.10)
hs = 1Z ft = 1y

In this case, h is said to be a split coequalizer of f and g.

7. Suppose f,g: X —> Y are parallel arrows in C. This pair is called a u-split pair if there exists
an object Z’ together with morphisms A/, s’, and ¢ in C’ such that

t /
S
T uf N (3.11)
uX uY ; A
ug
is a split coequalizer in C’. o

Remark 3.12 (Split coequalizers are coequalizers). Suppose given a split coequalizer as in (3.9)
and a morphism p: Y —> W such that pf = pg. Then the unique morphism p: Z —> W such that
p = ph is given by the formula

p = ps.

Therefore, h is the coequalizer of f and g. o

Remark 3.13 (Split coequalizers are absolute). Suppose given a split coequalizer in C as in
(3.9), and a functor F': C —> D. Then applying F' to the entire diagram gives a split coequalizer in
D. o

Example 3.14 (The canonical u-split pair for a T-algebra). Suppose T is a monad on a cate-
gory C, and z: TX — X is a T-algebra structure on an object X. Then the pair 1, Tx: T2X — TX
has x: TX —> X as its coequalizer in T- Algs, and is u-split for u the forgetful functor from T- Algs
back to C. An explicit splitting in C, with the forgetful functor u suppressed, is given below.

nrx
nx
LN (3.15)
T2X = TX = X
T

This observation is a key component of Beck’s Monadicity Theorem [Bec67] and related variants. See
[ML98, Section VI.7] and [Riel6, Section 5.5]. ©

We require an analogue of the previous example in the 2-category T-Alg for a 2-monad T on a
2-category X.

Lemma 3.16. Suppose X is a 2-category, and that

PN (3.17)

W Z

X

is a split coequalizer in Ky, the underlying category of K. Then Z is also the Cat-enriched colimit of
the same diagram, meaning it also satisfies the following 2-dimensional universal property.
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2-dimensional universality of split coequalizers: Suppose given 1-cells
p,q: Y — W

such that pf = pg and qf = qg. Letp,q: Z —> W be the unique 1-cells induced by the universal
property of h as the coequalizer of f,g in Ky. Then the functions given by whiskering with h and
5

(=*h): K(Z,W)(P,q) —— K(Y,W)(p,q) : (—*5)

induce inverse bijections between the set of 2-cells a: p —> q and the subset
{a:p—qlaxf=axg} CKY,W)(p,q).

Proof. Suppose a: p —> ¢ such that a* f = ax g. Recall (Remark 3.12) that p = ps and § = ¢s, and
define a: p —> ¢ to be a* s. Then

axh=asxssh=axgt=ax ft=axly =« (3.18)

by the definition of &, the assumption « * f = a * g, and the equations in (3.10). It remains to prove
that « * s is the only 2-cell 5: p —> ¢ such that 5 * h = «. Indeed, if 8 x h = «a, then

B=Bxlyg=pFxhs=ax*s=a. O

Remark 3.19. Note, in the context of Lemma 3.16 above, that the 2-cell
a=ax*xh

is invertible if and only if & is invertible. This follows because the inverse bijection to (—h) is (—*s)
and whiskering preserves invertibility of 2-cells. o

We adopt the following temporary notation to distinguish between the two different versions of u
for a 2-monad T.

Notation 3.20. Suppose T is a 2-monad on a 2-category %K. We write us: T-Algs —> X for the
forgetful functor when considering only the strict T-maps, and u: T- Alg —> % when considering all
T-maps. In this notation, the commutative diagram (2.17) is an equality uo i = u, as 2-functors
T-Algs — X. o

Proposition 3.21. Suppose f,g: (X,2) — (Y,y) is a us-split pair of strict T-maps. Leth: Y — Z
be the split coequalizer of usf,usg in K. Then h is the underlying 1-cell of a strict T-map, also denoted
h, and is the coequalizer in T-Algs of the pair f,g.

Proof. This follows from the analogous standard result for 1-monads, e.g., [Riel6, Proposition 5.4.9],
and Remark 2.9. O

Lemma 3.22. Suppose given f, g, and h as in Proposition 3.21 and suppose given a 1-cell k and a

2-cell ke tn K _ _ _ _
k:Z — W and ke:woTk —Fkoz

for some T-algebra (W, w). Then (E, E.) is a T-map (Z,z) > (W, w) if and only if the composite
(k ko) = (k ko) o h = (ko h, ke + Th) (3.23)

is a T-map (Y, y) w (W, w).
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Proof. If (E, E.) is a T-map, then the composite (E, E.) oh is a T-map. In this case, the composition
formula (2.14) simplifies to the right hand side of (3.23) because h is a strict T-map.

For the reverse implication, let (k, ko) be defined via the formula on the right hand side of (3.23).
Since h is a split coequalizer, recall from Remark 3.13 that Th is too. Therefore, applying Remark 3.19
to Th, invertibility of ke implies that of ks. Now it remains to show that the T-map axioms (2.7)
and (2.8) for (k, ks) imply those for (k, k). This verification uses the hypothesis that h is a split co-
equalizer in X and, separately, the implication that T2h is also a split coequalizer in % by Remark 3.13.
The applications of both of these facts use the 2-dimensional universality from Lemma 3.16.

For the unit axiom (2.7), we must verify that ke * 7z = 1> Note that the source and target of

ke % 1z are both equal to k by naturality of  and the unit axioms for (Z,z) and (W, w), respectively:

zong =1g,

wonwy = lw.
The two-dimensional part of the universal property of the split coequalizer h: Y —> Z (Lemma 3.16)
implies that the 2-cell ko x 117 is an identity if and only if it is the identity 1 after applying — * h.

The following computation uses naturality of 7, the defining equality ke = ke * Th (3.23), and the unit
axiom for (k, k), respectively:

%.*nz*hzg.*Th*ny
:k.*’ﬂy
= 1.

This verifies the unit axiom (2.7) for (k, ks).
For the multiplication axiom (2.8), we must check the equality of pastings below.

ﬂ % %% and

(3.24)

Once again using that h is a split coequalizer, and therefore T2/ is also (Remark 3.13), the desired
equality holds if and only if it holds after applying — * T2h.

Whiskering the left pasting diagram in (3.24) with T2h gives the left diagram below, where the
additional regions commute because h is a strict T-map by Proposition 3.21, k& = kh by definition
(3.23), p is 2-natural, and T is 2-functorial. The equality of pastings is immediate as the only difference
between the diagrams is how commutative regions are displayed.

ya ﬂ% /\ // /X
N\ \” e VA

TZ’V4>TVI W > TW

y Y

The pasting in the diagram at right above is equal to that of the diagram at left below by applying T
to the defining equality ke = ke * Th (3.23). Another application of the same equality shows that the
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two pastings below are equal.

Lastly, the pasting in the diagram at right above is equal to that of the diagram at left below by the
multiplication axiom (2.8) for (k, ke). Equality of the two pastings below holds by another application
of (3.23).

Hy

= k
2 : 7. — WV TE /
Y L L ; Yl L
Tk Tk
Tk Hw w T2k Hw w

oy o — 5
™w Tw ™w ™w Tw ™

The final pasting at right above is the whiskering of the right hand diagram in (3.24) with T2h.

This shows that the two sides of (3.24) are equal after applying — * T?h, and hence completes the
proof that the two pastings in (3.24) are equal. This completes the proof that (E, E.) satisfies the
axioms of a T-map. O

Proposition 3.25. Suppose T is a 2-monad on a 2-category K. The 2-functor i: T-Algs —> T-Alg
sends coequalizers of ug-split pairs to coequalizers of u-split pairs.

Proof. Suppose h: (Y,y) — (Z, z) is the coequalizer in T- Algs of a us-split pair f,g: (X,z) — (Y, y).
Let h': Y —> Z’ be the split coequalizer in X of usf and usg. By Proposition 3.21, A’ is the underlying
1-cell of a strict T-map, so by uniqueness of coequalizers we assume Z’ = Z and h' = ugh.

Thus, there are 1-cells s and ¢ in & such that the following is a split coequalizer in X.

t

T (3.26)
Us(Xam) Usg Us(}/’y) W= US(ZVZ)

We will show that ih is the coequalizer of i f and ig in T- Alg. Since ugs = uo i, the same s and t will
then make if, ig a u-split pair.
To prove that ih is the coequalizer of if and ig in T- Alg, suppose given a T-map

(k ko) : (Yyy) e (W w)

such that
(k,ke)oif = (k,ke) o ig. (3.27)

We will show that there exists a unique T-map

(R, ka): (Z,2) o (W) (3.28)
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such that .
(k,ke) = (k, ko) 0 ih. (3.29)

Applying u to (3.27), we have kf = kg. Since h is the coequalizer of f,g in X, we define k as the
unique 1-cell in X induced by the universal property of the coequalizer. Thus, we have an equality in
X: ~

k=koh. (3.30)

Next we note that, because (3.27) is an equality of T-maps, the two sides have the same algebra
constraints. Recalling the formula (2.14) for algebra constraints of a composite, we have

kex Tf=kexTyg (3.31)

because both f and g are strict T-maps. The algebra constraint ke is shown in the rectangle below,
where each of the triangles commutes by the equality (3.30).

TZ -
TY S ™W
yk Fay lw (3.32)
Y - W

h\x 7 /Ey

Since h is a strict T-map, we have z o Th = h o y and, therefore, ko has target

kohoy=rkozoTh. (3.33)

Since h is a split coequalizer in X, so is Th by Remark 3.13. Therefore, by Lemma 3.16, Th satisfies
an additional two-dimensional aspect to its universal property: the whiskering function —*Th induces
an isomorphism between the set of 2-cells K(TZ, W)(w o Tk, k o z) and the subset

S = {a: onEoThH%oonh|o¢*Tf:a*Tg}
C K(TY,W)(woTkoTh,kozoTh).

Combining (3.31) through (3.33) shows that the algebra constraint ke is a member of the subset
S. Therefore, by the two-dimensional aspect of the universal property for Th, there is a unique 2-cell
in X - ~ ~

ke:woTk — koz

such that _
ke = ke x Th. (3.34)

Since (k, ke ) is a T-map, the equalities (3.30) and (3.34) imply, by Lemma 3.22, that (E, E.) is a T-map.
The calculation above verifies that there is a unique T-map (k, ko) such that

(k. ko) = (K, ko) 0 ih.

This completes the proof that ih is the coequalizer of i f and ig, as desired. O
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4 Pseudomorphism classifiers
For many 2-monads T of interest, the inclusion (2.16)
i T-Alg, —— T-Alg

has a left 2-adjoint. In such cases, the left 2-adjoint can be used to develop strictification and coherence
results, as we will do in Section 7.

This section and the next recall the basic terminology and related properties. Much of this content
comes from [BKP89], and we refer the reader there for further development. Examples, in the special
case of monads that encode strict monoidal structures, are explained in Section 13.

Definition 4.1 (Pseudomorphism Classifier). Suppose given a 2-monad T on a 2-category X. A
pseudomorphism classifier for T is a left 2-adjoint Q 4 i as shown below.

Q
T-Alg _ L T-Alg (4.2)
i
The unit ¢: 1 —> iQ has components that are T-maps
(x: X w iQX for X € T-Alg.

The counit §: Qi —> 1 has components that are strict T-maps

oy : QiY — Y for Y € T-Algs. o

The unit and counit of a pseudomorphism classifier Q satisfy triangle identities that lead to a
2-natural isomorphism of categories

T-Alg (QX,Y) = T-Alg(X, 1Y)

for every pair of T-algebras X and Y. This is the standard translation between the hom-set and
unit/counit expressions for an adjunction. In this context, we use the following notation.

Definition 4.3. For each T-map f: X > iY let f-: QX — Y be the strict T-map that is the
mate of f. Thus, f factors uniquely as follows.

QX : Y (4 4)
ot
X

&

Remark 4.5. The triangle identities for Q - i consist of the following equalities for each Y € T-Alg
and X € T-Algs:

idy o CiY =1,y and (SQx OQCX = le.
Thus, omitting the inclusion i, as discussed in Convention 2.18, we have dy (y = 1y for each T-algebra
Y.

The composite (ydy is generally not equal to 1y, but it often has other useful structure. This
additional structure is described in Definition 4.6 and Theorem 4.10 below. o

We will use the following terminology in the 2-categories 4 = T- Alg and 4 = T- Algs.
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Definition 4.6. Suppose given a pair of 1-cells
(:Y—Z and §:Z —Y
in a 2-category 4.
Surjective equivalence: We say that (,d) is a surjective equivalence in 4 if § is a retraction, so
that ¢ = 1y, and there is 2-cell isomorphism
0:(6 —>1; in 4

Thus, (¢, ) is a surjective equivalence in 4 if and only if there is a 2-cell isomorphism © such
that (¢,d,11,.,0) is an internal equivalence in 4. We say that ¢ is a surjective equivalence if it
has a section ¢ such that ({,d) is a surjective equivalence.

Adjoint surjective equivalence: We say that ((,0,0) is an adjoint surjective equivalence if ({,0)
is a surjective equivalence with ©: (6 = 1 such that © x ( = 1¢. Thus, ((,6,0) is an adjoint
surjective equivalence if and only if (¢,d,11,.,©) is an internal adjoint equivalence in 4. o

Definition 4.7. Suppose T has a pseudomorphism classifier (Q, i, (,d). We say that (Q, i) is effective
if, for each T-algebra Y, there is a T-algebra 2-cell isomorphism

O: (yoy — loy

such that (Cy, dy,©) is an adjoint surjective equivalence in T-Alg. In this case, © is sometimes called
the efficacy of (Q,1). S

Theorem 4.8 ([BKP89, Theorem 3.13]). Suppose that X is a complete and cocomplete 2-category
and suppose that T is a finitary monad on XK. Then T has a pseudomorphism classifier.

Remark 4.9. The hypotheses of Theorem 4.8 are convenient, but not necessary. See [BKP89, Re-
mark 3.14] for a discussion of the completeness hypothesis. The results of Power [Pow89] and Lack
[Lac02] give an alternate approach under varying hypotheses, studying a more general coherence for
pseudo-algebras. Remark 13.19 below discusses aspects of their work in relation to the applications in
Section 13. o

Theorem 4.10 ([BKP89, Theorem 4.2]). Suppose T is a 2-monad on a 2-category X and suppose
that K admits pseudolimits of 1-cells. If T has a pseudomorphism classifier (Q,1i,(,d) then it is an
effective pseudomorphism classifier in the sense of Definition 4.7.

Remark 4.11. We note that even though dy in Definition 4.7 and Theorem 4.10 is a strict T-map,
it is not guaranteed to have a strict T-map for a pseudoinverse, a condition that would make Jy an
equivalence in T-Algs. When there is a strict T-map that is pseudoinverse to §, then Y is said to be
a flexible T-algebra. While the full theory of flexible algebras will not be necessary in this work, we
will use several results related to flexibility of free algebras from [BKP89, Section 4]. These results are
described in Section 5. o

5 Effective pseudomorphism classifiers

Throughout this section we suppose that T has an effective pseudomorphism classifier (Q, i,¢,d) in
the sense of Definition 4.7. So, for each T-algebra Y there is a T-algebra 2-cell isomorphism

O: Cy(Sy i’ le
such that the following equalities hold, making (Cy,dy, ©) an adjoint surjective equivalence in T- Alg:
5y<y = ].y and © x Cy = 1gy. (51)

In this section, we prove a number of elementary properties that will be used in Sections 7 and 8.
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Lemma 5.2. Suppose C' is an object of K. There is a strict T-map
Go: TC — QTC

together with an isomorphism
0": (odre — lqre

such that ((%C, ore, @b) is an adjoint surjective equivalence in T-Algs.
Proof. Consider the composite
1 yTo —S wiQTC (5.3)

and define (%C as the indicated composite in the following diagram.

Gre .
TC iQTC

T?]c\A Tu¢re /E:QTC o

TuTC ——— > TuiQTC

That is, ¢} is the mate of (5.3) under the adjunction T 4 u (2.20). For the remainder of this proof,
we omit the subscripts TC on dt¢, (t¢, and C%C.

Next we consider the composite 6¢”. Using the definition of ¢” in (5.4), naturality of e with respect
to the strict T-map § gives the first equality below. The second follows from 2-functoriality of uT, the
left hand side of (5.1) with Y = TC, and a triangle identity for n and e.

6¢" = ere o (Tud) o (Tu¢) o (Tne) = l1e. (5.5)

Next, define
=0« ¢ ¢ (5.6)
as shown in the following diagram. Here and below, we omit the notation i, as discussed in Conven-

tion 2.18.
&

NN

TC———— QTC

The T-algebra 2-cell isomorphism I'¢ has the following two properties.
1. The following diagram commutes in %.

c—"X ,.TC

ncl Jue (5.7)
JTC —— uQTC

This holds by definition of ¢* as the mate of u¢ on¢ (5.3). Let x denote the two equal composites
n (5.7):
X = u¢onc =u¢’ onc. (5.8)
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it. The whiskering ul'¢ * n¢ is equal to the identity 2-cell in K of the 1-cell x (5.8). This follows
from the definition of I'¢ (5.6), the commutativity of (5.7), and the right hand side of (5.1):

ul¢ *ne = uO * (¢’ one)
=uO x (Cone) (5.9)
=1l¢xnc =1,.
Now we define N
0 =00 (I';'%8) =00 (07" *(¢’): ("6 — lqrc
as shown in the following diagram.

b

\ o,

5 (5.10)
\%C\k
Using the definition of ©” and (5.5), we have
0 x" = (0% 0 (071 % (¢"6¢"))
= (@ * (b) o (@71 * Cb)
== 1cb .
This completes the proof that (¢”,8,0°) is an adjoint surjective equivalence in T- Algs. O

Remark 5.11. Recalling Remark 4.11, the conclusion of Lemma 5.2 implies that each free T-algebra
TC' is flexible. Beyond this, it identifies the adjoint surjective equivalence (C#C, 51c, ©%) that will be
necessary in Sections 7 and 8 below. Moreover, Lemma 5.12 makes use of I'c and the two properties
noted in (5.7) and (5.9). o

Lemma 5.12. Suppose given an object C € K and a T-algebra Y together with a T-map
: TC > Y.

Then there is a unique pair (wb,Fw consisting of a strict T-map 1 together with an invertible T-
algebra 2-cell T'y,

W TC —Y and Ty:vp — o
such that the following statements hold.

i. The following diagram commutes in X;

nc

C uTC
ncl luw" (5.13)
uy
uTC —w— Y

let xy denote either of the two equal composites in (5.13):

Xy = uh o e = ug’ o ne. (5.14)
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it. The whiskering ul'y, * nc is equal to the identity 2-cell in K of the 1-cell xy (5.14).

Proof. In the case Y = QTC and ¢ = (v¢: TC w> QTC, the proof of Lemma 5.2 defines C%C and
I'¢;e in (5.4) and (5.6). The desired conditions are (5.7) and (5.9).

For general ¢: TC' #> Y let ¢+ : QTC — Y be the strict T-map factoring 1, as in (4.4). This
provides the commutative triangle at right in the diagram below.

1
iQTC id Y
b <_‘<TC>CTC
CTC = P
TC

W =y¢tolie and Ty =t *Te.

Thus, I'y, provides a T-algebra 2-cell isomorphism

We now define

Y= Pt —m— PG =

as desired. The required conditions for " and I'y now follow from the corresponding ones for ¢ * and
I'¢in (5.7) and (5.9):

(u”) ne = (uvh) (u¢’) ne (ul'y) *ne = (uph) * (ul¢re ) *ne
= (upt) (u¢) ne and = (upt) = 1,
= (m/}) Ulej = 1x,¢,a

where x and x, are the composites in (5.8) and (5.14), respectively. This completes the proof. O

Part Il: Universal pseudomorphisms

6 Universal pseudomorphisms
In this section we provide the definition and basic properties of universal pseudomorphisms
¢: TC — T(C', )

for 1-cells ¢: C —> C”" in K. Recall from Notation 3.5 that 2 = {0 — 1} denotes the free arrow
category.

Definition 6.1. Suppose T = (T, u,n) is a 2-monad on a 2-category X. Recall the free/forgetful
adjunction T < u from (2.20).

Arrow category: The arrow category of X is denoted X2. Its objects are l-cells ¢: C — C’ in
K and its morphisms (R, S): ¢ —> 1 are pairs of 1-cells such that )R = S¢ in X, as in the
diagram at left in (6.2) below.

Strict arrow category of T-maps: The strict arrow category of T-maps is denoted T-Alg®*. Its
objects are T-maps f: X -#> X’ in T-Alg and its morphisms (j, k): f —> ¢ are pairs of strict
T-maps such that jf = gk in T-Alg, as in the diagram at right in (6.2) below.
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k]

The forgetful u: T-Alg —> X induces a functor on arrow categories that we also denote

u: T-Alg®* — «2. (6.3)
<&

Remark 6.4. Both %2 and T- Alg®* are the underlying 1-categories of 2-categories, with 2-cells given
by pairs of 2-cells in K and T- Algs,
T,): (R,S) — (R,S) and (e,7): (,k) — (5", K),
respectively, that satisfy equalities as in (6.2):
Qxp=1v+« and yxf=g=xa.

Most of our discussion below will restrict to the underlying 1-categories as written in Definition 6.1,
but we will refer to the ambient 2-categories using the same notation in Lemma 6.19 below. o

Definition 6.5. In the context of Definition 6.1, we say that T admits universal pseudomorphisms if,
for each 1-cell
¢p:C — C" in K

there is a T-algebra T(C’, ¢) and T-map

¢: TC > T(C',¢) in T-Alg (6.6)
together with a unit morphism in %2

Moy ke): ¢ — up in %, (6.7)

where 7 is the unit structure transformation of T = (T, u,n), such that the following holds.

Universal property: For each T-map f: X -w> Y there is a bijection of sets

T-Alg™* (6, f) — K* (¢, uf) (6.8)
induced by u and composition with (n¢c, kg).
In this case, we say that 5: TC -w> T(C', ¢) is the universal pseudomorphism for ¢. S

Remark 6.9. In the context of Definition 6.5, the universal property (6.8) is equivalent to the fol-
lowing. For each f: X w> X’ in T-Alg and each pair of 1-cells R and S such that (R,S): ¢ — uf
in %%, there are unique strict T-maps R and S so that (R, S): qg —> fin T-Alg®* and the diagram
below commutes in X.

C ¢ !
WA ,‘%/
Rl uTC— uT(C, 9) s (6.10)
uR - ~_u
! EIEN
uX o uX’

Observe that uniqueness and commutativity of the triangle at left above implies that R depends only
on R. In contrast, S depends on both S and ¢. o
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Remark 6.11. For a universal pseudomorphism 5, the bijection of sets (6.8) implies a certain 1-
categorical adjunction that we explain in Lemma 6.14 below. Then, Lemma 6.19 shows, under mild
additional hypotheses, that the adjunction extends to a 2-adjunction. However, as we explain further
in Remark 6.20, such an extension is (a) not needed for this work and (b) more difficult to verify in
practice. These are the reasons that the universal property (6.8) is defined as a mere bijection of sets.c

Notation 6.12. In the context of Definition 6.5 and Remark 6.9, the mate of k, under the adjunction
T - u is denoted « and is uniquely determined such that the following commutes.

c’ e uT(C', 9) 13
nC\A /uvl-c ( . )
uTC’

<

Recall from Definition 2.19 that 1 and € denote, respectively, the unit and counit of the adjunction
T A u.

Lemma 6.14. Suppose

e C,C' are objects of K,

e ¢: C —> C' is an object of X2,

e X, X' are objects of T-Alg, and

e f: X —w> X' is an object of T-Alg™*.
In the context of Definition 6.5, the assignment

6— o

is functorial with respect to morphisms in K2 and is left adjoint to the forgetful u: T-Alg™® — %2
from (6.3). The unit and counit of the adjunction (—) 4 u are given, respectively, by

Ny = (Mo, kg) and & = (ex, Luxr). (6.15)
Proof. First we define (;/) on morphisms of X%. Suppose that
(R7 S) ¢ —

is a morphism of %%, where

¢:C— C', :D— D,

R:C— D, and S:C' — D'
are 1-cells of K. Recall from (6.7) the unit morphisms for ¢ and ¢ are

(ncskig): ¢ — ¢ and  (np.ky): ¥ — 9.

We now use the universal property (6.8) of (f;l)7 in the form described in Remark 6.9. Composition
in %2 yields the outer vertical morphisms in the diagram below, and the universal property gives the
two dashed extensions such that the diagram commutes in X.

C ¢ c’
R b S
TO W T e (6.16)
u(mpR) -~ ~o_u(kyS)
D Ty 3~ D
nDi L/// U{E \\\ i«ﬁlb
uTD uT(D’, )
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By uniqueness, we have nR = TR. Thus, (/:5 is defined on morphisms by
R= npR=TR and S = Ky S.

Uniqueness shows that this assignment is functorial, and commutativity of the triangles at left and
right of (6.16) shows that the components (¢, ky) define a natural transformation

lgz —> u(—).
This justifies the name unit for (nc, ke) in Definition 6.5 and we define

ng = (Mo, Kg)-

If f: X » X’ is a T-map, we define the counit component

gf = (Z-Zx, luX/).

Naturality of & with respect to morphisms (j,k): f — g in T- Alg*™* follows from uniqueness in the
universal property (6.8).
The triangle identities for n and ¢ follow from the definitions and the triangle identities for n and

€. This completes the proof that there is an adjunction (—) 4 u with unit and counit given by (6.15).00
Definition 6.17. Define the source functors

s: X2 — K and s: T-Alg®>® — T-Alg,
by the assignments

s(¢) =

C
S(f) X S(]vk) =]

where

¢:C—C", (RS —1
are 0-, respectively 1-cells in &%, and
frX e X' (k) f g
are O-, respectively 1-cells in T- Alg®*. o
The next result follows from Lemma 6.14 along with Definitions 6.1, 6.5, and 6.17.

Proposition 6.18. In the context of Definition 6.5, the following diagram of adjunctions serially
commutes.
T-Alg®® ———— T-Alg,

(=) Ju T{A|u

2

X X

That is, the following equalities hold:

su =us s(=)=Ts

Sk =nN%s SkE =€ *s.
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For the next result, we let %2 and T-Alg®® denote the ambient 2-categories, as described in
Remark 6.4. The following 2-dimensional extension is included for completeness and context, but will
not be necessary in our further work; Remark 6.20 gives further explanation.

Lemma 6.19. In the context of Definition 6.5, suppose furthermore that K admits cotensors of the
form {2,—}. Then the adjunction (=) 4 u of Lemma 6.14 extends to a 2-adjunction.

Proof. The hypothesis that X admits cotensors {2, —} implies, by Proposition 3.7 (7) that T- Alg and
T- Algs both admit those cotensors and that the functors i and u preserve them. The cotensors {2, —}

in & induce the cotensors {2, —} in %* pointwise, and the cotensors {2, —} in T- Alg and T- Alg, induce
the cotensors {2, —} in T- Alg®*® pointwise. Moreover, u: T- Alg®* —> %2 preserves those cotensors.

Therefore, by Proposition 3.7 (ii), the universal pseudomorphism functor (—) extends uniquely to a
left 2-adjoint of u. O

Remark 6.20. As written in Definition 6.5, the universal property of a universal pseudomorphism is
a 1-categorical property. The 2-categorical extension that appears in Lemma 6.19 is not needed for any
of our work below. It does not appear to simplify any of the proofs of the results used in Theorem 1.9.
Furthermore, the 1-categorical version is simpler to verify in cases where one proves that a 2-monad
has universal pseudomorphisms. This occurs, for example, in the proof of Theorem 7.11. o

Recall from Notation 3.5 that I denotes the category consisting of two objects and an isomorphism
between them. The following is a generalization of [Gurl3, Lemma 2.22].

Lemma 6.21. Suppose that T is a 2-monad on a 2-category K. Suppose that T admits universal
pseudomorphisms (Definition 6.5) and suppose given C,C" € X and X, X' € T-Alg together with

¢p:C — C' in X,

R:C —uX in X,

B:8 — Sy in K(C',uX'), and
a: fi — fo in T-Alg(X, X")

as shown at left in (6.22) below, such that

B*¢=(ua)* R.

¢ , ¢ ,
C C TC ——w—— T(C', ¢)
R ; si( £ s R S 2 Ss (6.22)

u f
uX/UNL;\‘ X' X/Nifa\‘ /

u
ufo 2

Then the following statements hold.

i. If K admits cotensors of the form {2, —}, then there is a unique T-algebra 2-cell B: S —> S»
at right in (6.22) such that

Bx¢=axR.

Here, fori=1,2, -
(R,S:): ¢ — fi

is the pair of unique strict T-maps determined by the universal property (6.8) of 5
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i. If X admits cotensors of the form {L, -}, and if a and B are invertible, then there is a unique
T-algebra 2-cell 5 as above, and B is invertible.

Proof. We begin with the first assertion. Recalling Proposition 3.7 (4), the assumption that X admits
cotensors {2, —} implies the same for both T-Algs and T-Alg. Furthermore, the inclusion i and the
forgetful functors u preserve those cotensors.

Using the fact that u preserves cotensor products and unpacking the definition of cotensors for
{2, X'}, as in Remark 3.6, the diagrams in (6.22) correspond to the diagrams in (6.23) below, with
F and uF corresponding, respectively, to the triples (fi, f2, @) and (ufi,ufs, ua). Likewise, S and S
correspond, respectively, to the triples (51,52, 3) and (S1, S2, 3).

c— e TC —h T(C',0)
Rl |s El Is (6.23)
uX — 12 ux) X —h— {2, X"}

With this reformulation, the assertion (¢) follows by applying the universal property (6.16) to (R, S)
at left in (6.23): there is a unique morphism (R, S): ¢ w> F in T- Alg™*, at right in (6.23), such that

(R,S)=u(R,S)o (ncs ke)-

Unpacking the above equation, via Remark 3.6 and a similar description of 2-cells in (3.2), yields the
data (57,52, 5) at right in (6.22) satisfying the desired equations. Using cotensors with the category
I={0=1} instead of 2 yields the second assertion, in which all of the 2-cells are invertible. O

Definition 6.24. Suppose T is a 2-monad on X that admits universal pseudomorphisms. For each
1-cell ¢: C —> C’ in X, define a strict T-map

A=7nc:T(C ¢) — TC' (6.25)
as follows. The unit 1 defines a morphism

(ncyner): ¢ — uTé in K%

Therefore, by the universal property (6.8) there is a unique morphism (g, 7jc7) in T- Alg®* as shown
in the diagram below. By uniqueness, n¢ is the identity 17¢.
C 0 c’
w\ AV
nc , _uTC — W uT(C’, ) ner (6.26)
I~ |
/’//Un?:1 A = 7/\\\\
< T e S

uTC uTC’

Define A = 7¢7. o

7 Universal pseudomorphisms via pushouts

Throughout Sections 7 and 8, T is assumed to have an effective pseudomorphism classifier (Defini-
tion 4.7). The goal of this section is to show that universal pseudomorphisms for T (Definition 6.5)
can be constructed as pushouts in T- Algs. In Section 14 we explain applications in the case that T is
one of the 2-monads for strict monoidal structures (Notation 11.1).
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Definition 7.1. Suppose T is a 2-monad on a 2-category X such that T has an effective pseudomor-
phism classifier and T- Algs admits pushouts. For each 1-cell ¢: C —> C’ in X, define a T-algebra
T(C’, ¢) together with

e a T-map ¢: TC - T(C', $) and
o alcell ky: ¢ — uT(C’,¢) in X.

as follows.
The unit of (4.2) is a T-map
(ro: TC w> iQTC. (7.2)
By Lemma 5.12, (t¢ is isomorphic to a unique strict T-map
¢ TC — iQTC (7.3)
such that the diagram below commutes.
c—" 1O

ncl lugb (7.4)
ucrc .
uTC —w— uiQTC

Define T(C’, ¢) as the pushout in T- Algs of ¢ > and T¢, with structure morphisms $ and x as shown
in the square below.

T¢
TC TC!
Cbl R l”“ (7.5)
1QTC —2 . T(C", 9)

Moreover, define 5 and k4 by the following composites in T- Alg and X, respectively.

TO — S T(C4) O —2 T, 9)

C;%\ /A 770’\A /uYf-c (7'6)

iQTC 0 e

This completes the definition of
¢: TC — T(C',¢) in T-Alg

and the unit _
(e, ke): & — up in %K.
We show that these satisfy the universal property (6.8) in Theorem 7.11 below. o

In the following, we use Convention 2.18 and implicitly apply the inclusion i to compose a general
T-map with a strict one.

Lemma 7.7. In the context of Definition 7.1, suppose given
e aT-map f: X w> X' in T-Alg,
e I-cells R: C — uX and S: C' — uX' in X, and
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e strict T-maps

such that, for eachi=1,2,
Si¢=fR:TC— X' in T-Alg (7.8)

and the following diagram commutes in X.

C 0 C’
w‘ ljd)/
Rl _ uTe = uT(C ) s (7.9)
> X
uX ik ux’
Then S1 =S5 in T-Algs.
Proof. To use the universal property of the pushout (7.5) defining T(C’, ¢), we will show
glli = ?2:‘1 and glgg = gg(g (710)

For the first of these, we obtain
u(?m) oncr =8 = U(ggﬁ) o Ner

using 2-functoriality of u, the definition k4 = uk o ncr from (7.6), and commutativity of the triangle
at right in (7.9). Then the uniqueness of mates noted in Remark 2.22 implies that Sk = Sak.
For the second desired equality in (7.10), we obtain

(31@ oCrc =fR= (Ez@ o(rc

using the associativity of 1-cell composition, the definition (E = $(TC in (7.6), and the hypothesis (7.8).
Then uniqueness of mates, for the adjunction (Q, i,¢,d), implies that S1¢ = So¢. The result S; = S
then follows from the universal property of the pushout (7.5). O

Theorem 7.11. In the context of Definition 7.1, the pushouts T(C',¢) in (7.5) determine universal
pseudomorphisms for T.

Proof. We show that ¢ and Kg, as defined in (7.6), satisfy the universal property (6.8) for each 1-cell
¢p:C — C" in K

and each T-map
f: X w X" in T-Alg.

For this purpose, suppose given 1-cells R and S in X as in the outer diagram (7.12) below. Following
Remark 6.9, we will show that there are unique strict T-maps R and S such that

S¢=fR: TC w X' in T-Alg
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and the following diagram commutes in %.

C ¢ c’
w* ’fd:/
R TTC — s UT(C, ) s (7.12)
ulR - ~_u
/’/ 3 =[N
uX W ux’

Recall from Definition 2.3 that z: TX —> X denotes the T-algebra structure 1-cell for X. We
define
R=20TR:TC — X in T-Alg

and note that each of the following diagrams commutes by naturality of  and the unit condition (2.4)

for X.
R

c uX c’ ux’

1,x/
nc nxl Lx ner nx'[ X (7.13)
uTo —YUTE xSy uTer — 5 xSy

T~ &
The diagram at left above shows that the triangle at left in (7.12) commutes. Uniqueness of R follows
from the uniqueness of mates noted in Remark 2.22.

Next, the strict T-map S will be defined using the universal property of the pushout (7.5). Consider
the following diagram in X, explained below.

C ¢ c’
Nicr
nc
T
ne uTC uTe uTC’ <
UCbl uTsS
JTC —5C s wiQTC * uTX’ (7.14)
R \ lux/
uiQR
uTR N UiQX T uX/
uR uf
ugx% uf
uTX 0z uX

In the above diagram, the two upper-left quadrilateral regions commute by (7.4) and naturality of 7,
respectively. The lower left triangle commutes by definition of R in (7.13). In the lower right triangle,
f* is the strict mate of f in (4.4) and hence the triangle commutes by definition. The lower trapezoid
region commutes by naturality of ¢, and the two outer regions commute by (7.13). The outer diagram
commutes by the hypothesis uf o R =50 ¢ in (7.12).

Referring to the region x in (7.14) above, let

hi=fYo(QR)o¢” and hy=21'o(TS)o(Te).
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The above argument, together with 2-functoriality of u, shows that uhy o ne¢ = uhg o ne. Therefore,
because hy; and hs are strict T-maps, we conclude hy = ho by the uniqueness of mates noted in
Remark 2.22.

The strict T-maps hi and hy are the two composites around the boundary of the diagram in T- Algg
shown below. Since these are equal, there is a unique strict T-map S induced by the universal property
of the pushout (7.5).

.
TC ¢ TC!
Cva Ki N
¢ ) , 7.15
QTC T(C', $) TX (7.15)
3 p
QR a s
QXTX/

The construction of S then shows the following two equalities required for S. First, using the
definition ¢ = ¢(t¢ in (7.6), the lower left parallelogram in (7.15), naturality of ¢, and the equality
f+¢c = f in (4.4), we have

S¢=So¢rc
= [T (QR) ¢reo
=f"¢xR
=fR.

Second, using the definition k¢ = ukones from (7.6), 2-functoriality of u, the lower right parallelogram
in (7.15), and the equality S = (uz’) o (uTS) o e from the diagram at right in (7.13), we have

This completes the construction of S and the proof that it satisfies the required equalities. Unique-
ness of S is proved in Lemma 7.7. This completes the proof. O
8 The equivalence A

In this section we assume that
o T has an effective pseudomorphism classifier (Definition 4.7) and
o T admits universal pseudomorphisms (Definition 6.5).

This section contains two results showing that the canonical comparison (6.25)
A:T(C ¢) — TC'

is a surjective equivalence in T- Algs. Its inverse is the strict T-map in Notation 6.12
k: TC! — T(C', ¢),

defined as the mate of ky: C' —> uT(C’, ).
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Theorem 8.1. Suppose T is a 2-monad on X that admits an effective pseudomorphism classifier
(Q,1,¢,0) and universal pseudomorphisms ¢. Suppose, moreover, that X admits cotensors of the form
{I, —}. Then the strict T-map

A=nc:T(C' ¢) — TC'

in (6.25) is a surjective equivalence in T-Algs with inverse
k: TC' — T(C', ¢)
in (6.13).
Proof. This argument consists of the following two steps.
1. Show that Ak = 11¢-.

71. Define an invertible T-algebra 2-cell
BZ HA = 1T(C’,¢)-

To begin, recall k4 from (6.7) is part of the unit morphism for 5 The strict T-map & is uniquely
determined such that the outer triangle of the following diagram commutes in %.

' e uT(C", §)

nc\A U% ®2)

uTC’

The definition of A (6.26) implies that the inner triangle above also commutes in %. Together these
give the following equalities:

Ncr = UA o Ky
= uAoukong
=u(Aok)ong.

Since A and k are both strict T-maps, the uniqueness of mates (Remark 2.22) implies
Aok = ITC’ (83)

as desired.
Now we give the construction of 5. By hypothesis, there is a T-map (6.6)

¢: TC -w> T(C',¢) in T-Alg
satisfying the universal property (6.8). Applying Lemma 5.12 gives an isomorphism
Tig— & (8.4)

such that ul" * o = 1. Now consider the following computation, beginning with Lemma 5.12 () and
continuing with the indicated justifications.

U@’ 0 = u o e
=HKpO@ by (6.10) top

=ukong o by (8.2) (8.5)
ukouTgponc by naturality of n

u(k o Tg)one by functoriality of u
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Hence, uniqueness of mates implies
¢ =roTo. (8.6)

The equalities ~ ~
ug’ 0 1c = ug e = iy 0 ¢

in (8.5) also show that (nc,#s) defines a morphism in X? from ¢ to u@’. Applying the universal
property of ¢ (6.8) determines a morphism (1,7%g) in T-Alg>*, as shown in the following diagram.

C 0 !
e O — T 9) Ko (8.7)
1 .- - S~ URg
oo A 3o
© Ug)’b 2 ,
UTC UT(C 7¢)
Now observe that the outer diagram above can also be filled as below.
O ¢ Cl
ug ,
ne uTC —w—— uT(C’, 9) Ner Ko (8.8)
3 uTé ual )
7 TC uk
©o.....———u
uTcC > E— uT(C", ¢)
u

The triangles at right and bottom commute by (8.2) and (8.6), respectively. The remaining interior is
that of (6.26) defining A. By universality of ¢, (6.8), we conclude

koA =FRg.

Finally, we use the hypothesis that % admits cotensors of the form {I, —} and apply Lemma 6.21 (i)
to the diagram at left below, where 3 is the identity 2-cell of k4. This application yields a 2-cell 3 as
shown in the diagram at right below.

C ¢ c’ TC ———— T(C, )
Ui K¢ :ﬂ> K¢ 1 . 1 :ﬂ> %
ugp o
/Nv-\ ,
IO ruT(C9) TC\EF/yT(C,@
ug’ &

Since I is an isomorphism and 3 = 1, the resulting /3 is an invertible T-algebra 2-cell

This completes the proof that A and k are inverse equivalences in T- Algs. O
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Theorem 8.9. Suppose T is a 2-monad on X that admits an effective pseudomorphism classifier
(Q,1,¢,0) and universal pseudomorphisms ¢. If T(C', §) is constructed as the pushout (7.5) in T-Algs,
then

A=nc:T(C' ¢) — TC'

in (6.25) is an adjoint surjective equivalence in T-Algs.

Proof. Consider the following diagram, where the upper square is the pushout (7.5) and w is described
below.

¢ — 1 1o
¢ - lff
1QTC —2 . T(C", 9)
5 (8.10)
T ¢
Cb
iQTC T(C', )

Here, (¢°,0,0°) is the adjoint surjective equivalence of Lemmas 5.2 and 5.12, with ¢ = ¢ in the latter.
In particular, we have
8 =1tc and ©° % =1n. (8.11)

The left hand side of (8.11) implies that the two solid arrow composites from TC in the upper left to
the lower right instance of TC” in (8.10) are equal. Hence, we define w as the induced strict T-map out
of the pushout T(C’, ¢), indicated by the dashed arrow in (8.10). Note that wk = 1 by construction.

~

Next, whiskering ¢ with the isomorphism ©” gives an isomorphism

~ ~ A* b ~ ~ ~
hwb = 305 L & with ($x0°) x (= dxlp =13, (8.12)

by the right hand side of (8.11) and the left hand side of (7.6). Thus, the two-dimensional aspect of
the pushout implies that there is an isomorphism

U: Kw — 1T(C’,¢)

such that &S\*W:@b*aandﬁl*mzlm.
_ This shows that (k,w, V) is an adjoint surjective equivalence in T-Alg,. From uniqueness of A =
ung in (6.26), it follows that w = A. O

Remark 8.13. Note that Theorems 8.1 and 8.9 require slightly different hypotheses. Theorem 8.1
requires certain limits in %, in the form of cotensors, and Theorem 8.9 requires certain colimits in
T- Algg, in the form of pushouts. o

Remark 8.14 (Consideration of lax coherence). The theory of pseudomorphism classifiers from
Section 4 has a parallel variant for laz morphism classifiers, and some of the development in Section 5
can be generalized to the lax case. One can likewise generalize much of Section 6 to a notion of
universal lax morphism.

However, the efficacy © for an effective lax morphism classifier is generally not invertible. The
construction of ©° in (5.10) requires invertibility of ©, and this is used in the proofs of Lemmas 5.2
and 5.12. The proofs of Theorems 8.1 and 8.9 above depend crucially on Lemmas 5.2 and 5.12, and
hence do not apparently generalize to the lax case. o
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9 Constructing Q via universal pseudomorphisms

Throughout this section, we suppose that T admits universal pseudomorphisms (Definition 6.5). The
goal of this section is to show that this hypothesis determines a pseudomorphism classifier for T via
certain coequalizers in T-Algs. We first recall reflexive pairs of morphisms, and then introduce the
more specialized notion of P-free pairs in Definition 9.13.

Definition 9.1. A reflexive pair in a category C is a pair of parallel morphisms f and g with a

common section ¢,
t

TR

X Y sothat gt= ft=1y. (9.2)

<

Remark 9.3. Recall from Example 3.14 that each T-algebra (X, ) is the coequalizer of a canonical
u-split pair, with splittings below and the forgetful u suppressed.

nrx
nx
N
T2X = TX = X
T

Furthermore, Trx provides a common splitting for p and Tz, so that the following is a reflexive pair
in T-Algs.

Tnx
/;\
2 TX
i (9.4)
S
Definition 9.5. For each object C € X, define
PC =T(C,1¢) (9.6)
as in (6.6), with ¢ = 1¢. For a T-map f: TC -w> TC’, with C,C" € X, define
Pf=S for Sle/O(uf)onc. (9.7)

That is, S is the unique strict T-map determined by the universal property (6.10), as shown in the
following diagram.

1
c < C
nc Kig lnc
— uTC
ne WTC —5E— uT(C) 10) Luf (98)
/1,// 3\!\\\U§ UTC/
Pad - f f"’ h Sa l'U]T;'
uTC z uTC —— s uT(C' 1)
o
Notation 9.9. Recalling Notation 3.4, we use
T-Alg, and T-Alg,
below to denote the underlying 1-categories of T- Alg and T- Algs, respectively. o
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Definition 9.10. Let F denote the category whose objects are 0-cells of X and with hom sets
F(C,C") =T-Alg(TC, TC") for C,C" € K. o

Remark 9.11. We note that F is similar to the Kleisli category for the underlying monad Ty on %p,
but has T-maps as morphisms instead of strict T-maps. o

Proposition 9.12. Let I: F —> T-Alg, denote the functor given by T on objects and the identity
on morphisms. Then, in the context of Definition 9.5, P defines a functor

P: F— T-Alg,.
Furthermore, the components 1o: TC —> T(C,1¢) = PC in (9.8) define a natural transformation
1: 1 — iP.

Proof. Functoriality of P follows from uniqueness of S in (9.8). Naturality of 1 follows from the
commutativity of the lower trapezoid in (9.8). O

Definition 9.13. Suppose that (X, x) is a T-algebra. Recall from (9.4) that (i, Tx) is a reflexive pair
in F. The P-free pair associated to (X, z) is the pair of strict T-maps (Pu, PTx):
Pu
PTx

PTX PX (9-14)

We say that T-Alg,, admits coequalizers of P-free pairs if there is a coequalizer of (9.14) in T-Alg,,
for each T-algebra (X, x). o

Remark 9.15. In the context of Definition 9.13, the pair (u, Tz) is a reflexive pair, and thus the
same holds for (Pu, PTx). Thus, if T- Alg,, admits coequalizers of reflexive pairs, then T- Alg,, admits
coequalizers of P-free pairs in particular. o

Definition 9.16. Suppose that T-Alg,, admits coequalizers of P-free pairs, and suppose (X, ) is a
T-algebra. Define QX as the following coequalizer in T- Alg,.

Pu

PX ----> QX (9.17)
x <

PTX

Recalling Example 3.14 and Proposition 3.25, each T-algebra (X,z) is the coequalizer, in both
T-Algs and T-Alg and their respective underlying categories, of the pair (u, Tx).

Definition 9.18. For each X € T-Alg,, define a morphism (x to be the unique T-map induced by
the universal property of (X, z) as the coequalizer in T- Algy, as shown in the following diagram with
i suppressed. The squares at left commute by naturality of 1 in Proposition 9.12.

T

T2X TX X
Tx !

T% %I 3!«%@( (9.19)
Pu v

PTX PX — QX

Tz
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Definition 9.20. For each Y € T-Alg,, define a strict T-map
oy: QY — Y
as follows. Recall from (6.25) the strict T-maps
A=nc:T(C'¢) — TC" for ¢: C — C' € XK.
In the case ¢ = 1¢, this gives a strict T-map
Ac: PC — TC. (9.21)

Naturality of the components Ac with respect to strict T-maps h: TC —> TC’ follows from the
definition of Ph (9.8) and uniqueness of S in the universal property (6.10) with ¢ = 1¢, f = h, and
S=Aolohongc.

Define §y as the unique strict T-map induced by the universal property of Q as the coequalizer
in T-Alg,,, as shown in the following diagram with u suppressed. The squares at left commute by
naturality of A.

Pu
PTY PY —— QY
Yy |
Awl Ay 5 (9.22)
Yy ¥
Ty TY Y
Ty

<

Lemma 9.23. Given a T-map f: X -w X', there are unique strict T-maps f and f* that make the
following diagram commute in T-Alg,, with u and i suppressed.

T

T2X TX X
Tx f
% % C}% \%\
Pu = (9.24)
PTX PX QX ---<zr--> X
PTx S 3~
S
7

Here,
e [ is the unique strict T-map such that fol = fox and
o ft is the unique strict T-map such that f+o(x = f.
In particular, if f = 1y, then f+ = 8y by uniqueness.

Proof. The strict T-map f in (9.24) is induced by the universal property (6.10) with (R, S) = (ulx,uf).
The asserted uniqueness of f is that of (6.10).

The universal property for PTX = T(TX,1tx) implies that f coequalizes Py and PTz. The
strict T-map f* is thus induced by universality of QX as the coequalizer in T-Alg,,. The equality
ftolx = f, in the triangle at right in (9.24), follows by commutativity of the right-hand square in
(9.24) and universality of X as the coequalizer of (u, Tz).

The asserted uniqueness of f+ follows from the uniqueness of f and uniqueness in the universal
property of QX. Indeed, suppose fT: QX — X’ is any strict T-map such that ff o (x = f, and let
£: PX — QX denote the structure morphism in (9.24). Commutativity of the triangle and square
at right in (9.24) implies ffo /o 1= fox, and so f! o/ is equal to f by uniqueness. This, in turn,
implies fT = f* by uniqueness in the universal property of QX. O
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Definition 9.25. Given a T-map f: X “w> X' define a strict T-map

Qf = (Cxof) : QX — QX' (9.26)

as the unique strict T-map of Lemma 9.23 associated to the composite (x+ o f. Thus, Qf is the unique
strict T-map such that the following diagram commutes in T- Alg,,.

X \mf\A
CXJT X' Cxr (9.27)
QX ---mmeeeeneee S QX7
Qf = (¢xro f)
o
Proposition 9.28. There is a functor
Q: T-Alg, — T-Alg,, (9.29)

with object and morphism assignments given respectively by (9.17) and (9.26). Furthermore, the com-
ponents of (9.19) and (9.22) define respective natural transformations

C:ly-pg, — 1Q and §: Qi — lt-ag, (9.30)

Proof. Functoriality of Q follows from uniqueness of the strict T-maps Qf = ((x o f)L in (9.27).
Naturality of ¢ with respect to T-maps f holds by definition of Qf, since the triangle (9.27) is the
naturality square for . Naturality of § with respect to strict T-maps g: Y —> Y follows from

naturality of ¢, the equality dx o (x = 1x in Lemma 9.23, and uniqueness of the strict T-maps f* in
(9.24). O

Theorem 9.31. Suppose T is a 2-monad on K that admits universal pseudomorphisms (Z Suppose
that X admits cotensors of the form {2, X} and suppose that T-Alg,, admits coequalizers of P-free
pairs (Definition 9.13). Then the functor Q, together with unit { and counit 8, in Proposition 9.28
extends to a 2-functor that is left 2-adjoint to 1.

Proof. Recalling Proposition 3.7 (¢) and (i), with V' = 1, it suffices to show (Q, i, (,d) is an adjunction
of underlying 1-categories.

SN
T-Alg, 1 T-Alg,,
\/
1
To do this, first recall from Lemma 9.23 that, for each T-map f: X -w> X’ there is a unique strict T-

map f+: QX —> X’ such that f-o(x = f. The existence and uniqueness f* shows that composition
with components of ¢ induces a bijection of morphism sets

T- Al (QX, X') — = T-Algy(X, 1X)

for each pair of T-algebras X and X’. Naturality of such a bijection follows from associativity of 1-cell
composition and naturality of (. Therefore, (Q, i,(,d) is an adjunction of underlying 1-categories, as
desired. O
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Part Ill: Applications to strict monoidal structures

10 Formal diagrams

This section develops the context for formal diagrams in the case X = (at, the 2-category of small
categories. Recall, for a monad T that admits universal pseudomorphisms, the counit (6.15) at a
T-map f: X w> X' is

gf = (&‘X,lixl).
Here, ex = x is the algebra structure morphism for X and 1x- is the unique strict T-map such that
the following diagram commutes.

uX uf uXx’
1X y UTX Uf UT(X/, f) 1X’ (101)
! .- ~. 3
-7 uUex = ux —/\\
s Uf LllX S
uX uX’

Over X = Cat, each T-algebra X has an underlying set of objects, obX. Thus, we have the following.

Definition 10.2. Suppose T is a 2-monad on Cat that admits universal pseudomorphisms (Defini-

tion 6.5). For each T-map
[ (X, z) > (X' 2),

define a strict T-map A as the composite below,

T(obX', fo A
OB Jeo) = (103)

Tx,pn o

where fo, denotes the restriction of f to objects, the unlabeled strict T-map is induced by the inclusion
of objects obX’ —— X', and 1x/ is part of the counit £ in (10.1). Equivalently, A is the unique
strict T-map induced by the universal property (6.10) in the following diagram, where the unlabeled
arrows are induced by inclusion of objects.

obX Job b’

e L

ufob

uT(obX) uT(obX’, fob)

R R (10.4)
LA aTx T 3
z// T Ix/ \\x
uX W uX’
S
Remark 10.5. Note, in the context of Definition 10.2, that

A: T(obX', fop) — X' (10.6)

is generally distinct from the following composite of 2’ with the canonical comparison A of (6.25),
where the unlabeled arrow is again induced by inclusion of objects:

’

T(obX', fop) — T(X', f) 2> TX' %> X', (10.7)
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Indeed, if f is a strict T-map, so that the algebra constraint f, in (2.6) is an identity, then uniqueness
of A in (10.4) will imply that (10.6) and (10.7) are equal. In general however, they are distinct, and
their difference is a key feature of our examples in Section 15. o

Definition 10.8. Suppose T is a 2-monad on Cat and (X,z) is a T-algebra. In the following, the
unlabeled arrows are induced by inclusions of objects

obX «—— X and obX «— X'

Diagram: A diagram (D, D) in X consists of a small category D and a functor D: D — X. We
consider a morphism s: @ —> b in X as a diagram by taking D = 2, with D sending the unique
morphism of 2 to s.

Formal diagram: A dlagram (D, D) in X is called a formal diagram for X or an X -formal diagram

if there is a lift D such that the following commutes in Cat. In this case, D is called an X -formal
lift of (D, D).

T(obX)
b Ty (10.9)
/// lx
D D X

Formal diagram for a T-map: Suppose that T admits universal pseudomorphisms (6.8), and sup-
pose that f: (X,x) -w> (X’,2) is a T-map. A diagram (D, D) in X' is called a formal diagram
for f or an f-formal diagram if there is a lift D such that the triangle at left below commutes in
Cat, where fo, denotes the restriction of f to objects and A is defined in (10.3). In this case, D
is called an f-formal lift of (D, D).

T(obX', fop) —2— T(0bX")

-0 !

b 1xt ) . Ty (10.10)
ol %
D D X’ X’

Dissolution: If (D, D) is a formal diagram for f with lift D as in (10.10), the dissolution of D,
denoted |D|, is the composite

ID|=AoD:D T(obX").

Finite generation: In the above contexts, a lift D for a formal diagram is said to be finitely generated
if there is a finite set of objects G C obX such that D factors through, respectively, the strict
T-map

TG — T(obX) or T(G', fg) — T(obX', fop),

induced by inclusion of objects, where fg denotes the restriction of fo, to G.

In any of the above cases, we say that a diagram (ID, D) commutes if we have D(u) = D(v) for every
parallel pair of morphisms » and v in ID. o
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Remark 10.11 (Using dissolution diagrams). Suppose, in the context of Definition 10.8, that
(D, D) is a formal diagram for f, with lift D to T(obX’, fob). Suppose, furthermore, that A is an
equivalence, as in Theorems 1.5 and 1.9. _ _

Then, for each pair of parallel morphisms u and v in D, the lifts D(u) and D(v) are equal in
T(obX’, ¢) if and only if their dissolutions |D|(u) and |D|(v) are equal in T(obX’). Hence, the diagram
(D, D) commutes in T(obX’, ¢) if and only if the dissolution diagram (DD, |D|) commutes in T(obX").
Furthermore, commutativity of (D, D) implies that of the original diagram (D, D).

Note, however, that the distinction in Remark 10.5 implies D and |D| generally give distinct
diagrams in X’. That is, for each morphism u in D, the morphisms in X’ determined by D(u) and
| D|(u)—composing the latter along the right hand side of (10.10)—are generally not equal in X”.

Thus, if A is an equivalence, the dissolution diagram (D, |D]) is a diagram that is generally dif-
ferent from the given diagram (ID, D), and yet commutativity of the former implies that of the latter.
Section 15 contains a variety of examples that demonstrate this phenomenon. o

Remark 10.12 (Formal diagrams that factor through k). In the context of Definition 10.8, re-
call from (6.13) the strict T-map

k: T(obX') —> T(0bX", fop)

is the mate of
Ky, 0bX" —> T(obX', fob)-

Note that the composite A o & is equal to the identity 1y(opxy, as in (8.3).

Each X’-formal diagram is trivially an f-formal diagram by composing its lift D with . In such
a case, for the dissolution diagram |D| obtained by composing with A, we have

|D| = Ao (koD)=D.

We will say that an f-formal lift reduces to an X'-formal lift if it factors through . o

11 Strict monoidal structures

We use the following notations for the 2-monads on X = Cat whose algebras are general or strict
monoidal structures in the plain, symmetric, and braided monoidal cases. For basic definitions and
properties, we refer the reader to [ML98, Chapter XI], [JS93], and [Yau24, Chapter 1].

Here, we give a brief description of the relevant 2-monads. See, e.g., [Lac02, Section 4]. More
detailed descriptions will not be required, but can be found in operadic presentations such as, e.g.,
[Yau2l, Part 4] or [JY24, Chapters 11 and 12]. We use a superscript g to denote the general monoidal
cases, and use unadorned notation for the strict monoidal cases.

Notation 11.1 (Monads for monoidal structures).

Plain monoidal: Let M8 denote the 2-monad whose algebras are monoidal categories. Let M denote
the 2-monad whose algebras are strict monoidal categories.

For a category C, the free strict monoidal category MC' has objects given by tuples (a) =
(a1y...,ay), for n > 0, with a; € C for ¢ € {1,...,n}. The morphisms of MC are tuples of
morphisms, so that the underlying category of MC'is [[,, C™. The monoidal product is given by
concatenation and the monoidal unit is the empty tuple.

Symmetric monoidal: Let S& denote the 2-monad whose algebras are symmetric monoidal cate-
gories. Let S denote the 2-monad whose algebras are symmetric strict monoidal categories, also
known as permutative categories.
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For a category C, the free symmetric strict monoidal category SC has the same objects and
monoidal structure as MC. The morphisms of SC' are generated by those of MC, together with
permutations of the tuples (a). In particular, for a single object a, the free symmetric strict
monoidal category S{a} has an object for each natural number n, corresponding to the n-tuple
(a,...,a). The hom sets are given by

0, if m #n,

11.2
Yom, if m=n, ( )

(S{a}) (m,n) & {

where the symmetry isomorphism £, , is identified with the transposition (1 2).

Braided monoidal: Let B& denote the 2-monad whose algebras are braided monoidal categories. Let
B denote the 2-monad whose algebras are braided strict monoidal categories.

For a category C, the free braided strict monoidal category BC' has the same objects and monoidal
structure as MC' and SC. The morphisms of BC' are generated by those of MC' together with
braidings of strands labeled by the entries of the tuples (a).

In the cases T = M, S, B, respectively, the T8-maps and T-maps are plain, symmetric, and braided
monoidal functors. These are also sometimes called plain/symmetric/braided strong monoidal functors.
We will suppress the additional adjective except where it is useful to emphasize the distinction with
strict T- or T8-maps. The latter are the plain/symmetric/braided strict monoidal functors, so they
have identity monoidal and unit constraints.

In both the symmetric and braided cases, a T-map f: A “» B satisfies an additional braid aziom,
expressed as commutativity of the following diagram for a,a’ € A. Here, « and 3 denote the monoidal
products and symmetry/braid isomorphisms, respectively, in both A and B.

B(a),f(a’)

fla)+ f(a) f(a')« f(a)
| I (19
flava) —L s (a0
In all three cases T € {M,S, B}, the T-algebra 2-cells are monoidal transformations. o

In each case of Notation 11.1, algebras for the strict monoidal monads T are also algebras for the
general monoidal monads T&, with T € {M,S, B}. There is a morphism of monads

oT:TE — T

for each T, and changing monad structure along this morphism is the forgetful functor from the strict
to general variants.

The statements in the following result are equivalent to the general coherence theorems [ML9S,
VIIL.2, Corollary], [ML98, XI.1, Theorem 1], and [JS93, Corollary 2.6], respectively.

Theorem 11.4 (Monoidal Strictification). Suppose C is a category. Each of
oM: MEC — MC
¢°: SEC — SC
¢®: BEC — BC
s a plain, respectively symmetric, respectively braided, strict monoidal functor, and is an equivalence.
Corollary 11.5. For each monad T € {M,S, B}, commutativity of a formal diagram (D, D) with lift
D: D — T&(obX)

is determined by that of the composite

~ T
D —2> Tg(0bX) —4— T(obX).
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Diagrammatic coherence for strict monoidal structures

Our applications to coherence for strong monoidal functors in Section 15 will make use of the corre-
sponding coherence theorems for monoidal structures on categories. We recall these in Theorem 11.9
below, making use of the following concepts.

Definition 11.6. Suppose G is a set, regarded as a discrete category.

Underlying braids: Each morphism s: (a) — (b) in the braided strict monoidal category BG has
an underlying braid v(s) determined as follows.

o For an identity morphism, v(1) = 1, the identity braid.
o For a composite, v(s’'s) = v(s')v(s), the composition of braids.
o For a concatenation, v(s’ + s) = v(s’) @ v(s), the block sum of braids.

o For the braid isomorphism, v(f(4),(a’y) is the elementary block braid that passes the block
of strands labeled by (a) under the block of strands labeled by (a’), without braiding within
either block.

Underlying permutations: Each morphism s: (a) —> (b) in the symmetric strict monoidal cat-
egory SG has an underlying permutation w(s) defined as the underlying permutation of the
underlying braid v(s).

Underlying permutations, respectively braids, in the more general S8G, respectively B8G, are defined
via the equivalences 6%, respectively 6. o
Notation 11.7. Let s

P = { 0== } (11.8)

denote the free parallel arrow category, consisting of two objects and two parallel morphisms, s and t,
between them. S

Theorem 11.9 (Monoidal Coherence). Suppose A is a monoidal, respectively symmetric mon-

oidal, respectively braided monoidal category. Suppose (P, D) is a formal diagram with lift D, classi-
fying a pair of parallel morphisms Ds and Dt in A.

i. In the plain monoidal case, M8(obA) has at most one morphism between any pair of objects, so
Ds = Dt and hence Ds = Dt [ML98, VIL.2].

it. In the symmetric case, if the underlying permutations 7r(l~)s) and 7T(l~)t) are equal, then Ds = Dt
and hence Ds = Dt [ML98, XI.1].

it1. In the braided case, if the underlying braids U(ES) and U(INDt) are equal, then Ds = Dt and hence
Ds = Dt [J593, Corollary 2.6].

12 Diagrammatic coherence in the symmetric case

In the symmetric case T = S in Section 11, there is a simplification for formal diagrams that are
finitely generated—a condition which holds in all diagrammatic coherence applications known to the
authors. The simplification makes use of the following result that finite coproducts and finite products
of symmetric strict monoidal categories are equivalent.

Theorem 12.1 ([GJO24, Theorem 14.27]). Suppose given symmetric strict monoidal categories
A; fori e {1,...,n}. There is a symmetric strict monoidal functor I

HAi I, HAi (12.2)

such that the following statements hold.
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i. Fach composite with the canonical morphisms
n n
i=1 i=1
is the identity on A; if i = j and constant at the monoidal unit of A; otherwise.
7. I is an equivalence of symmetric strict monoidal categories.

Remark 12.3. In Theorem 12.1, I is a symmetric strict monoidal functor, and it is an equivalence,
but it does not have a strict monoidal inverse. See [GJO24, Remark 14.25] for further explanation
of this point. The proof of Theorem 12.1 depends on an analysis of coproducts for symmetric strict
monoidal categories that specializes the Gray tensor product of 2-categories. o

Recall that S is left adjoint to the forgetful u, and therefore commutes with colimits, particularly
coproducts.

Definition 12.4. Suppose G is a finite set. Define a strict monoidal functor I, , and strict monoidal
functors I, for each a € G, as the composites described below.

s(H{b}) = [Is ! s

beG beG beG (12.5)
I 7 |
G i S{a}
In the above diagram, the isomorphism is given by commuting S with coproducts, the equivalence I
is that of (12.2), and the unlabeled arrow is projection from the product. o

Recall from Definition 10.8 that a finitely generated formal diagram is one that factors through a
free algebra on a finite set.
Definition 12.6. Suppose A is a symmetric strict monoidal category and suppose that (D, D) is a
diagram in A that is formal and finitely generated, with lift D: D —> SG for a finite set G C obA. For

each morphism s in D and each a € G, define the permutation 71';5(3) as the underlying permutation
of the image of s in S{a}. That is,

72(s) = (1. D)(s)).
We call 72 (s) the a-permutation of s or the self-permutation of a. o

Theorem 12.7. Suppose (P, D) is a formal diagram classifying a pair of parallel morphisms Ds and
Dt in a symmetric strict monoidal category A. Suppose, moreover, that there is a finitely generated
lift D, factoring through SG for a finite set G, such that

72(s) =7n2(t) for each ac€@G. (12.8)
Then Ds = Dt in A.

Proof. The hypotheses of the theorem establish the following context, where the left hand triangle is
that of the formal diagram (P, D) and the finitely generated lift D. The right hand triangle is (12.5).
Recall that I is an equivalence by Theorem 12.1.

sq I J]s

i - beG
~ S(obA)\Ia /

b ! S{a)
SA
}
P D A
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By the universal property of the product, the equalities (12.8) imply that the morphisms IDs and IDt
are equal in J],.;S{b}. Since I is an equivalence, we have

Ds=Dt in SG ,
and hence Ds = Dt as desired. O

Remark 12.9. It is instructive to compare the statement of Theorem 12.7 with the more familiar
statement for vectors in a vector space V over a field k. If V has finite dimension n, then choosing
a basis for V provides an isomorphism V = k®". Thus, two vectors v, w € V are equal if an only if
their components in k%" are equal. The self-permutations 72 (s) provide the same condition: I is an
equivalence and, therefore, two underlying permutations 77 (s) and 7 (¢) are equal if and only if their
a-permutations are equal for each generating object a. o

Several examples of Theorem 12.7 are given in Section 16. In particular, see Remark 16.8, Non-
Example 16.10 and Remark 16.13.

13 Explication: Pseudomorphism classifiers

In this section we give an explicit description of the pseudomorphism classifiers
Q: T-Alg —> T-Alg;

for each 2-monad T € {M,S,B} of Notation 11.1. We present a unified construction, noting minor
differences in the three cases where appropriate. In these applications, we work with the strict monoidal
2-monads T, instead of the general T2, in order to highlight the essential features. Equivalent results
hold for the general monoidal variants by Corollary 11.5. Here and in Section 14 we make use of the
following.

Notation 13.1. Suppose T € {M,S,B} and suppose (4,-,¢) is a T-algebra with monoidal unit e and
multiplication denoted as « or with juxtaposition. Recall from Notation 11.1 that the objects of TA
are given by tuples of objects from A. The morphisms of TA are generated by tuples of morphisms
from A together with, in the symmetric and braided cases, permutations and braidings, respectively.

We will use the following notation for objects and morphisms in TA that are given by tuples of
objects and morphisms in A:

(@) = {ai)isy = (a1, ..., an)

(s) = (si)ita = (s1,-- -, 8n)

where a; and s; are objects and morphisms, respectively, in A and n > 0.

(13.2)

o The number n is called the length of {a).
e The empty tuple is denoted () and has length 0.

o For a tuple (a) of length n, we write
(g = @1*** Ap

to denote the product in A of the entries a;.

o For tuples (a') and (a?) of length n; and na, respectively, we denote concatenation with a
semicolon ; and write

('2) = (a); () = (a'; %)
to denote the tuple whose first n; entries are those of {(a') and whose final ny entries are those
of (a?).
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This same terminology and notation is used for tuples of morphisms (s).

We also denote the image of a general morphism ¢ under the multiplication TA — A as t,. For
example, ¢ may be a permutation or braiding if T € {S,B}. In such a case, t, is the corresponding
symmetry or braid isomorphism in A.

Thus, the composite

TA—> A—">TA
is denoted as a length-one tuple with subscript e, so we write
(a) — (as),

(s) — (se), and (13.3)

t— (ts)

where (a) and (s) are tuples of objects and morphisms, respectively, and ¢ is a general morphism of
TA. o

Using Notation 13.1, we now define the pseudomorphism classifier Q for each of the three cases
T e {M,S,B}.

Definition 13.4. Suppose A is a category. Define a T-algebra QA as follows.
Objects: The objects of QA are those of TA.

Free morphisms: The morphisms of TA are included as morphisms of QA, and are called free mor-
phisms there. The inclusion of objects and free morphisms is denoted

1 TA — QA (13.5)

When describing individual objects or morphisms, we will often suppress ¢ and identify objects
and morphisms of TA with their images in QA.

Adjoined isomorphisms: For each object (a) in ob(QA) = ob(TA), there is an adjoined isomor-
phism

(=3

Aiay: (@) — (as) in QA.

The morphisms of QA are generated under composition and concatenation by the free morphisms
and adjoined isomorphisms, subject to the following axioms. In the symmetric or braided cases T €
{S, B}, the symmetry or braiding isomorphism of QA is given by the corresponding free morphism
from TA.

Free composites and products: The inclusion ¢ is a strict T-map. Thus, composites or products
of free morphisms are given by those of TA.

Naturality of q: The adjoined isomorphisms q are natural with respect to free morphisms. That is,
using the notation (13.3) and suppressing ¢, the following diagram commutes for each morphism
t:(ai)izy — (ap)iz; in TA,

lq " (13.6)
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Associativity of q: The following diagrams commute for tuples (a'), (a?), and (a®) in QA, where
the diagram at left uses the fact that e is a strict unit for A.

(a'); (): (@*) = (a'); (a?) (a'); (a?); (a®) ——— (a'); (a3®)
1a0; 1/ \q Qs 1J \ lq (13.7)
(a'): (e): a?) ———— (a}?) (a?): {a*) ————— (@}??)
Normality of q: For a tuple of length one, (a) with a € A, we have
9(a) = L(a) = (1a)- (13.8)

Definition 13.9. Suppose given a T-map f: A w> B between T-algebras A and B. Define a strict
T-map
Qf: QA — QB

as follows. For a tuple of objects (a), define
(Qf)(ai)izy = (f(ai))iz-
For a free morphism ¢: {(a;)?; —> (a;)?_,, define Qf as Tf. That is, define
(Qf)(it) = e((TF)t): (fla))izy — (f(ai))izy-
For an adjoined isomorphism q 4y, where (a) = (a;)i_;, define (Qf)q<a> as the composite

(Flar) =292 ((f(an)]s) =25 (f(an)), (13.10)

where [f(a;)]e denotes the product of the entries f(a;) and

fo: [f(ai)le — f(ae)
is the notation of (2.6) to indicate any composite of, respectively,
e monoidal constraints fs, if n > 2,
e unit constraints fy, if n =0, or
o identities 1f(q), if n = 1.

This defines Qf on the objects and generating morphisms of QA. Then, Qf is defined to be
functorial with respect to formal composition o and strict monoidal with respect to concatenation ; in
QA and QB. In the symmetric or braided cases, T € {S, B}, the definition of Qf on free morphisms
implies that Qf satisfies the additional braid axiom (11.3) of a T-map. In all three cases for T, we
have Qf ot = 1o Tf as strict T-maps.

To verify that Qf is well defined with respect to the relations (13.6) through (13.8), one uses the
corresponding relations in the codomain T-algebra B together with functoriality of f and naturality
of f,. Furthermore, naturality of q and the definition of composition for monoidal functors shows that
Q is functorial with respect to identities and composites of T-maps. o
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Definition 13.11. In each of the cases T € {M,S, B}, the T-algebra 2-cells are monoidal transforma-
tions. If a: f — f’ is a monoidal transformation between T-maps f, f': A > B, then

Qa: Qf — Qf
is defined componentwise for objects (a) = (a;)?_; by
(Qa) ,, = {aa,)ims- (13.12)

The monoidal transformation axioms for Qo hold because concatenation of tuples is strictly associa-
tive and unital. Similarly, 2-functoriality of Q with respect to identities and horizontal or vertical
composites of monoidal transformations is verified componentwise. o

Together, Definitions 13.4, 13.9, and 13.11 define a 2-functor
Q: T-Alg — T-Alg,.

Recall from Definition 4.7 that a pseudomorphism classifier (Q, i, (,0) is effective if the unit/counit
pair ({,0) is componentwise an adjoint surjective equivalence. The following will be used in Proposi-
tion 13.14 below to show that Q is an effective pseudomorphism classifier for T.

Definition 13.13. In the context of Definitions 13.4, 13.9, and 13.11 above, there are 2-natural trans-
formations ¢ and § together with an invertible monoidal transformation © defined as follows.

Unit: For a T-algebra A, define a T-map
Ca: A w> iQA

by sending each object and morphism of A to the corresponding length-one tuple in QA. The
monoidal and unit constraints of { are given by the adjoined isomorphisms q. Thus, in the
symmetric and braided cases T € {S,B}, (4 satisfies the braid axiom (11.3). Naturality of ¢
with respect to T-maps f holds because Qf is defined by Tf on tuples (a) and free morphisms
t. Likewise, 2-naturality with respect to monoidal transformations follows from (13.12).

Counit: For a T-algebra B, define a strict T-map
0p: QiB — B

by sending each tuple of objects (a) to their product ae in B, each free morphism ¢ to t,, and
each adjoined isomorphism q to an identity. Thus, in the symmetric or braided cases T € {S, B},
0 satisfies the braid axiom (11.3). This is a strict T-map because the monoidal product in B is
strictly associative and unital. Naturality of 0 with respect to strict T-maps holds because such
T-maps strictly preserve monoidal units and products.

Efficacy: For each T-algebra B, define an invertible monoidal transformation
©:(pdp — lqn

with components
@<b> = q&)i; (b.) —> <b> for <b> € QB.

Monoidal naturality of q, and hence also O, is equivalent to the conditions (13.6) and (13.7). <

Proposition 13.14. For each T € {M,S,B}, the 2-functor
Q: T-Alg — T-Alg,

1s an effective pseudomorphism classifier for T.

/ﬂ? Compositionality, Volume 7, Issue 3 (2025) 47



Gurski and Johnson Universal pseudomorphisms, with applications to diagrammatic coherence for braided and symmetric monoidal functors

Proof. The 2-functor Q, unit ¢, counit 4, and isomorphism © are given in Definitions 13.4, 13.9, 13.11,
and 13.13. For T-algebras A and B, the definitions of § and ( yield the following computations:

53((3([))) =b for be B
Saa((Q¢a)(a)) = dqa(ai))iz, = (a) for (a) = (a;)7_, € QA.

A similar computation holds for morphisms, using the fact that the monoidal constraints of ( are the
adjoined isomorphisms q. Thus, ¢ and § satisfy the triangle identities

dpoCp=1p and dqa o (QCa)=1qa.
so that (Q,1,¢,0) is a 2-adjunction.
Furthermore, the normality condition (13.8) for q implies
Ox(p=1¢p. (13.15)
This completes the proof. L

The explicit description of Q, above, will be helpful in Section 14 below. The following alternative
description of Q is more abstract, but highlights some of its characteristic properties.

Remark 13.16. The strict T-map ¢: TA —> QA from (13.5) is the identity on objects and factors
the monad structure morphism TA —> A as shown at left below. Furthermore, there is a T-map
Ca: A m> QA such that the adjoined isomorphisms q are the components of an invertible monoidal
transformation as shown at right below.

TA : A TA
L
\ %A l Q) (13.17)
Q4 Aol
The normality condition (13.8) for q is equivalent to the equality
Q*UA=1<A~ (1318)

That is, the whiskering of q with the unit n4: A —> TA is the identity transformation of (4. In this
context, the requirement in Definition 13.13, that § sends the adjoined isomorphisms q to identities,
is equivalent to the requirement that 44 = 14 as a strict T-map. o

Remark 13.19. The description in Remark 13.16 indicates how the elementary presentation above in
Definitions 13.4, 13.9, and 13.11 relates to the method of Power [Pow89, Theorem 3.4], which constructs
a pseudomorphism classifier Q in greater generality by factoring the multiplication morphism of a T-
algebra (or pseudo algebra) (X, z) as a bijective-on-objects functor ¢ followed by a full and faithful
functor §4. In our applications, the left side of (13.17) provides this factorization. Power’s work can
be extended in greater generality via Lack’s codescent for pseudo-algebras [Lac02, Theorem 4.10]. <

Definition 13.20. In the context of Definitions 13.4, 13.9, and 13.11, the following associated con-
structions are of interest. These are special cases of the general constructions in Definition 4.3,
Lemma 5.2, and Remark 5.11.

i. Referring to the adjunction Q 4 i, each T-map f: A “» B, has a unique strict mate f+, making
the triangle at left below commute in T- Alg. Recalling Definitions 13.9 and 13.13, one verifies
that f+ is defined by the triangle at right below.

1
Qa—I—— 5 QB
Qf
CA% / [z l(;B
A QA B
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1. In the case A = TC for a category C, there is a strict T-map
¢: TC — QTC (13.21)

that sends a tuple of objects (a;)?_; in TC to the corresponding tuple of length-one tuples
{(a;))™, in QTC. In the case n = 0, ¢’ sends the empty tuple () € TC to the empty tuple
() € QTC. The assignment on morphisms is given in the same way, and ¢” is a strict monoidal
functor.

176. There is an invertible monoidal transformation
0’ Godre — lare
defined as in (5.10). For an object
(w) = (wy)jL, € QTC,

where w; = <af>?;1 is an object of TC for each j € {1,...,m}, the component

Oy : ("6 (w) — {w)

is given by the composite
—1

Colw) — ((wa)) —— (w) (13.22)

Here, each q is one of the adjoined isomorphisms in QTC, the object ((ws)) is the length-one
tuple whose entry is the concatenation in TC' of the tuples w; = (a’), and (*6(w) = ((al));; is

the tuple of length N = 3~ n; whose entries are the length-one tuples (a}).

If (w) = ¢*(a) for (a) € TC, then the two components of q appearing in (13.22) are the same.
Hence, ©° x (* = L¢» as required. o

14  Explication: Universal pseudomorphisms

The hypotheses of Theorem 1.5 hold for X = Cat and each of the 2-monads for monoidal structures
T¢ and T in Notation 11.1, with T € {M, S, B}. Therefore, the comparison strict T-maps

TE(C', ¢) =2 TEC! and T(C',¢) -2 TC'

are equivalences for each ¢: C —> C’ in Cat.

This section gives an explicit description of T(G’, ¢) in Explanation 14.4, where ¢: G —> G’ is a
function between sets, treated as discrete categories. Then, the universal T-map 5 for T(G', ¢) and
the comparison A are described in Explanations 14.11 and 14.13, respectively. In applications, ¢ is the
underlying function-on-objects of a T-map f. In that case, the strict T-map A of (10.3) is described
in Explanation 14.17.

To begin, it will be useful to record the following.

Definition 14.1. Let Mon denote the category of monoids in Set. The set-of-objects functor
ob: M-Alg —> Mon

has both left and right adjoints
disc 4 ob - indisc (14.2)

defined as follows.
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e disc: Mon —> M- Algs is the discrete M-algebra functor, sending a monoid G to the M-algebra
with underlying monoid G and identity morphisms.

e indisc: Mon —> M- Alg, is the indiscrete M-algebra, sending a monoid G to the M-algebra with
underlying monoid G and a unique isomorphism between every pair of objects.

Below, we will apply disc implicitly and omit the notation. o

Recall from Theorem 7.11 that each universal pseudomorphism for T € {M,S,B} can be obtained
as a pushout of strict T-maps (7.5) shown here.

To
TG TG
Cbl R l"‘ (14.3)
QTG — 2 T(¢ 9)

Recall that Q is described in Definition 13.4 using Notation 13.1; recall ¢* from (13.21). Unpacking
(14.3) yields the following.

Explanation 14.4. Suppose ¢: G —> G’ is a functor between discrete categories and T € {M, S, B}.
The T-algebra T(G’, ¢) in (14.3) is given as follows. We begin by describing generating objects and
their relations. Then, we describe generating morphisms and their relations

The symmetric and braided cases T € {S, B} have the same objects as the plain monoidal case. In
the monoidal case, T = M, the functor ob is left adjoint to indisc in (14.2) and therefore commutes
with pushouts.

Thus, in each of the cases T € {M,S, B}, the objects of T(G’,¢) are given by the pushout (14.3)
on objects. Hence, the objects are generated under the monoidal product ; by those of TG' and QTG,
for which we use the following terms.

Free objects: The free objects of T(G', @) are those of TG'. They are tuples

w' = (a’) = {a5)i=y

where a; € G' and n’ > 0. On objects, the functor k: TG’ — T(G’, ¢) is the inclusion of free
objects.

¢-Objects: The ¢-objects of T(G', ¢) are tuples denoted
([elw) = ([gw;) ",

where each (w) is an object of QTG, so w; = (al);2, is an object of TG, and m > 0. On objects,
the functor ¢ sends an object (w) € QTG to the ¢-object ([¢]w).

These objects are subject to the following relation, identifying the two composites around (14.3).

Object pushout relation: If (w) = ¢"(a) = <(aj1)>;n=1 is a tuple of length-one tuples, then

([@l@))T, = (Bad)fs, (14.5)
where

o the left hand side is the ¢-object associated to the tuple (w) whose entries are length-one
tuples (af), and

« the right hand side is the free object whose entries are ¢(al).
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In the case that m = 0, the empty ¢-object <[¢}> is identified with the empty free object ().

This finishes the description of the objects of T(G', ¢).

The morphisms of T(G’, ¢) are likewise generated by those of TG’ and QTG under composition o
and the product ;. In the symmetric and braided cases T € {S, B}, there are additional formal braid
isomorphisms. Thus, the morphisms of T(G’,¢) are generated by four types, for which we use the
following terms.

Free morphisms: The free morphisms are those of TG’. On morphisms, the functor x is the inclusion
of free morphisms.

¢-Free morphisms: The ¢-free morphisms are denoted

[Glu: ([¢lw) — ([¢]v) (14.6)
where u: (w) — (v) is a free morphism of QTG. Thus, u is either

« a tuple of morphisms ¢;: w; — v; in TG;
« a permutation or braiding, in the symmetric and braided cases T € {S,B}; or

e a composite of such morphisms.

In the former case, since G is discrete, each ¢; is either a tuple of identity morphisms or, in the
cases T € {S, B}, a permutation or braiding in TG.

¢-Adjoined isomorphisms: The ¢-adjoined morphisms are denoted

[l : ([lw) — ([¢lwe) (14.7)

where (w) = (w;)2; is an object of QTG and w. denotes the concatenation in TG of the tuples

w; = (aiﬂil Thus, we = (a®) is a tuple of length N = Zj n; whose (th entry, af, is aj, where
Je{l,...,m} and ie{l,...,ny}

are the unique natural numbers such that
J—1
j=1

Formal Morphisms: In the symmetric and braided cases, T € {S, B}, there are formal permutation
and braid morphisms, respectively. The formal morphisms between free objects are identified
with the corresponding free morphisms given by permutation or braid morphisms in TG’. The
formal morphisms between ¢-objects are identified with the corresponding ¢-free morphisms
given by permutation or braid morphisms in QTG.

The morphisms of T(G', ¢) are freely generated under composition o and the product ; so that the
T-algebra structure on T(G’, ¢) extends that of TG' and QTG, subject to the following axioms.

Composites and products: The structure morphisms
k: TG — T(G',¢) and ¢: QTG — T(G', ¢)

are both strict T-maps. Thus, the composites or products of free, respectively ¢-, morphisms are
given by those of TG, respectively QTG.
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Morphism pushout relation: For each morphism ¢: (a) — (b) in TG, where (a) = (a;)7; and
(b) = (bi)?_;, the images of ¢t under the two composites around (14.3) are identified. Thus, the
free morphism

(Te)(1): (Te)({a)) — (Te) (b))
is identified with the ¢-free morphism
[0]E: ([¢](ai))_, — ([8](b2)),
where ¢ = (°t is the free morphism induced by ¢, between tuples of length-one tuples ((a;))7,
and ((bi))i,-

Since G is discrete, this relation is trivial if T = M, in which case ¢ is a tuple of identity
morphisms. If T € {S,B}, then (T¢)t, ¢, and [¢]t are the respective permutation or braiding
morphisms determined by t.

This finishes the description of objects, morphisms, and T-algebra structure of T(G’, ¢). o

Proposition 14.9. The T-algebra described in Explanation 14.4 is a model for the pushout T(G’', ¢)
in (14.3).

Now we describe the universal pseudomorphism
b: TG ~w> T(G', ¢).

Recalling (7.6), 5 is equal to the composite (;AS o ¢ shown below.

TG 4&5—> T(G', )

cT\c‘”\/qf

QTG

(14.10)

Recall ¢ is the unit in Definition 13.13.
Explanation 14.11. In the context of Explanation 14.4 and (14.12), the T-map
¢: TG > T(G', 9)
in (14.10) is given as follows.
i. For a tuple w = {(a;)?_, € TG, with each a; € G,
dw = ([9lw)
is the ¢-object of length one whose only entry is [¢]w.
1. For a morphism ¢: w — v in TG,
ot = [g]t: ([p]lw) — ([]v)

is the ¢-free morphism of length one whose entry is either the identity, if T = M, or the permu-
tation or braid morphism corresponding to ¢ if T € {S,B}.

75i. The unit constraint of 5 is given by the ¢-adjoined isomorphism for the empty tuple:

[@lag : ([¢]) = O — ([¢]() = (0)

where, on the right hand side, ([¢]<>) = (()) is the ¢-object of length one whose single entry is

[410) = Q-

/ﬂ; Compositionality, Volume 7, Issue 3 (2025) 52



Gurski and Johnson Universal pseudomorphisms, with applications to diagrammatic coherence for braided and symmetric monoidal functors

7v. The monoidal constraint of 8 is given, at a pair of objects wy,ws € TG, by the ¢-adjoined
isomorphism for the length-two tuple (w) = (w;)?_;:

[Blage : ([Dlwi);_, — ([glws) = ([¢](wiz).

The description of the unit and monoidal constraints of gg follows from those of ¢ in Definition 13.13.¢
Now we describe the strict T-map
A:T(G,¢) — TG

By Theorem 8.9, A is an adjoint surjective equivalence that is determined by the pushout (14.3), as
indicated by the dashed arrow below.

TG TG

cbl - |

QTG ¢ (G, 6) (14.12)
5| y
TG

Recall ¢ is the counit in Definition 13.13. Using the description of T(G’, ¢) in Explanation 14.4 and
commutativity of (14.12) yields the following.

Explanation 14.13. In the context of Explanation 14.4 and (14.12), the strict T-map
A:T(G,¢9) — TG
is given as follows.
i. For free objects (a'}, (') € TG and free morphisms t': (a’) —> (V'),
At =1t (d)y — (V).

it. For ¢-objects ([¢]w) = <[q§]wj>;n:1 with w; = (a?) = (al)}2, € TG,

A([glw) = (T@)dlw) = (To)ws = ($(a})),_,

where (a®) = w, is the concatenation in TG of the tuples w; = (a’) as in (14.8).

ifi. For ¢-free morphisms [¢u: ([¢p]w) — ([¢]v) where u: (w) —> (v) is a free morphism of QTG,
A([¢lu) = (T¢)du
is the corresponding identity, permutation, or braiding morphism
(T6)u: (To)ws — (To)o.

in TG".

iv. For ¢-adjoined isomorphisms [¢]q ) : ([¢lw) — ([¢]wa),

A([lawy) = (T9)dag) = 1: (T¢)ws —> (T¢)w.
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v. For formal morphisms, in the cases T € {S,B}, A is a strict T-map and so it sends the formal
permutation or braiding morphisms of T(G’, ¢) to corresponding permutations or braidings in
TG .

This completes the description of A. o

Example 14.14. In the context of Explanation 14.13, suppose given (w) = (wy,ws) with

wi = (a') = (a1, a3,03) and ws = (a*) = (af,a3).

Then we = (a®) = (a},al,al,a?,a3) and

A<[¢]w> = (¢(a%) ) ¢(a%) ’ Qb(aé) ) ¢(a?) ’ d)(ag))

Each braiding of tuples w; or entries a] is sent by A to the corresponding braiding of entries (b(ag ). o

Now we describe the strict T-map from (10.3)
A: T(obA',¢) — A/,

where f: (A,+) v (A’,+) is a T-map and ¢ = f,, denotes the restriction of f to objects. Recalling
(10.4), A is the unique strict T-map induced by the universal property (6.10) and the inclusions of
objects. The proof of Theorem 7.11 explains how the pushout description of T(obA’ @), as in (14.3),
satisfies the universal property (6.10). In particular, recalling (7.15) with S = A and R being the
composite T(obA) —> TA — A, the following diagram identifies A via the universal property of the
pushout in T- Algs.

To

T(obA) T(obA")
i |
QT(obA) —%— T(obA', ) TA (14.15)
~ S
QTA LA J
~ I~
Q' QA Al

fJ_
In the above diagram, T(obA’, ¢) is described in Explanation 14.4, with G’ = obA’. The strict T-map

Q- is an instance of Q applied to a T-map, as in Definition 13.9. The mate f* (4.4) is the unique strict
T-map that factors f as below.

fL
b & (14.16)
.
A

For T € {M,S, B}, the unit ¢ is described in Definition 13.13. Unpacking these, the following gives an
explicit description of A on objects and morphisms.

Explanation 14.17. Suppose T € {M,S, B} and suppose
fr(Aye) e (A)

is a T-map. Let ¢ = fop denote the restriction of f to objects, and recall from Notation 13.1 that
subscripts e denote the image of free objects or morphisms under the multiplication . Then the strict
T-map A in (10.3) and (14.15) is given as follows.
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i. For free objects (a'), (') € T(obA’) and free morphisms between them, t': (a’) —> (V'), we have
A =t,:a, — b,.

ii. For ¢-objects ([¢|lw) = ([plw;)" | with w; = (a?) = (al)}?; € T(obA), we have

A([glw) = fH((ad)fLy) = f(ag) ==+ f(al)
because f1 is strict monoidal.

iii. For ¢-free morphisms [¢u: ([p]w) —> ([¢]v), where
<w> = <wj>§n:17 <’U> = <Uj>;‘n:17
and u: (w) —> (v) is a free morphism of QT (obA), we have
A([¢]u) = [+ (ua): flag) == f(al) — flbg) === F(63).

Here, each w; = (a’) and each v; = (b’) as above.

If u is a tuple of morphisms t;: w; — v; in T(obA), then u, is their product (concatenation)
in T(obA). If u is a permutation or braiding in T?(obA), in the cases T € {S,B}, then u, is
the corresponding block permutation or braiding in T(obA). In either case, since f is strict
monoidal, [¢]u is sent to either the product of the morphisms f(¢;) or to the permutation or
braiding of f(al)«+« f(a) determined by w.

iv. For ¢-adjoined isomorphisms [¢]q ) : ([plw) — ([¢]w.),

A([la) = f(Go) = for flag) ==+ f(ag) — flas+++al)

because the morphisms q,,) are the monoidal and unit constraints of ¢ and (14.16) is a diagram
of T-maps.

v. For formal morphisms, in the cases T € {S,B}, A is a strict T-map and so it sends the formal
permutation or braiding morphisms of T(obA’, ¢) to the corresponding permutations or braidings
in A

This completes the description of A. o
Example 14.18. Suppose, as in Explanation 14.17, that T € {M,S, B} and
f: (A,.) W (A’,.)

is a T-map. Let ¢ = fop, denote the restriction of f to objects.
Let (w) = (wy,ws) as in Example 14.14, with

wy = (a') = (aj,a3,a3) and wy = (a®) = (a, a3).

Then we = (a®) = (a%7a’%7a’%7a’%7a’%) and

A([¢Jw) = f(ai + a3+ ag) - f(ai-a3). o
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15 Examples for symmetric and braided monoidal functors

In this section, we suppose that T is one of the 2-monads, S or B, for symmetric or braided monoidal
structures, respectively, that are strictly associative and unital (Notation 11.1). In this section we
say “monoidal” to mean strict monoidal structure for categories A and A’. Note, however, that the
discussion here does apply to the corresponding general monoidal structures, S& or B8, by the Monoidal
Strictification Theorem 11.4.

The Pseudomorphism Coherence Theorems 1.5 and 1.7 apply in these cases, and this section
provides several examples using the dissolution, as in Theorem 1.7, to determine whether a formal
diagram commutes. In these examples, we suppose given

f = (f7f27f0): (Av+a0) > (Alv'v]-)
as follows.

i. (A,+,0,8) and (A’,-,1,5) are T-algebras, i.e., symmetric or braided monoidal categories with
the indicated notation for monoidal products, units, and braidings.

it. f is a T-map (Remark 2.10), and we use the zigzag arrow notation of Convention 2.21. Thus, f
is a symmetric or braided strong monoidal functor.

All of our applications concern functors that are either strong or strict monoidal. We will say that f
is a “monoidal functor” to mean strong monoidal functor.

Example 15.1. The following diagram in A’ appears as (1.2) in the introduction. It involves f, the
braiding isomorphisms of A and A’, and an object a € A. The two composites around the diagram
apply a cyclic permutation to the objects, but combine with the monoidal constraints of f in different
ways.

fa-1 B

fla)- fa)- f(a) flata)-f(a) fla)+ fla+a)
| |1 (15.2)
fla+a+a) fa+p) fla+a+a) fB+1) fla+a+a)

One can use the naturality of fy and 3, together with various axioms for f and 3, to show that this
diagram commutes.

Alternatively, (15.2) is an f-formal diagram, in the sense of Definition 10.8. The following diagram
is a lift to T(obA’, ¢), where ¢ = fo, denotes the restriction of f to objects.

[fla; 1 B

(1¢l(@,0) . [9](@) ) —— ([6(a) , [¢](a.a) )

(t6l@.a0) ) —22 s (fg)(a,a,0) ) — 2D (g)(aa,0) )

To verify that the above diagram is a lift of (15.2), one uses the descriptions of T(obA’, ¢) and A in Ex-
planation 14.4 and Explanation 14.17, respectively. In particular, the terminology of Explanation 14.4
applies as follows.

o The objects are ¢-objects; each entry [4](a,...,a) is a lift of a term f(a + - + a).

e The morphisms [¢]q are ¢-adjoined isomorphisms (14.7) and are lifts of the monoidal constraints

for f.

e The morphisms [¢](1, 5) and [¢](8, 1) are ¢-free morphisms (14.6) and are lifts of the correspond-
ing morphisms f(1 + g) and f(5+ 1).
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e The morphism S is a formal morphism lifting the corresponding braiding in (15.2).

Using the description of A in Explanation 14.13, the dissolution of (15.3) is the following diagram
in T(obA’). Here, ¢ = fob is applied separately to each object, and the ¢-adjoined morphisms [¢]q are
sent to identities.

(f@). @), f@ ) 1> (f@). f(@) . fla) ) 211D (f0) | fa), fla) )
% ll (15.4)

(@, @, f@)) RULIR (f@ f@), f(a)) {8:1), (f@), f(@), f(a))

The two composites around the above diagram have the same underlying braid of the object f(a): in
the left-bottom composite, the first two instances of f(a) are braided past the third, one at a time,
and in the top-right composite they are braided past in one step.

Therefore, the diagram (15.4) commutes in either case T = S or T = B by the Symmetric or
Braided Coherence Theorem 11.9 (i) or (i), respectively. Since A is an equivalence by Theorem 1.5,
this implies that the lift (15.3) commutes in T(obA’, ¢) and hence diagram (15.2) commutes in A’. ©

The key feature of Example 15.1, and of our other examples below, is that the dissolution diagram
(15.4) replaces each monoidal constraint of f in (15.2) with an identity. Thus, it also replaces objects
such as f(a + a) with tuples (f(a), f(a)) in the free algebra T(obA’). The lift (15.3) is what ensures
that this can be done coherently.

As noted in Remark 10.11, the composites around the dissolution diagram (15.4) determine mor-
phisms in A’ that are generally not equal to the respective morphisms from the original diagram
(15.2). Indeed, the morphisms in A" determined by the composites around (15.4) do not have the
same codomain as the composites around (15.2). The purpose of the diagrammatic coherence theo-
rems in this work is to determine:

1. how to construct a lift and corresponding dissolution of an f-formal diagram, and

7. conditions under which A is an equivalence, so that commutativity of the dissolution diagram
implies that of the original diagram.

Example 15.5 (Monoidal naturality of f;). The monoidal constraint f is a natural transforma-
tion with components

(f2)a7b5 fla)« f(b) — f(a+0b) for a,be A.

As a natural transformation, its domain and codomain are the respective composites in the following
diagram, in which the products A x A, A’ x A’ are given the componentwise monoidal structures.

fxf A x A

AxA— T

\\:\\\\*A;////7f//?AI

The composites above are monoidal functors, with the monoidal constraints of + and + given by the
following for a,b,¢,d € A and o', V', c/,d € A"

1+ Bpe+1

1By -l
a+b+c+d———a+c+b+d and a’-b'-c’-d’L

acv-d.
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The following diagram in A’ is the monoidal naturality axiom at objects (a,b), (¢,d) € A x A, to
check whether the natural transformation fo is a monoidal transformation.

f(@)+ FB)+ F(0) - F(d) — L2 fatb)- fle+a)
11| £
f(a)+ £(e)+ F(B) - F(d) fatbretd) (15.6)
f2 12| [fa+s+1)
Fla+ o). f(b+d) f2 flatetbtd

Again using Explanations 14.4 and 14.17 followed by Explanation 14.13, one can identify (15.6) as an
f-formal diagram and determine the requisite lift followed by its dissolution diagram, shown below.

(£l@). £0), 1), f(@)) == (f(@), F0), f(), f(a) )
(1,8,1)] I
(fl@), 1@, 10), f(a)) (fl@), 10 f0), f(a)) (15.7)
1 a8
(fl@), @), F0), F@)) — (fla), (o), FO), F(@))

The two composites around (15.7) have the same underlying braid, given by passing f(b) past f(c).
Therefore, (15.7) commutes in either case T =S or T = B by the Symmetric or Braided Coherence

Theorem 11.9 (%) or (iii), respectively. Since A is an equivalence by Theorem 1.5, the commutativity

of the dissolution diagram (15.7) in T(obA’) implies that the original diagram (15.6) commutes in A’.¢

If f is a symmetric or braided monoidal functor such that the monoidal constraint f, has com-
ponents with nontrivial underlying braids, then the use of dissolution diagrams to determine com-
mutativity of formal diagrams for f is a nontrivial simplification. For such functors (f, fa, fo), the
underlying braids of (15.2) and (15.6) may be different from—generally more complex than—those
of (15.4) and (15.7), respectively. The significance of our diagrammatic coherence, when A is an
equivalence, is precisely this simplification, summarized in the following variant of Slogan 1.8.

Slogan 15.8. When A is an equivalence, commutativity of formal diagrams for f reduces to checking
commutativity of the simpler dissolution diagrams, in which the T-algebra constraints of f are replaced
by identities. o

Example 15.9 (Monoidal naturality of 5 ). Let f - f denote the composite monoidal functor
shown below, where diag is the diagonal functor:

diag fxf

A—— Ax A A x Al — A

So, (f«f)(a) = f(a)+ f(a) for objects a € A, and likewise for morphisms. The monoidal constraint of
+is 1+ 3+ 1, described in Example 15.5. The diagonal functor is strict monoidal because the monoidal
sum in A x A is given componentwise.

The braiding isomorphism 3 of A’ induces a natural transformation

Brg:fof—f-f (15.10)

with components ff(q) ra) for a € A. The diagram below is the monoidal naturality diagram at a
pair of objects a,b € A to check whether 3y ; is a monoidal transformation. The left and right vertical
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composites are the monoidal constraints of f -« f.

(f-£)(a)- (f-£)®) (f= @) (f+ 1))
"0 o5 !

fla) - f(b)« f(a)- f(b) f(a)« f(b)« fa)« f(b) (15.11)
fa - f’{ sz - fo
fla+b)- fla+) ? fla+b)- fla+b)
(f'f)H(a +b) (f-f)H(a +b)

The above is an f-formal diagram, and the following is a dissolution diagram for it. There, the
morphism along the lower edge is the block braiding of the first two terms past the second two.

(fl@). f(@). £, f0)) _ 6.5 | (Fla). 1), ). 1))

(1,8, l)le Uzl(l, 8, 1)

(F@). £0). fla), £(0) —RF%s (f(a), £(B). F(a). FD))

In the above diagram, the inner labels on each morphism are the underlying braids, where o; is the
elementary braiding of strand i under strand ¢ + 1. The left-bottom and top-right composites around
the boundary of (15.11) are shown in the following braid diagram. In these diagrams, the right-to-left
composition of elementary braids is ordered bottom-to-top.

o i

f(a) f(a) f(b) f(b) f(ﬂ) f(ﬂ) f(b f(h

0'20'10'30'20'2 0'20'10'3

Since these braids are not equal, 8 ¢ in (15.10) is generally not a monoidal transformation when T = B
and f is a braided monoidal functor. For example, when A = A’ = B{a, b} is the free braided monoidal
category on two objects and f is the identity, then S ; is not a monoidal transformation.

However, since the underlying permutations around the diagram (15.11) are equal, the Symmetric
Coherence Theorem 11.9 (74) implies that (15.11) does commute when T = S. Thus, 8y, ; is a monoidal
transformation when f is a symmetric monoidal functor between symmetric monoidal categories. Note,
again, that this conclusion holds independently of whether the monoidal constraints fo have nontrivial
underlying permutations. o

Remark 15.13. In each of the above examples, one can also check commutativity directly, using
naturality of the monoidal constraints fo. Diagram (15.11) is particularly straightforward, involving a
single use of naturality to commute 8 with fs« fo. Formal diagrams for f are always amenable to such
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an approach. However, it can be a nontrivial task to determine which combination of naturality and
other axioms will reduce the commutativity of the original diagram to a computation in T(obA’). The
advantage of the dissolution approach is that it formalizes such a reduction by systematically replacing
the monoidal constraints with identities. o

16 Non-example via quadrupling

In this section we continue the context and conventions of Section 15, so that T € {S,B} is the monad
for (strict) symmetric or braided monoidal categories. We consider two specific functors f and h whose
monoidal constraints have nontrivial underlying braids.

This section gives several examples of using Theorem 12.7, which is a refinement of the Symmetric
Coherence Theorem 11.9 (#). Then, Non-Example 16.10, Remark 16.14, and Lemma 16.17 discuss a
formal diagram (16.12) where the only lifts of interest reduce, in the sense of Remark 10.12, to A-formal
lifts. For such lifts, the dissolution diagram strategy of Section 15 does not provide any simplification.

Definition 16.1 (Doubling functor). The doubling functor f: A »> A with unit and monoidal
constraints fy and fo, respectively, is defined as follows for objects a,b € A and morphisms s in A.

fla)=a+a and f(s)=s+s,
f2

gL O g — — flo:+ (16.2)
1O 0+0 a+a+b+bwa+b+a+b
&

We will show below that f is a symmetric monoidal functor in the symmetric case, where T = S and A is
a symmetric monoidal category. In the braided case, where T = B and A is merely braided monoidal,
then f is a monoidal functor, but generally not braided monoidal. Although these conclusions will
be familiar to experts, we include them as preparation for the calculations in Non-Example 16.10
and Remark 16.13.

The unity diagrams for the doubling functor are trivial since fy, = 1p. The following example
discusses the associativity and braid axioms for f.

Example 16.3 (Axioms for doubling). Let f be the doubling functor from Definition 16.1. The
associativity diagram, for objects a,b,c € A, is the following.

at+a+b+b+c+ec 94 at+a+b+c+b+ec
[l [l
fl@)+ ) + o) —E @)+ o+ 0)
02 fg-f—lJv f2 03072 (164)
fla+Db)+ f(c) ik fla+b+c)
[l 0304 [l

at+b+a+b+c+ec at+b+ct+a+b+c

In the above diagram, the inner arrows are labeled as structure morphisms of f and the outer arrows
are labeled by their underlying braids, where o; are the elementary braids as in Example 15.9. The
underlying braids for the left-bottom and top-right composites around the boundary of (16.4) are
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shown in the following braid diagrams.

-
r b l[ i [ b z[ "

030402 030904

Since these braids are equal, the Braided Coherence Theorem 11.9 (i) implies that (16.4) commutes
when T = B, and thus also when T = S.
The symmetry axiom for the doubling functor, for objects a,b € A, is the following.

a+a+b+b 72019592 b+b+a+a
fla) + 1) —— 21000 gy )
o le £ o (16.6)
fla+b) f(Bae) fo+a)
a+bJHra+b 750 b—i—a—‘I‘—b-i-a

The above diagram is labeled similarly to (16.4), with inner arrows labeled via structure morphisms
and outer arrows labeled by their underlying braids. The following diagrams use the same conventions
as above and show the underlying braids for the left-bottom and top-right composites around the

boundary of (16.6).
I |-
M ij a6
| | | | |

030102 0202010302

Since these braids are not equal, (16.6) does not generally commute when T = B. That is, for
a general braided monoidal category A, the doubling functor is not necessarily a braided monoidal
functor, although it is a plain monoidal functor.

Note, however, that the underlying permutations of the braids above are equal. Thus, the Symmet-
ric Coherence Theorem 11.9 (i) implies that (16.6) does commute when T = S. That is, the doubling
functor is a symmetric monoidal functor when A is a symmetric monoidal category. o

Remark 16.8. Inthe case T = S, there is a refinement of the Symmetric Coherence Theorem 11.9 (i),
discussed in Section 12. For finitely-generated formal diagrams in a symmetric monoidal category A,
such as those of Example 16.3, Theorem 12.7 shows that it suffices to check the self-permutation of x,
in the sense of Definition 12.6, for each generating object x.

In (16.4), it suffices to check the three self-permutations wg, m, and 77, where D denotes the
formal lift of (16.4) to the free monoidal category on three objects, S{a,b,c}. Each self-permutation

w2 is determined by projecting to the free symmetric monoidal category on the single object z, for
x € {a,b,c}. In the braid diagram (16.5), this corresponds to removing the strands for each object
y # x, and then checking the underlying permutation of the resulting braid.

In both the left-bottom and top-right composites around (16.4), neither instance of a is permuted
past the other. That is, the strands labeled a in (16.5) do not cross. Thus, 72 = 1 for each composite
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around (16.4). Likewise, the self-permutations of b and ¢ are identities for both composites. This is
sufficient for Theorem 12.7 to imply that (16.4) commutes.

The same approach can be used for the composites around (16.6): the self-permutations of both a
and b are trivial, for both composites around (16.6). This is sufficient for Theorem 12.7 to imply that
(16.6) commutes. o

Recall from Remark 10.12, for a symmetric or braided monoidal functor f: A — A’, a lift D of
an f-formal diagram is said to reduce to an A’-formal diagram if it factors through the inclusion of

free objects and morphisms
k: T(obA") — T(obA’, ) (16.9)

where ¢ = fo, denotes the restriction to objects. None of Examples 15.1, 15.5, and 15.9 factor through
K, because the respective lifts involve the ¢-adjoined isomorphisms [¢]q, which are then mapped via
A to identities.

The following provides an example of a monoidal naturality diagram that involves only braid
isomorphisms and monoidal constraints and yet, except for certain trivialities, any lift to generating
morphisms of T(obA, ¢) must factor through x and hence reduce to an A-formal lift. Remark 16.14
and Lemma 16.17 below explain some details and additional subtleties related to this case.

Non-Example 16.10 (Cyclic braiding). Let h denote the quadrupling functor h = f o f, where f
is the doubling functor from Definition 16.1 and Example 16.3. Thus, we have

h(a)=a+a+a+a for ac€A,

and h is a monoidal functor in either the symmetric or braided monoidal cases T € {S,B}. In the
symmetric case, T = S, quadrupling is a symmetric monoidal functor. In other words (Remark 2.10),
h is an S-map, but generally not a B-map.

There is a natural transformation vy with components given by the cyclic braiding of the first
summand past the other three:

Ya = Ba,(a+at+a): P(a) =a+a+a+a—a+a+a+a=h(a). (16.11)

The following is the monoidal naturality diagram for a,b € A, to determine whether v is a monoidal
transformation. Here, we use the notation

Oick = OkOk—1"""04

to denote the braiding of strand ¢ under strands ¢ + 1 through k + 1.

h(a) + h(b) h(a) + h(b)
] a_"_ ]
atatatatbbrbtb—a—cl—atatatatbtbrbtb
1+ Batap+s +1|03:404:5 03:404:5 |1 + Batapts + 1
ata+b+b+at+a+b+b at+a+b+b+a+a+b+d (16.12)
14+ Bap+1 o206 0206 1+ Bap+1
1+ Bap+1 14 Bap+1
a+btatbtatbratb 0233:7 a+b+a+tbtat+brathb
[ [

h(a + b)
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The above is an A-formal diagram, in the sense of Definition 10.8: it admits a lift to T(obA), with
underlying braids shown on the inner labels.

Composing with the inclusion of free objects and morphisms & (16.9), with ¢ = hep, trivially yields
a diagram in T(obA, ¢). However, as discussed in Remark 10.12, the resulting dissolution diagram is
equal to the original lift and does not yield any simplification.

The vertical morphisms in (16.12) are the monoidal constraints for h = f o f, and one would
obtain a simpler dissolution diagram if these were lifted to ¢-adjoined isomorphisms [¢]q. However,
Lemma 16.17 below shows that such morphisms are not generally composable with lifts of ~.

Here, we use the Braided and Symmetric Coherence Theorems 11.9 and 12.7 directly on the A-
formal lift of (16.12). The underlying braids of the left-bottom and top-right composites are shown
below. These braids are distinct; strands 2 and 5 are linked on the left, but not on the right.

| L
’ ;\J\Lﬁ
U

=

a a a a b b b b a a a a b b b b
1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8
01:6 02:70206 03:4 04:5 020603:404:501:305:7

Therefore, the cyclic braiding ~y is generally not a monoidal transformation in the braided case T = B.
For example, if A = B{a,b} is the free braided monoidal category on two objects, then v will not be a
monoidal transformation.

In the symmetric case T = S, checking the underlying permutations in (16.12) simplifies via The-
orem 12.7. The vertical composites have trivial a-permutation and hence the self-permutation of a
under either the left-bottom or top-right composite is the cyclic permutation (1 4 3 2). The same
statements apply to b. This is sufficient for Theorem 12.7 to imply that (16.12) commutes. Thus, the
natural transformation « in (16.11) is monoidal natural in the symmetric case T = S, but generally
not in the braided case, T = B. o

Remark 16.13. In the symmetric case T = S, Non-Example 16.10 can be generalized to show that
any permutation vy € ¥, determines a monoidal natural automorphism of the n-fold sum functor

h"(a)=a+---+a for aecA.

n summands

Here, h™ is a symmetric monoidal functor defined inductively as h™ = (h? + 1) o h»~1, with h? = f
being the symmetric monoidal doubling functor. For objects a,b € A, both the a-permutation and the
b-permutation of the monoidal constraint

K2 h™(a) + R™(b) —> h™(a +b)

are identities. Letting v: h™ —> h"™ also denote the natural transformation induced by ~ € 3,,, both
morphisms v, + v and 7,4, have a-permutation equal to v € ¥, and likewise for b-permutations.
Thus, Theorem 12.7 shows that the monoidal naturality diagram for v commutes for each a,b € A. ¢

In the following discussion, we restrict to the symmetric case, T = S, because the quadrupling
functor is an S-map, but not a B-map. Thus, Definition 10.2 applies to h in the case T =S, but not
in the case T = B. The details of this discussion will require the following observation and subsequent
terminology to exclude certain lifts of the monoidal unit 0 € A and its identity morphism.
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Remark 16.14. In the context of Non-Example 16.10, there are several objects and morphisms of
S(obA, ¢) that are nontrivial lifts of the monoidal unit 0 and its identity morphism. In particular,
there are ¢-adjoined isomorphisms that lift the unit constraint hg = 1p; the monoidal constraints at 0,

(h2)o,0 = 1o: h(0) + h(0) — h(0+0) = 0;

or other such combinations of unit and monoidal constraints of h at 0.

More generally, ¢-objects of the form ([gb](O, cee 0)), or ; products of such objects, will be lifts of 0.
Morphisms between such objects will be lifts of 1, and therefore do not make substantial contributions
to lifts of interest for, e.g., the composites around (16.12). o

Definition 16.15. Suppose A is a symmetric strict monoidal category with unit 0, and ¢: obA —> obA
is a map of sets. An object z € S(obA, ¢) is called tidy if it has no ; factors of the form ([¢](0, e 0))
A composite of morphisms in S(obA, ¢)

T & 1 @, .. & r, for r>1 (16.16)

is called tidy if each z; is a tidy object and each morphism &; is a ; product of generating morphisms.¢

Lemma 16.17. Suppose A = S{a,b} is the free symmetric monoidal category on two objects a and b.
In the context of Non-Ezample 16.10, any tidy lift of (16.12) to S(obA, @), with ¢ = hep, reduces to
an A-formal lift.

Proof. We will use the description of
A:S(obA,¢) — A (16.18)

as shown in the following diagram, which is (14.15) applied to this case and explained further below.

S(obA) —>2 . S(obA)
<bl nl
QS(obA) S(obA, ¢) SA (16.19)
\ \\\
QsA o %
. \\\A
Q+ QA - A
h

Here, the upper left square is a pushout of symmetric monoidal categories and symmetric strict mon-
oidal functors. The dashed arrow A is the unique symmetric strict monoidal functor induced by the
outer composites.

Recalling Explanation 14.4, the generating morphisms of S(obA, ¢) consist of free morphisms, ¢-
morphisms, and formal morphisms, described as follows and explained further below.

o The free objects and free morphisms of S(obA, ¢) are those in the image of &.
o The ¢-objects and ¢-morphisms of S(obA, @) are those in the image of (;AS

e The formal morphisms of S(obA, ¢) are symmetry isomorphisms for the product ; induced by
concatenation of tuples (Notation 13.1).

Since S(obA, ¢) is obtained as a pushout, free objects and morphisms that are in the image of S¢
are identified with the corresponding ¢-objects and ¢-morphisms in the image of ¢*. Furthermore,
the symmetry isomorphisms in S(obA) and QS(obA) are identified with the corresponding formal
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morphisms of S(obA, ¢). In particular, formal morphisms between free objects are identified with the
corresponding permutation isomorphisms of S(obA).

Below, we will show that every lift of (16.12) to a tidy composite in S(obA, ¢) factors through x.
The argument uses the following two invariants that are associated to any map of sets ¢: obA —> obA.
The hypothesis that ¢ is given by quadrupling will be used below, when we apply these invariants to
the case of interest.

o Each morphism in A = S{a, b} has an underlying a-permutation and an underlying b-permutation,
described in Definition 11.6. Therefore, each morphism £ of S(obA, ¢) has underlying a- and b-
permutations given by those of A&.

« Each object of S(obA, ¢) has an a-signature and a b-signature that are elements of S(IN), explained
below.

For objects of A, let v* denote the composite
obA =ob(S({a,b})) — S({a}) — N

given first by sending b to 0 and then taking isomorphism classes of objects. Let v* denote the similar
composite that first sends a to 0 and then takes isomorphism classes of objects. Each v € {v?, vt}
induces a free functor

S(obA) —2%> SN

that is given by applying v entry-wise to tuples of objects of A. The free functor Sv is symmetric
strict monoidal with respect to the concatenation of tuples, denoted ; as in Notation 13.1. Define the
a-signature and b-signature of an object (¢) = (¢;)"_; in S(obA) as the tuples of natural numbers

sgn(c) = (Sv*){c) = <V“(ci)>?:1 and
16.20
sgnb<c> = (Sub)<c> = <Vb(ci)>:;1 ( )

for ¢; in obA.

To define the a- and b-signatures of general objects x € S(obA, ¢), recall from Explanation 14.4
that the upper square of (16.19) remains a pushout after taking the underlying monoid of objects.
That is, applying the functor

ob: S-Algs —> Mon

as in (14.2) preserves pushouts because it is left adjoint to indisc.

Now recall from Definition 13.4 that the objects of QA are given by those of the free algebra SA.
Therefore, the monoid homomorphism S¢ in the following diagram of monoids induces the dashed
arrow A’, factoring

obA: ob(S(obA, ¢)) —> ob(A)

through ob (SA). Here, the two unlabeled arrows are induced by inclusion of objects obA —— A.

S¢

ob(S(obA)) ob(S(obA))
Cbl K[ \
</Z5\ A Sv®
ob(QS(obA)) ob(S(obA4, ¢)) R R ob(SA) ?» ob(SN) (16.21)
Tob(QsA s
ob(Qs4) ob(SA) +
Q™ g
ob(QA) = ob(A)
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Define the a-signature and b-signature of a general object x € S(obA, ¢) via the corresponding signature
of A'(x), as follows:
sgn®(z) = (Sv*)A'(z) and sgn’(z) = (SV¥)A/(x). (16.22)

This agrees with the previous definitions (16.20) for free objects x € S(obA) since commutativity of
(16.21) requires that A’k is the identity on objects. Note that these signatures are invariants of objects
only; they do not extend to all morphisms of S(obA, ¢). This completes the definitions of a- and b-
signature.

Now we apply the underlying permutation and signature invariants to complete the proof. The
following observations, for objects z and y in S(obA, ¢), make use of the hypothesis ¢ = hop and details
of the diagram (16.12).

(1) If x is a lift of an object in (16.12), or isomorphic to such a lift, then the sum of the entries in
sgn?(z), respectively the sum of the entries of sgn®(z), is equal to four.

(2) If = is a ¢-object, then each entry of sgn®(z), respectively sgn®(x), is divisible by four. This
follows from Explanation 14.17 because h is the quadrupling functor: A’ sends each ¢-object to
an object of SA for which each entry is h(al) for a certain object ai € A.

(3) If x is a ¢-object such that each entry of sgn®(x) and each entry of sgn®(z) is zero, then z is a ;
product of objects of the form ([¢](0,...,0)). This follows from the same explanation of A’ as
above, because every nonzero object of SA has nonzero a- or b-signature.

(4) The underlying a-permutation of each composite around (16.12) is (1 4 3 2), which is an odd
permutation. The same holds for the underlying b-permutations around (16.12).

(5) If £&: @ —> y is a free or formal morphism of S(obA, ¢), then sgn®(z) and sgn®(y) have the same
set of entries, possibly in a permuted order. A similar observation holds for sgn®(z) and sgn®(y).

(6) If £: ¢ —> y is a ¢-morphism in S(obA, ¢), then Explanation 14.17 shows that A¢ is given either
by applying h to certain permutations, or by the monoidal constraints of h. Since h is given
by quadrupling, and the underlying a-permutation of the monoidal constraint hs is trivial, the
underlying a-permutation of A€ is even in either case. Likewise, the underlying b-permutation of
A¢ is also even.

(7) If all the entries of sgn®(x) are even, and &: x —> y is a ; product of generating morphisms
of S(obA, ¢), then the underlying a-permutation of £ is even. The ; factors of £ that are free
or formal morphisms have underlying a-permutations that are even because they are given by
permuting entries of tuples or factors of the ; product. The ; factors of £ that are ¢-morphisms
have underlying a-permutations that are even by observation (6). A similar observation holds if
all the entries of sgn®(x) are even: then the underlying b-permutation of ¢ is even.

Now suppose that

To —2> 3y —E e =T g (16.23)

is a tidy composite in S(obA, ¢) lifting either of the composites around (16.12). Recalling Defini-
tion 16.15, the assumption that (16.23) is tidy means that each &; is a product of generating mor-
phisms and none of the x; have ; factors of the form ([QS](O, cee O)) The observations above lead to
the following conclusions.

i. The a-signature sgn®(zo) must have at least one odd entry. If not—if all the entries of sgn®(z)
are even—then observations (2), (5), (6), and (7) imply that the underlying a-permutation of &;
is even and that all the entries of sgn®(z1) are even. Repeating this reasoning, the underlying
a-permutation of each &; is even, but this contradicts observation (4). Likewise, sgn®(zo) must
have at least one odd entry.

/ﬂ? Compositionality, Volume 7, Issue 3 (2025) 66



Gurski and Johnson Universal pseudomorphisms, with applications to diagrammatic coherence for braided and symmetric monoidal functors

Observations (1), (2), and (3), combined with the previous conclusion, imply that any ¢-object
factors of xp would have a- and b-signatures whose entries are all zeros. By (3), this would
contradict the assumption that zq is a tidy object.

Therefore, o must be a free object such that each of sgn®(x() and sgn®(x() consists of entries
that are all less than four and not all even.

tv. The previous conclusion implies that &5 must be a free morphism, since a product of free ob-
jects or morphisms is free, and a formal morphism between free objects is identified with the
corresponding free morphism.
v. Hence, 1 must be a free object such that each of sgn®(x;) and sgn®(z;) consists of entries that
are all less than four and not all even.
vi. Repeating the conclusions above, each morphism &; and object z; in (16.23) is free.
This completes the proof. O
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