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Towards a theory of natural directed paths
Philippe Gaucher

Université Paris Cité, CNRS, IRIF, F-75013, Paris, France

We introduce the abstract setting of presheaf category on a thick category of cubes.
Precubical sets, symmetric transverse sets, symmetric precubical sets and the new
category of (non-symmetric) transverse sets are examples of this structure. All these
presheaf categories share the same metric and homotopical properties from a directed
homotopy point of view. This enables us to extend Raussen’s notion of natural d-path for
each of them. Finally, we adapt Ziemiański’s notion of cube chain to this abstract setting
and we prove that it has the expected behavior on precubical sets. As an application,
we verify that the formalization of the parallel composition with synchronization of
process algebra using the coskeleton functor of the category of symmetric transverse
sets has a category of cube chains with the correct homotopy type.
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1 Introduction
Presentation
Precubical sets are de facto the standard geometric model for directed homotopy for concurrency
[2]. In fact, most of them are even non-positively curved in the sense of [12, Definition 1.28 and
Proposition 1.29], or in the worst case proper in the sense of [20, page 499]. The motivation for
introducing symmetric transverse sets in [6] is to formalize the parallel product with synchronization
for process algebra using the associated coskeleton functor [6, Theorem 4.1.8]. Indeed, it is
impossible to use the coskeleton functor associated with the category of precubical sets because of
its pathological behavior (see [5, Proposition 3.15] and [6, Definition 3.1.3]). However, precubical
sets still remain sufficient to model this parallel product by tweaking the coskeleton functor of this
category (see [5, Section 3.3]).

Symmetric transverse sets share with precubical sets similar metric and homotopical properties
by [10]. Indeed, their geometric realization carries a Lawvere metric structure which enables us
to extend Raussen’s notion of (tame) natural d-path originally defined for precubical sets [17,
Definition 2.14] [20, Definition 5.3] [21, Section 2.9]. Moreover, the full subcategory of representable
objects of this presheaf category is c-Reedy in the sense of [19, Definition 8.25], like the box category
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P. Gaucher Towards a theory of natural directed paths

(see Definition 2.3) for the precubical sets (the box category is even direct Reedy in the sense of [14,
Definition 15.1.2]). This makes possible to compare in [10, Theorem 7.4] the natural realization of
a symmetric transverse set with other realization functors and to generalize homotopical results
proved in [4] and [9] for precubical sets.

The technical contribution of this note is threefold. Firstly, we explain why precubical sets and
symmetric transverse sets belong to a larger family of presheaf categories on a thick category of
cubes (see Definition 2.10). This family of presheaf categories contains also the symmetric precubical
sets of [13] and a new category of non-symmetric transverse sets. Symmetric transverse sets are
presheaves on a thick category of cubes which turns out to be, for tautological reasons, the greatest
one for the inclusion.

Theorem. (Proposition 2.13, Theorem 2.16 and Theorem 2.17) There exists a greatest thick
category of cubes for the inclusion not containing the symmetry maps.

Secondly, we prove that all results of [10] are valid for all presheaf categories on a thick category
of cubes.

Theorem. (Section 3 and more specifically Theorem 3.18) All metric and homotopical results of
[10] are valid for the category AopSet of A-sets when A is a thick category of cubes.

Thirdly, we obtain a statement which coincides with (a part of) [21, Theorem 7.5] when A is
the box category used to define the precubical sets:

Theorem. (Corollary 4.12) Let K be a precubical set. Let A be a thick category of cubes. The
space of tame natural d-paths of the free A-set LA(K) generated by K is homotopy equivalent to
the classifying space of the small category of Ziemiański’s cube chains of the free A-set LA(K)
generated by K.

This leads to the following application:

Theorem. (Section 5) The formalization of the parallel composition with synchronisation of [6]
using the coskeleton functor of the category of symmetric transverse sets has a category of cube
chains which gives the correct space of tame natural d-paths up to homotopy.

The formal setting of presheaf category on a thick category of cubes is a first step towards an
axiomatization of the notion of tame natural d-path. The next step would be to find a way of
taking into account the globular version of this notion as it is introduced in [11]. This could lead to
a general framework unifying all geometric approaches of directed homotopy for concurrency 1.

Acknowledgments
I am grateful to the anonymous referee for pointing out the flaw in the proof of Theorem 4.6 (which
requires to add Proposition 4.3) and for the suggestions to improve the presentation of the paper.

2 Thick category of cubes
Definition 2.1. [15] The small monoidal category ([0,∞],⩾,+, 0) has for objects the interval
[0,∞] and there is a unique arrow x→ y whenever x ⩾ y. It is equipped with the monoidal structure
induced by addition. A small category enriched over ([0,∞],⩾,+, 0) is called a Lawvere metric
space. The category of Lawvere metric spaces is denoted by LvMet.

Let us now expand Definition 2.1. A Lawvere metric space (X, d) is a set X equipped with a
map d : X ×X → [0,∞] called a Lawvere metric such that:

• ∀x ∈ X, d(x, x) = 0

• ∀(x, y, z) ∈ X ×X ×X, d(x, y) ⩽ d(x, z) + d(z, y).

1The expression “directed homotopy” has several quite distinct meanings. It is the reason why I add “for
concurrency” on purpose.
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A map f : (X, d)→ (Y, d) of Lawvere metric spaces is a function f : X → Y which is non-expansive,
i.e. ∀(x, y) ∈ X ×X, d(f(x), f(y)) ⩽ d(x, y).

Notation 2.2. The category of partially ordered sets or posets together with the strictly increasing
maps is denoted by PoSet+.

Let [0] = {()} and [n] = {0 < 1}n for n ⩾ 1 equipped with the product order. Let 0n = (0, . . . , 0)
(n times) and 1n = (1, . . . , 1) (n times) with n ⩾ 0. By convention, one has {0 < 1}0 = [0] = {()}.
In the sequel, for all n ⩾ 1, both the sets [n] and [0, 1]n are equipped with the product order. By
convention, [0, 1]0 is a singleton.

Let δαi : [n− 1]→ [n] be the coface map defined for 1 ⩽ i ⩽ n and α ∈ {0, 1} by

δαi (x1, . . . , xn−1) = (x1, . . . , xi−1, α, xi, . . . , xn−1).

Definition 2.3. The box category □ is the subcategory of PoSet+ generated by the coface maps
δαi .

Let x = (x1, . . . , xn) and x′ = (x′
1, . . . , x

′
n) be two elements of [0, 1]n with n ⩾ 1. Let

−→
d1 : [0, 1]n × [0, 1]n → [0,∞] be the function defined by

−→
d1(x, x′) =


n∑
i=1
|xi − x′

i| if x ⩽ x′

∞ otherwise.

Let n ⩾ 0. The function −→d1 : [0, 1]n × [0, 1]n → [0,∞] is a Lawvere metric by [10, Proposition 1.5].
It restricts to a Lawvere metric on {0 < 1}n.

Definition 2.4. [6, Definition 2.1.5] A map f : [m]→ [n] of PoSet+ is cotransverse if

For all x, y ∈ [m],−→d1(x, y) = 1 implies −→d1(f(x), f(y)) = 1.

Denote by □̂S the subcategory of PoSet+ consisting of the cotransverse maps.

A cotransverse degeneracy map is a cotransverse map [n]→ [n] for n ⩾ 2 which is not one-to-one.
Proposition 2.5 and Proposition 2.6 are important for the sequel.

Proposition 2.5. [6, Proposition 3.1.14] Let 0 ⩽ m ⩽ n. Every cotransverse map f : [m]→ [n]
factors uniquely as a composite [m] ψ−→ [m] ϕ−→ [n] with ϕ ∈ □ and ψ cotransverse.

Proposition 2.6. Let f : [m] → [n] be a cotransverse map. Let δ : [n] → [p] be a map of □.
Suppose that δf ∈ □. Then f ∈ □.

Proof. There exists a function s : [p] → [n] obtained by removing some coordinates such that
sδ = Id[n]. We deduce that f = s(δf). From δf ∈ □, we then deduce that f ∈ □.

Let σi : [n]→ [n] be the function defined for 1 ⩽ i ⩽ n− 1 and n ⩾ 2 by

σi(x1, . . . , xn) = (x1, . . . , xi−1, xi+1, xi, xi+2, . . . , xn).

These maps are called the symmetry maps [13]. The symmetry maps are clearly cotransverse. This
is the reason of the S in the notation □̂S .

Notation 2.7. The subcategory of PoSet+ generated by the coface maps and the symmetry maps
is denoted by □S.

Definition 2.8. [6, Definition 2.1.7 and Definition 2.1.12] A category of cubes is a small category
A satisfying the inclusions

□ ⊂ A ⊂ □̂S .

A presheaf on A is called an A-set. The category of A-sets is denoted by AopSet.
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The category □, □S and □̂S are examples of categories of cubes. The □-sets are the precubical
sets [1]. The □S-sets are the symmetric precubical sets (see [13]). The □̂S-sets are the symmetric
transverse sets introduced in [10].

The inclusion of small categories jA : □ ⊂ A induces by precomposition a forgetful functor

ωA : AopSet −→ □opSet

which has a left adjoint
LA : □opSet −→ AopSet

given by the left Kan extension along jA. For a precubical set K, the A-set LA(K) is called the
free A-set generated by K.

Proposition 2.9. The functor LA : □opSet→ AopSet is faithful.

Proof. By [6, Proposition 2.1.15], the identity map IdLA(K) induces for all precubical sets K a
natural inclusion of precubical sets K ⊂ ωALA(K). Let f, g : K → L be two maps of precubical
sets such that LA(f) = LA(g). Then ωALA(f) = ωALA(g). Thus

f = ωALA(f)↾K = ωALA(g)↾K = g.

Let K be an A-set. The set K([n]) is denoted by Kn. The vertex of x(0n) ∈ K0 is called the
initial state of the n-cube c and the vertex x(1n) ∈ K0 is called the final state of the n-cube c. For
any map k : [m]→ [n] of A and any A-set K, denote by k∗ : Kn → Km the function induced by k.
Let p ⩾ 0. The p-cube A[p] is by definition the presheaf A(−, [p]). For any A-set K, an element
x ∈ Kn corresponds by the Yoneda lemma to a map of A-sets x : A[n]→ K. For any A-set K, the
data

(K⩽n)p =
{
Kp if p ⩽ n

∅ if p > n.

assemble into an A-set denoted by K⩽n because A([m], [n]) = ∅ when m > n. Let

∂A[n] = A[n]⩽n−1

for all n ⩾ 0. Let A = a1 < · · · < ak ⊂ {1, . . . , n} and ϵ ∈ {0, 1}. The iterated face map is defined
by ∂ϵA = ∂ϵa1

∂ϵa2
. . . ∂ϵak

with ∂ϵp = (δϵp)∗.

Definition 2.10. A category of cubes A is thick if the factorization of Proposition 2.5 is a
factorization in A, i.e f ∈ A implies ψ ∈ A.

The category of cubes □̂S is thick for tautological reasons. The terminology must be understood
as follows. A thick category of cubes A is morally a thick subcategory of the category of cubes
□̂S : it is an analogy with the notion of thick subcategory of a triangulated category. Theorem 2.16
provides other examples of thick categories of cubes.

Proposition 2.11. Let A be a thick category of cubes. For n ⩾ 0, let

jnA : (□↓[n]) ⊂−→ (A↓[n])

be the functor between comma categories induced by the inclusion jA : □ ⊂ A. Then for all n ⩾ 0
and for all objects k of (A↓[n]), the comma category (k↓jnA) has an initial object.

Proof. Let k : [p]→ [n]. Using Proposition 2.5 and since A is thick by hypothesis, we obtain the
commutative diagram of A

[p] [p]

[n] [n]

k

f

δ∈□
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which is an element of the comma category (k↓jnA). Consider another element of (k↓jnA) depicted
by the following commutative diagram of solid arrows of A:

[p] [p]

[p] [q]

[n] [n]

g

δ′′∈□

k

f ′

δ′∈□

Since A is thick, write f ′ = δ′′g with δ′′ ∈ □. We obtain δf = k = δ′f ′ = δ′δ′′g. By uniqueness of
the factorization of Proposition 2.5, we obtain δ = δ′δ′′ and f = g. We have obtained the map of
(k↓jnA)

[p] [p]

[p] [q]

[n] [n]

[n] [n]

k

f

δ′′

δ

f ′

δ′

k

Moreover, the map δ′′ : [p] → [q] is unique because it is given by the factorization of f ′ using
Proposition 2.5. Hence the proof is complete.

Proposition 2.12. Let A be a category of cubes. For all n ⩾ 0, one has the isomorphism of A-sets

LA(□[n]) ∼= A[n].

If moreover A is thick, then there is the isomorphism of A-sets

LA(∂□[n]) ∼= ∂A[n]

for all n ⩾ 0.

Proof. The first statement is [6, Proposition 2.1.14]. Let n ⩾ 0. Since LA is colimit-preserving,
there is a natural map of A-sets (□<n and A<n are the full subcategory of □ and A respectively
containing only [0], . . . , [n− 1]):

LA(∂□[n]) ∼= lim−→
(□<n↓[n])

LA(□[p]) ∼= lim−→
(□<n↓[n])

A[p]→ lim−→
(A<n↓[n])

A[p] ∼= ∂A[n].

The above arrow is an isomorphism by Proposition 2.11 and [16, Theorem 1 p. 213].

Proposition 2.13. The set of maps

□̂ = {ϕ : [m]→ [n] ∈ □̂S | ∀δ : [p]→ [m] ∈ □, ϕδ one-to-one ⇒ ϕδ ∈ □}

is closed under composition and contains all identities of □̂S. There are the inclusions □ ⊂ □̂ ⊂ □̂S.
In other terms, the set of maps □̂ yields a well-defined category of cubes. The only one-to-one
functions of □̂ are the maps of □. In particular, the only bijective map of □̂([n], [n]) is Id[n] for all
n ⩾ 0: □̂ does not contain any symmetry map.

Proof. Let ϕ1, ϕ2 ∈ □̂ such that ϕ1ϕ2 exists. Let δ ∈ □ such that ϕ1ϕ2δ exists and is one-to-
one. Then ϕ2δ is a one-to-one function. Thus ϕ2δ ∈ □, ϕ2 belonging to □̂. We deduce that
ϕ1ϕ2δ = ϕ1(ϕ2δ) ∈ □ since ϕ1 ∈ □̂. This means that ϕ1ϕ2 ∈ □̂. For all ϕ = Id, one has ϕδ = δ ∈ □.
Hence □̂ contains all identity maps. Finally suppose that f : [m]→ [n] ∈ □̂ is one-to-one. Then
f Id[m] is one-to-one, which implies that f ∈ □.

Compositionality, Volume 7, Issue 6 (2025) 5



P. Gaucher Towards a theory of natural directed paths

Definition 2.14. The □̂-sets are called transverse sets.

The following maps, introduced in [6, Definition 3.1.11], are examples of cotransverse degeneracy
maps. Let γi : [n]→ [n] be the function defined for 1 ⩽ i ⩽ n− 1 and n ⩾ 2 by

γi(x1, . . . , xn) = (x1, . . . , xi−1,max(xi, xi+1),min(xi, xi+1), xi+2, . . . , xn).

Notation 2.15. [6, Theorem 3.1.16] The category of cubes generated by the δαi , σi and γi is
denoted by □.

Unlike □̂, the category of cubes □ has a conjectural presentation by generators and relations [6,
Proposition 3.1.20 and Conjecture 3.1.21].

Theorem 2.16. The categories of cubes □, □S, □̂ and □ are thick.

Proof. Every map f : [m]→ [n] of □ factors uniquely in □̂S as a composite [m]→ [m]→ [n] such
that the right-hand map [m]→ [n] belongs to □. Since f = f Id[m], we deduce by uniqueness that
the left-hand map belongs to □. Hence the category □ is thick.

Every map f : [m] → [n] of □S factors uniquely in □̂S as a composite [m] → [m] → [n] such
that the right-hand map [m]→ [n] belongs to □. Since all maps of □S are one-to-one, the left-hand
map [m]→ [m] is one-to-one, hence bijective for cardinality reason. We deduce that the left-hand
map is a composite of symmetry maps, which means that it belongs to □S . Thus the category □S
is thick.

Consider a map f : [m] → [n] of □̂. It factors in □̂S as a composite [m] → [m] → [n] such
that the right-hand map δ : [m]→ [n] belongs to the box category. Denote by g : [m]→ [m] the
left-hand map. Let δ′ : [p]→ [m] ∈ □ such that gδ′ exists and is one-to-one. Then fδ′ = δ(gδ′) is
one-to-one, being the composite of two one-to-one functions. Since f ∈ □̂, we deduce that δgδ′ ∈ □.
Using Proposition 2.6, we deduce that gδ′ ∈ □. We have proved that g ∈ □̂. This means that the
category of cubes □̂ is thick.

Finally, one has γiδαj = δαj γi for j ⩽ i− 1 and j ⩾ i+ 2, γiδ0
i = δ0

i+1, γiδ1
i = δ1

i , γiδ0
i+1 = δ0

i+1
and γiδ

1
i+1 = δ1

i . Thus, □ is thick.

It is possible to obtain even more examples of thick categories of cubes by removing the symmetry
maps from □, and also by adding one by one other cotransverse degeneracy maps in the set of
generators. The only interest of the category of cubes □ for this note is to show that it is really
easy to construct other thick categories of cubes. Theorem 2.17 gives a characterization of □̂.

Theorem 2.17. Let A be a thick category of cubes which does not contain the symmetry maps, i.e.
the only bijective map of A([n], [n]) is Id[n] for all n ⩾ 0. Then A ⊂ □̂. In other terms, □̂ is the
greatest thick category of cubes for the inclusion which does not contain any symmetry map.

Proof. Let ϕ : [m]→ [n] be a map of A. Let δ : [p]→ [m] ∈ □ such that ϕδ is one-to-one. Write
ϕδ = δ′ϕ′ with δ′ : [p] → [n] ∈ □ and ϕ′ : [p] → [p] ∈ A, the category of cubes A being thick by
hypothesis. Since ϕδ is one-to-one, the function ϕ′ : [p] → [p] is one-to-one. By hypothesis, this
implies that ϕ′ is the identity map. Thus ϕδ = δ′ ∈ □. We have proved that ϕ ∈ □̂.

To summarize, □̂ is the greatest thick category of cubes for the inclusion not containing the
symmetry maps and □̂S is the greatest thick category of cubes for the inclusion.

For the sequel, A denotes a fixed thick category of cubes. Note that with the choice A = □ (the
least thick category of cubes), all following results remain valid. However, their formulation is not
necessarily the best one.

3 Metric and homotopical study
For the ease of the reader, we recall a few definitions from [19] before generalizing the results of
[10]. The point is not to overload this section but to make it comprehensible.

Definition 3.1. [19, Definition 6.12] Let C be a category equipped with an ordinal degree function
on its objects.
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• A morphism is level if its domain and codomain have the same degree.

• The degree of a factorization (h, g) of a morphism f is the degree of the intermediate object
(i.e. the domain of h which is the codomain of g).

• A factorization of a morphism f is fundamental if its degree is strictly less than the degrees
of both the domain and codomain of f .

• A morphism is basic if it does not admit any fundamental factorization.

Definition 3.2. [19, page 37] Let C be a category equipped with an ordinal degree function on its
objects. The δ-th stratum of C, denoted by C=δ, is the subcategory of C generated by the objects of
degree δ and by the basic morphisms between them.

Definition 3.3. Let C be a category. Let f be a map of C. The category of factorizations of f has
for objects the pairs (h, g) such that hg = f and for morphisms k : (h, g)→ (h′, g′) the morphisms
k of C (which are called connecting morphisms) such that there is a commutative diagram

• • •

• • •

g′
h′

g

k

h

Definition 3.4. [19, Definition 8.25] A c-Reedy category C is a small category equipped with an
ordinal degree function d on its objects, and subcategories ←→C , −→C and ←−C containing all objects such
that

1. ←→C ⊆ −→C ∩←−C .

2. Every morphism in ←→C is level.

3. Every morphism in −→C \←→C strictly raises degree, and every morphism in ←−C \←→C strictly lowers
degree.

4. Every morphism f factors as −→f ←−f , where −→f ∈ −→C and ←−f ∈ ←−C . The subcategory of the
category of factorizations of f generated by the pairs (h, g) with h ∈ −→C and g ∈ ←−C and such
that the connecting morphisms belong to ←→C is connected for all f .

5. For any object x and any degree δ < d(x), the functor ←−C (x,−) :←→C =δ → Set is a coproduct
of retracts of representables.

Notation 3.5. Let
−→
A = A,
←→
A =←−A =

∐
n⩾0
{f : [n]→ [n] | f ∈ A}.

We consider the degree function d([n]) = n for all n ⩾ 0.

Every morphism f : [m] → [n] of A is basic since every factorization of f as a composite
[m]→ [p]→ [n] implies that m ⩽ p ⩽ n, and therefore that every factorization is not fundamental:
p < min(m,n) = m is impossible indeed. Hence, for all n ⩾ 0, the n-th stratum A=n is the full
subcategory of A having one object [n]. Moreover, one has

A=n([n], [n]) = A([n], [n])

for all n ⩾ 0.

Proposition 3.6. The small category A is c-Reedy.

Compositionality, Volume 7, Issue 6 (2025) 7
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Proof. Let f be a map of A. Consider the subcategory Ff of the category of factorizations of
f generated by the pairs (h, g) such that h ∈ −→A and g ∈

←−
A . Note that the connecting maps

necessarily belong to ←→A since ←→A = ←−A . By [10, Proposition 5.8] and since the factorization of
Proposition 2.5 restricts to a factorization in A, the category Ff has a final object. The rest of
the proof goes like the proof of [10, Proposition 5.9]. Let us summarize the argument. One has
←→
A ⊂

−→
A ∩

←−
A (first axiom). Every morphism of ←→A is degree-preserving (second axiom). Every

morphism of −→A\←→A strictly raises degree and every morphism of ←−A\←→A = ∅ strictly lowers degree
(third axiom). The category Ff is connected since it has a final object (fourth axiom). For every
n ⩾ 0, and any degree m < n, the functor ←−A([n],−) : A=m → Set is an (empty) coproduct of
retracts of representables because A([n], [m]) = ∅ (fifth axiom).

Notation 3.7. Let C be a small category. Let M be a locally small category. The category of
functors from C to M together with the natural transformations is denoted by MC.

Notation 3.8. Let n ⩾ 0. Following the notations of [19, page 37], let

∂nA([p], [q]) =
∫ [m]∈A<n

A([m], [q])×A([p], [m])

The latching and matching object functors Ln,Mn :MA →MA=n are given by

(MnA)[n] =
∫

[m]∈A
A([m])∂nA([n],[m])

(LnA)[n] =
∫ [p]∈A

∂nA([p], [n]).A([p])

We obtain:

Theorem 3.9. Let M be a model category. Suppose that the projective model structure on MA=n

exists for all n ⩾ 0. There exists a unique model structure on MA such that

• The weak equivalences are objectwise.

• A map A → B of MA is a fibration (trivial fibration resp.) if for all n ⩾ 0, the map
A([n])→ (MnA)[n] ×(MnB)[n] B([n]) is a fibration (trivial fibration resp.) of M.

• A map A→ B ofMA is a cofibration (trivial cofibration resp.)if for all n ⩾ 0, LnB⊔LnAA→
B is a projective cofibration (trivial cofibration resp.) of the projective model structure of
MA=n .

This model structure is called the c-Reedy model structure of MA.

Proof. By Proposition 3.6 and [19, Theorem 8.26], the small category A is almost c-Reedy in the
sense of [19, Definition 8.8]. The proof is complete thanks to [19, Theorem 8.9].

Proposition 3.10. One has

∂nA([p], [q]) =
{
∅ if p > q or n ⩽ p

A([p], [q]) if p ⩽ q and p < n

Proof. It is mutatis mutandis the proof of [10, Proposition 5.13]: it suffices to change the category
of cubes in the proof and to use Proposition 2.5 which restricts to a factorization in A by definition
of a thick category of cubes.

Theorem 3.11. Let M be a model category. Suppose that the projective model structure on MA=n

exists for all n ⩾ 0. Then the projective model structure on MA exists and coincides with the
c-Reedy model structure.

Proof. The proof follows the road map of the proof of [10, Theorem 5.17] and makes use of
Theorem 3.9 and Proposition 3.10.
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Notation 3.12. The category of ∆-generated spaces or of ∆-Hausdorff ∆-generated spaces (cf.
[7, Section 2 and Appendix B]) is denoted by Top. There are three well-known model category
structures on it, the {q, h,m}-model category structures.

Definition 3.13. [10, Definition 3.2] Let f = (f1, . . . , fn) : [n]→ [n] be a cotransverse map. Let
T(f) : [0, 1]n → [0, 1]n be the map defined by

T(f)(x1, . . . , xn) = (T(f)1(x1, . . . , xn), . . . ,T(f)n(x1, . . . , xn))

with
T(f)i(x1, . . . , xn) = max

(ϵ1,...,ϵn)∈f−1
i

(1)
min{xk | ϵk = 1}

for all 1 ⩽ i ⩽ n.

Notation 3.14. For δαi : [n− 1]→ [n] ∈ □, let

T(δαi ) =
{

[0, 1]n−1 → [0, 1]n

(ϵ1, . . . , ϵn−1) 7→ (ϵ1, . . . , ϵi−1, α, ϵi, . . . , ϵn−1)

for all n ⩾ 1 and α ∈ {0, 1}.

The three mappings [n] 7→ [0, 1]n for n ⩾ 0, f : [n] → [n] ∈ A 7→ T(f) and δαi : [n − 1] →
[n] 7→ T(δαi ) for n ⩾ 1 give rise to a functor from A ⊂ □̂S to Top denoted by |A[∗]|geom by [10,
Theorem 3.9] and to a functor from A ⊂ □̂S to LvMet denoted by |A[∗]|−→

d1
by [10, Theorem 3.16].

Let K be an A-set. Let

|K|geom =
∫ [n]∈A

Kn.|A[n]|geom and |K|−→
d1

=
∫ [n]∈A

Kn.|A[n]|−→
d1
.

These give rise to two colimit-preserving functors from A-sets to topological spaces and Lawvere
metric spaces respectively. The latter functor factoring as a composite AopSet → □̂opS Set →
LvMet, we define the notion of (tame or not) natural d-path in the geometric realization |K|geom
like in [10, Section 4]. In fact, by using the inclusion A ⊂ □̂S and the fact that A is thick, we can
mimick all constructions of [10] and recover, thanks to Theorem 3.11, the results already proved for
□̂S . More precisely, we obtain what follows.

Definition 3.15. [3, Definition 4.11] A flow is a small semicategory enriched over the closed
monoidal category (Top,×). The corresponding category is denoted by Flow. The objects are called
states and the morphisms execution paths. The set of states of a flow X is denoted by X0. The
space of execution paths from α to β of a flow X is denoted by Pα,βX.

There is an inclusion functor PoSet+ ⊂ Flow such that there is an execution path from α to β
if and only if α < β.

Let r ∈ {q,m, h}. The category Flow is equipped with its r-model structure [8, Theorem 7.4].
The weak equivalences of the r-model structure are the maps of flows f : X → Y inducing a bijection
on states and a weak equivalence of the r-model structure of Top for each map Pα,βX → Pf(α),f(β)Y
for (α, β) running over X0 ×X0. The fibrations of the r-model structure are the maps of flows
f : X → Y inducing a fibration of the r-model structure of Top for each map Pα,βX → Pf(α),f(β)Y
for (α, β) running over X0 ×X0. The three model category structures of Flow are accessible in
the sense of [18, Definition 5.1]. The q-model structure of Flow is even combinatorial.

Definition 3.16. Let r ∈ {q,m, h}. A functor F : AopSet→ Flow is a r-realization functor if it
satisfies the following properties:

• F is colimit-preserving.

• For all n ⩾ 0, the map F (∂A[n])→ F (A[n]) is a r-cofibration of Flow.

• There is a map F (A[∗])→ {0 < 1}∗ in FlowA which is an objectwise weak equivalence of the
r-model structure of Flow.
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Definition 3.17. An A-set K is cellular if the canonical map ∅→ K is a transfinite composition
of pushouts of the maps ∂A[n] → A[n] for n ⩾ 0. An A-set K is cofibrant if it is a retract of a
cellular A-set.

The composite functor A ⊂ □̂S → Flow taking [n] to the flow |□S [n]|nat defined in [10,
Proposition 7.1] induces a colimit-preserving functor

|K|nat =
∫ [n]∈A

Kn.|□S [n]|nat

from AopSet to Flow which is a m-realization functor by [10, Theorem 7.4]. The composite functor
A ⊂ □̂S → Flow taking [n] to the flow ({0 < 1}n)cof , where (−)cof is a q-cofibrant replacement of
Flow, induces a colimit-preserving functor

|K|q =
∫ [n]∈A

Kn.({0 < 1}n)cof

from AopSet to Flow which is a q-realization functor by [10, Theorem 6.7].

Theorem 3.18. There exists an m-realization functor F : AopSet → Flow and two natural
transformations inducing bijections on the sets of states

| − |q ⇐= F (−) =⇒ | − |nat

such that for all cofibrant A-sets K and all (α, β) ∈ K0×K0, there is the zigzag of natural homotopy
equivalences between m-cofibrant topological spaces

Pα,β |K|q Pα,βF (K) Pα,β |K|nat.≃ ≃

Proof. We follow the proof of [10, Theorem 7.4]. Details are left to the reader.

4 Ziemiański’s cube chain
We define at first the category of cube chains of an A-set. We make the link with Ziemiański’s
original notion in Corollary 4.7.

Notation 4.1. Let n ⩾ 0. Let Seq(n) be the set of sequences of positive integers n = (n1, . . . , np)
with n1 + · · ·+ np = n. For n ∈ Seq(n), let

Vert(n) =
{ i=j∑
i=1

nj | 0 ⩽ j ⩽ p

}
the set of vertices of n. The number |n| = n is the length of n and ℓ(n) = p is the number of
elements of n.

Definition 4.2. Let n ∈ Seq(n) with n ⩾ 0. The n-cube is the A-set

A[n] = A[n1] ∗ · · · ∗ A[np]

where the notation ∗ means that the final state 1ni of the A-set A[ni] is identified with the initial
state 0ni+1 of the A-set A[ni+1] for 1 ⩽ i ⩽ p− 1.

The category of posets being cocomplete, being locally presentable, the vertices of the n-cube
can be equipped with the poset structure induced by the one on each A[ni]0 = {0 < 1}ni .

The set Vert(n) is in bijection with the set consisting of the initial states of the A[ni] for
1 ⩽ i ⩽ p and the final state of A[np] viewed as subobjects of A[n]. For all p, q ∈ Vert(n), p ⩽ q as
integers if and only if p ⩽ q for the poset structure on the vertices of A[n].

Using the fact that the n-cube is a colimit, and LvMet being cocomplete, the set of vertices of
the n-cube can also be equipped with the −→d1 metric. Proposition 4.3 summarizes what is necessary
to know about this Lawvere metric for the proof of Theorem 4.6.
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Proposition 4.3. Let n ∈ Seq(n) with n ⩾ 0 as above. The following properties hold:

1. Let x and y be two vertices of A[n] belonging to the same A[ni]. Then −→d1(x, y) is the distance
in A[ni] from x to y.

2. Let p, q ∈ Vert(n) which are identified with the corresponding vertices of A[n] as explained above.
Then p ⩽ q implies −→d1(p, q) = q − p and p > q implies −→d1(p, q) =∞.

3. If x ∈ A[ni]0 and y ∈ A[nj ]0 with i < j, then
−→
d1(x, y) = −→d1(x, n1 + · · ·+ ni) + nj−1 − ni +−→d1(n1 + · · ·+ nj−1, y)

where n1 + · · · + ni ∈ Vert(n) is identified with the final state of A[ni] in A[n] and where
n1 + · · ·+ nj−1 ∈ Vert(n) is identified with the initial state of A[nj ] in A[n].

Proof. The category LvMet being the category of ([0,∞],⩾,+, 0)-enriched small categories, we
obtain for two vertices x and y of A[n] the general formula

−→
d1(x, y) = min

r⩾1
(k1, ...,kr)∈{1,...,p}r

min
(x0,...,xr)
x=x0,y=xr

∀i,{xi,xi+1}⊂A[nki
]0

−→
d1(x0, x1) + · · ·+−→d1(xr−1, xr).

Let x and y be two vertices of A[n] belonging to the same A[ni]. Then −→d1(x, y) in A[ni] is the
minimum by the triangular inequality. Hence (1). Let p, q ∈ Vert(n) with p ⩽ q. For an s-cube
A[s], −→d1(0s, 1s) = s. We deduce that for any r ⩾ 1, any (k1, . . . , kr) ∈ {1, . . . , p}r and any
(p = x0, . . . , xr = q) such that ∀i, {xi, xi+1} ⊂ A[nki ]0, the sum −→d1(x0, x1) + · · ·+−→d1(xr−1, xr) is
equal to q − p or to ∞. Hence the first part of (2). Assume now that q > p. Then in any sum of
the type −→d1(x0, x1) + · · · + −→d1(xr−1, xr) above, one of the terms is equal to ∞. Hence (2). We
deduce (3) thanks to the following calculation:

−→
d1(x, y)

= −→d1(x, n1 + · · ·+ ni) +−→d1(n1 + · · ·+ ni, n1 + · · ·+ nj−1) +−→d1(n1 + · · ·+ nj−1, y)

= −→d1(x, n1 + · · ·+ ni) + nj−1 − ni +−→d1(n1 + · · ·+ nj−1, y).

Definition 4.4. Let K be an A-set. Let α, β ∈ K0. Let n ⩾ 0. The small category

Chα,β(K,n)

of cube chains of K is defined as follows. The objects are the maps of A-sets

A[n] −→ K

with n = (n1, . . . , np) and |n| = n where the initial state of A[n1] is mapped to α and the final state
of A[np] is mapped to β. The morphisms are the commutative diagrams of A-sets of the form

A[na] K

A[nb] K

a

b

such that |na| = |nb| and Vert(nb) ⊂ Vert(na). Let

Ch(K) =
∐

(α,β)∈K0×K0

Chα,β(K).
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To give an explicit description of the morphisms in the category of cube chains, we introduce
two families of maps of A-sets δi,A,B and δf in what follows. Let A ⊔B = {1, . . . ,m1 +m2} be a
partition with the cardinal of A equal to m1 > 0 and the cardinal of B equal to m2 > 0. Let

ϕA,B : A[m1] ∗ A[m2] −→ A[m1 +m2]

be the unique map of A-sets such that

ϕA,B(Id[m1]) = ∂0
B(Id[m1+m2]),

ϕA,B(Id[m2]) = ∂1
A(Id[m1+m2]).

For i ∈ {1, . . . , ℓ(n)} and a partition A ⊔B = {1, . . . , ni}, let

δi,A,B = IdA[n1] ∗ · · · ∗ IdA[ni−1] ∗ϕA,B ∗ IdA[ni+1] ∗ · · · ∗ IdA[nℓ(n)].

For f = (f1, . . . , fp) with fi ∈ A([ni], [ni]) for 1 ⩽ i ⩽ p, let

δf = f1 ∗ · · · ∗ fp : A[n] −→ A[n].

Proposition 4.5. Let A be a thick category of cubes. Let 0 ⩽ m ⩽ n. Every map of A-sets
f : A[m] → A[n] factors uniquely as a composite f = LA(h)g with g : A[m] → A[m] and
h : □[m]→ □[n].

Proof. It is a rephrasing of Proposition 2.5 using the Yoneda lemma.

Theorem 4.6. Let n1 ∈ Seq(n1) and n2 ∈ Seq(n2). A map of A-sets from A[n1] to A[n2] is a
composite of maps of the form δi,A,B and δf if and only if n1 = n2 and Vert(n2) ⊂ Vert(n1).

Proof. The “only if” direction is a consequence of the definitions of δi,A,B and δf : note that
only a map of the form δi,A,B removes vertices. Let us treat the “if” part. Let n = n1 = n2.
Write n2 = (m1, . . . ,mr) with ℓ(n2) = r. Since Vert(n2) ⊂ Vert(n1) by hypothesis, there exist
mj ∈ Seq(mj) for 1 ⩽ j ⩽ r such that n1 = (m1, . . . ,mr). The smallest (biggest resp.) element
of Vert(n2) ⊂ Vert(n1) is 0 (n resp.) and they can be identified with the initial and final states
respectively of A[n1] and A[n2]. Consider a map of A-sets

k : A[n1] −→ A[n2].

Consider two vertices x, y of A[n1] such that −→d1(x, y) = 1. Then, by Proposition 4.3, the two
vertices x and y are the extremities of a unique 1-cube of A[n1] going from x to y which is
taken by k to a 1-cube of A[n2]. This implies that −→d1(k(x), k(y)) = 1 by Proposition 4.3 again.
Consider a vertex x of A[n1] and a sequence (0 = x0, . . . , xp = x) of vertices of A[n1] such that
−→
d1(xi, xi+1) = 1 for all i ∈ {0, . . . , p−1}, which implies that −→d1(0, x) = p by Proposition 4.3. Then
−→
d1(k(xi), k(xi+1)) = 1 for all i ∈ {0, . . . , p − 1}, which implies −→d1(k(0), k(x)) = p as well. From
−→
d1(0, n) = n by Proposition 4.3, we then deduce that −→d1(k(0), k(n)) = n. The only possibility is
that 0 = k(0) and that n = k(n) by Proposition 4.3. We deduce

∀x ∈ A[n1]0,
−→
d1(0, x) = −→d1(0, k(x)).

Note that, in general, there is only the inequality −→d1(x, y) ⩾
−→
d1(k(x), k(y)) for all vertices x

and y of A[n1]. For example, x and y can be incomparable vertices with k(x) = k(y), which
implies −→d1(x, y) = ∞ and −→d1(k(x), k(y)) = 0. The point is that 0 is less than all vertices of
A[n1] for the poset structure on vertices. This implies that for all p ∈ Vert(n2) ⊂ Vert(n1),
−→
d1(0, p) = −→d1(0, k(p)) = p. We deduce

∀p ∈ Vert(n2) ⊂ Vert(n1), k(p) = p

because there is only one vertex x in the n1-cube and in the n2-cube such that −→d1(0, x) = p. Thus
the map

k : A[n1] −→ A[n2]
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is of the form k1 ∗ · · · ∗ kr where
kj : A[mj ] −→ A[|mj |]

is a map of A-sets for all 1 ⩽ j ⩽ r. We are then reduced to studying the case of a map of A-sets

f : A[n] −→ A[n]

with n = (n1, . . . , np), p ⩾ 2 and n = n1 + · · · + np. By precomposing f by the inclusion maps
A[ni] ⊂ A[n], we obtain a map of A-sets

fi : A[ni] A[n] A[n]⊂ f

for all i ∈ {1, . . . , p}. By Proposition 4.5, there exists a unique factorization

A[ni] A[n] A[n]

A[ni] A[ni] A[n]

fi

⊂ f

gi LA(hi)

for all i ∈ {1, . . . , p}. We obtain a factorization of f : A[n]→ A[n] as a composite

A[n] A[n] A[n]
δ(g1,...,gp) LA(h1)∗···∗LA(hp)

The right-hand map
LA(h1) ∗ · · · ∗ LA(hp) : A[n]→ A[n]

is the image by the functor LA : □opSet→ AopSet of a map of precubical sets from □[n] to □[n].
It suffices to prove that it is a composite of maps of precubical sets of the form δi,A,B to complete
the proof. There is nothing to prove when ℓ(n) = 1. We make an induction on ℓ(n) ⩾ 2. Assume
first that n = (n1, n2). Consider a map of precubical sets f : □[n]→ □[n]. By precomposing f by
the inclusion maps □[ni] ⊂ □[n], we obtain a map of precubical sets

fi : □[ni] ⊂ □[n] f−→ □[n]

for i ∈ {1, 2}. Each map fi corresponds by the Yoneda lemma to an element ci of □[n]ni
= □([ni], [n])

such that the final state of c1 is the initial state of c2 and such that the initial state of c1 is 0n
and such that the final state of c2 is 1n. Thus there exists a partition A1 ⊔A2 = {1, . . . , n} such
that ∂0

A1
(c1) = 0n, ∂1

A1
(c1) = ∂0

A2
(c2) and ∂1

A2
(c2) = 1n. This implies that c1 = ∂0

A2
(Id[n]) and

c2 = ∂1
A1

(Id[n]). We have proved that
f = ϕA1,A2

which is the induction hypothesis for p = 2. Consider now for some p ⩾ 2 a map of precubical sets

f : □[n] = (□[n1] ∗ · · · ∗□[np]) ∗□[np+1] −→ □[n]

with n = n1 + · · ·+np+1 and n = (n1, . . . , np+1). The −→d1 distance from the initial state of □[n1] to
the final state of □[np] in □[n] being n1 + · · ·+ np, all cubes of f(□[n1] ∗ · · · ∗□[np]) are included
in a subcube of □[n] of dimension n1 + · · ·+ np. This implies that the composite map

□[n1] ∗ · · · ∗□[np] ⊂ □[n] f−→ □[n]

factors as a composite of maps of precubical sets

□[n1] ∗ · · · ∗□[np] −→ □[n1 + · · ·+ np] −→ □[n].
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We deduce that the map of precubical sets f factors as a composite

f : (□[n1] ∗ · · · ∗□[np]) ∗□[np+1] −→ □[n1 + · · ·+ np] ∗□[np+1] −→ □[n].

The induction hypothesis for p ⩾ 2 implies that the map of precubical sets □[n1] ∗ · · · ∗□[np]→
□[n1 + · · ·+ np] is a composite of maps of the form δi,A,B. This implies that the left-hand map
in the above factorization of f is a composite of maps of the form δi,A,B as well. The induction
hypothesis for 2 implies that the right-hand map in the above factorization of f is also a composite
of maps of the form δi,A,B . Hence the proof is complete.

Corollary 4.7. For any precubical K, Ziemiański’s definition of Ch(K) given in [20, Definition 1.1]
or [21, Section 7] and the above definition coincide.

Proof. Since □([n], [n]) is a singleton for all n ⩾ 0, all maps of the form δf are identities.

Notation 4.8. Since LA(□[n]) = A[n] for all n ∈ Seq(n), LA being colimit-preserving, the functor
LA : □opSet −→ AopSet induces a functor

LKA : Ch(K) −→ Ch(LA(K))

for all precubical sets K.

Proposition 4.9. Let m ⩾ 0. Let K be a precubical set. Every map of A-sets

f : A[m] −→ LA(K)

factors uniquely as a composite of maps of A-sets

A[m] g−→ A[m] LA(h)−→ LA(K)

where h : □[m]→ K is a map of precubical sets.

Proof. The functor L 7→ Lm from A-sets to sets is colimit-preserving. Thus, there are the bijections

(LA(K))m ∼= lim−→
□[p]→K

(LA(□[p]))m ∼= lim−→
□[p]→K

(A([p]))m ∼= lim−→
□[p]→K

A([m], [p]).

The map of A-sets f : A[m] → LA(K) gives rise to an element of the set (LA(K))m by Yoneda.
Therefore there exists a map g : A[m] → A[p] and a map of precubical sets h : □[p] → K such
that f = LA(h)g. From Proposition 4.5 applied to g, we obtain g = LA(h′)g′ with g′ ∈ A([m], [m])
and we deduce f = LA(hh′)g′, which is the desired factorization. Consider two factorizations
f = L(hi)gi with hi : □[m] → K and gi : A[m] → A[m] with i = 1, 2. They correspond to two
representatives of the map f in the colimit of sets

lim−→
□[p]→K

A([m], [p]).

It means that there is a commutative diagram of A-sets of the form

A[m] A[m] LA(K)

A[m] A[p] LA(K)

A[m] A[m] LA(K)

g1

LA(k1)

LA(h1)

g3 LA(h3)

g2

LA(k2)

LA(h2)
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A[m] LA(□[m])

A[m] LA(□[n])

LA(K) LA(K)

LA(K) LA(K)

c

g0

LA(h1)

LA(h0)

g

LA(h)

c

Figure 1: Construction of h1

for some g3 ∈ A([m], [p]) indexed by the map of precubical sets h3 : □[p]→ K in the diagram of sets.
We obtain the equality g3 = LA(k1)g1 = LA(k2)g2. From Proposition 4.5, we deduce g1 = g2 and
k1 = k2. From the last equality, we deduce LA(h1) = LA(h3)LA(k1) = LA(h3)LA(k2) = LA(h2).
Since the functor LA : □opSet → AopSet is faithful, we obtain h1 = h2. Hence the proof is
complete.

Proposition 4.10. Let n ∈ Seq(n) with n ⩾ 0. Let K be a precubical set. Every map of A-sets
f : A[n] −→ LA(K) factors uniquely as a composite of maps of A-sets

A[n] A[n] LA(K)g LA(h)

where h : □[n]→ K is a map of precubical sets.

Proof. Let n = (n1, . . . , np) ∈ Seq(n). Giving f is equivalent to giving p maps of A-sets fi : A[ni]→
LA(K) for 1 ⩽ i ⩽ p satisfying fi(1ni

) = fi+1(0ni+1) for 1 ⩽ i ⩽ p− 1. Write

f = f1 ∗ · · · ∗ fp.

In the same way, given h is equivalent to giving p maps of precubical sets hi : □[ni] → K for
1 ⩽ i ⩽ p satisfying hi(1ni) = hi+1(0ni+1) for 1 ⩽ i ⩽ p− 1. Write

h = h1 ∗ · · · ∗ hp and LA(h) = LA(h1) ∗ · · · ∗ LA(hp).

Then f = LA(h)g if and only if fi = LA(hi)gi for all 1 ⩽ i ⩽ p where gi : [n]→ [n] is a map of A.
The proof is complete thanks to Proposition 4.9.

Theorem 4.11. Let K be a precubical set. The functor

LKA : Ch(K)→ Ch(LA(K))

induces a homotopy equivalence

|Chα,β(K)| ≃ |Chα,β(LA(K))|

for all (α, β) ∈ K0 ×K0 between the classifying spaces where |C| means the classifying space of C,
i.e. the geometric realization of the simplicial nerve of C.

Proof. By Quillen’s Theorem A [14, Theorem 19.6.14], it suffices to prove that the comma category
(c↓LKA ) is contractible for all cube chains c of LA(K). By [14, Proposition 14.3.14], it suffices to
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prove that the comma category (c↓LKA ) has an initial object for all cube chains c of LA(K). An
object of the comma category (c↓LKA ) is a commutative square of A-sets of the form

A[m] LA(□[n])

LA(K) LA(K)

c

g

LA(h)

such that |m| = |n| and Vert(n) ⊂ Vert(m). Proposition 4.10 provides a commutative square of
AopSet

A[m] LA(□[m])

LA(K) LA(K).

c

g0

LA(h0)

which is clearly an object of the comma category (c↓LKA ). Consider the diagram of solid arrows of
A-sets depicted in Figure 1 where the front face is another object of the comma category (c↓LKA ).
This implies that |m| = |n| and Vert(n) ⊂ Vert(m). It can be rearranged as follows:

A[m] LA(□[m]) LA(K)

A[m] LA(□[n]) LA(K)

g0

g1

LA(h1)

LA(h0)

g LA(h)

with c = LA(h0)g0 = LA(h)g. Using Proposition 4.10, write g = LA(h1)g1. We obtain the equalities

LA(h0)g0 = c = LA(h)g = LA(h)LA(h1)g1 = LA(hh1)g1.

By Proposition 4.10 and since LA is faithful by Proposition 2.9, we obtain

g1 = g0 and hh1 = h0.

We have proved that there exists a diagram of solid arrows of A-sets

A[m] LA(□[m]) LA(K)

A[m] LA(□[n]) LA(K)

g0

LA(h1)

LA(h0)

g LA(h)

From g = LA(h1)g0 and Proposition 4.10, we deduce that there exists a unique map LA(h1) making
the above diagram commutative, and therefore a unique h1, the functor LA being faithful by
Proposition 2.9. Since |m| = |n| and Vert(n) ⊂ Vert(m) by hypothesis, the commutative square of
precubical sets

□[m] □[n]

K K

h0

h1

h
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is a map of Chα,β(K). Thus the diagram of solid arrows depicted in Figure 1 yields together with
h1 a well-defined map of the comma category (c↓LKA ). This implies that the commutative square

A[m] LA(□[m])

LA(K) LA(K)

c

g0

LA(h0)

is an initial object of the comma category (c↓LKA ) and the proof is complete.

We recall [10, Definition 4.11] which is necessary to understand Corollary 4.12. There are the
homeomorphisms (natural with respect to [n] ∈ □)

|□[n]|geom ∼= [0, 1]n ∼= |A[n]|geom

by definition of the geometric realization. A tame d-path of |A[n]|geom = [0, 1]n is a nonconstant
continuous map γ : [0, ℓ] → [0, 1]n with ℓ > 0 such that γ(0), γ(ℓ) ∈ {0, 1}n and such that γ is
nondecreasing with respect to each axis of coordinates. Let c ∈ Kn with n ⩾ 1 be an n-cube of an
A-set K. A tame d-path of c is a composite continuous map denoted by [c; γ] : [0, ℓ] → |K|geom
with ℓ > 0 such that γ : [0, ℓ] → [0, 1]n is a d-path with [c; γ] = |c|geomγ. Let K be a general
A-set. A tame d-path of K is a continuous path [0, ℓ] → |K|geom which is a Moore composition
[c1; γ1] ∗ · · · ∗ [cn; γn] of d-paths of the cubes c1, . . . , cn of K. γ(0) ∈ K0 is called the initial state of
γ and γ(ℓ) ∈ K0 is called the final state of γ.

Corollary 4.12. Let K be a precubical set. The space of tame natural d-paths of LA(K) is
homotopy equivalent to |Ch(LA(K))|.

Proof. There are the homeomorphisms (natural with respect to [n] ∈ □)

|□[n]|geom ∼= [0, 1]n ∼= |A[n]|geom ∼= |LA(□[n])|geom,

by Proposition 2.12. Since all involved functors are colimit-preserving, we obtain for all precubical
sets K the natural homeomorphism

|K|geom ∼= |LA(K)|geom.

Hence the space of tame natural d-paths of K is equal to the one of LA(K). By [21, Theorem 7.5],
we deduce that the space of tame natural d-paths of LA(K) is homotopy equivalent to |Ch(K)|,
and therefore homotopy equivalent to |Ch(LA(K))| by Theorem 4.11.

5 Application
We refer to [5, 6] for further details. [6, Theorem 4.1.8] states that, for two labelled cubes
□[a1, . . . , am] and □[am+1, . . . , am+n] with m ⩾ 0 and n ⩾ 0, there is an isomorphism of σ-labelled
symmetric transverse sets

L
□̂S

(−−→cosk
Σ

(□[a1, . . . , am]⩽1 ×Σ □[am+1, . . . , am+n]⩽1)
)

∼= cosk□̂S ,Σ
1

(
□̂S [a1, . . . , am]⩽1×Σ□̂S [am+1, . . . , am+n]⩽1

)
where

• −−→cosk
Σ

is the σ-labelled directed coskeleton of [5, Section 3.3] which is a tweak of the σ-labelled
coskeleton functor of the category of precubical sets, the latter being badly behaved by [5,
Proposition 3.15]: it contains too many cubes and some of them have to be identified;

• cosk□̂S ,Σ
1 is the σ-labelled coskeleton functor of the category of symmetric transverse sets which

is well behaved by [6, Theorem 3.1.15].
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By Theorem 4.11, the underlying precubical set of

−−→cosk
Σ

(□[a1, . . . , am]⩽1 ×Σ □[am+1, . . . , am+n]⩽1)

and the underlying symmetric transverse set of

cosk□̂S ,Σ
1

(
□̂S [a1, . . . , am]⩽1×Σ□̂S [am+1, . . . , am+n]⩽1

)
have homotopy equivalent categories of cube chains.

This implies that the parallel composition with synchronization for process algebra, as it is
formalized in [6] using the labelled coskeleton functor of the category of symmetric transverse sets,
has a category of cube chains which gives the correct homotopy type of tame natural d-paths.
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