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Towards a theory of natural directed paths
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We introduce the abstract setting of presheaf category on a thick category of cubes.
Precubical sets, symmetric transverse sets, symmetric precubical sets and the new
category of (non-symmetric) transverse sets are examples of this structure. All these
presheaf categories share the same metric and homotopical properties from a directed
homotopy point of view. This enables us to extend Raussen’s notion of natural d-path for
each of them. Finally, we adapt Ziemianski’s notion of cube chain to this abstract setting
and we prove that it has the expected behavior on precubical sets. As an application,
we verify that the formalization of the parallel composition with synchronization of
process algebra using the coskeleton functor of the category of symmetric transverse
sets has a category of cube chains with the correct homotopy type.

Contents

1 Introduction 1
2 Thick category of cubes 2
3 Metric and homotopical study 6
4 Ziemianski’s cube chain 10
5 Application 17

1 Introduction

Presentation

Precubical sets are de facto the standard geometric model for directed homotopy for concurrency
[2]. In fact, most of them are even non-positively curved in the sense of [12, Definition 1.28 and
Proposition 1.29], or in the worst case proper in the sense of [20, page 499]. The motivation for
introducing symmetric transverse sets in [6] is to formalize the parallel product with synchronization
for process algebra using the associated coskeleton functor [6, Theorem 4.1.8]. Indeed, it is
impossible to use the coskeleton functor associated with the category of precubical sets because of
its pathological behavior (see [5, Proposition 3.15] and [6, Definition 3.1.3]). However, precubical
sets still remain sufficient to model this parallel product by tweaking the coskeleton functor of this
category (see [5, Section 3.3]).

Symmetric transverse sets share with precubical sets similar metric and homotopical properties
by [10]. Indeed, their geometric realization carries a Lawvere metric structure which enables us
to extend Raussen’s notion of (tame) natural d-path originally defined for precubical sets [17,
Definition 2.14] [20, Definition 5.3] [21, Section 2.9]. Moreover, the full subcategory of representable
objects of this presheaf category is c-Reedy in the sense of [19, Definition 8.25], like the box category
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(see Definition 2.3) for the precubical sets (the box category is even direct Reedy in the sense of [14,
Definition 15.1.2]). This makes possible to compare in [10, Theorem 7.4] the natural realization of
a symmetric transverse set with other realization functors and to generalize homotopical results
proved in [4] and [9] for precubical sets.

The technical contribution of this note is threefold. Firstly, we explain why precubical sets and
symmetric transverse sets belong to a larger family of presheaf categories on a thick category of
cubes (see Definition 2.10). This family of presheaf categories contains also the symmetric precubical
sets of [13] and a new category of non-symmetric transverse sets. Symmetric transverse sets are
presheaves on a thick category of cubes which turns out to be, for tautological reasons, the greatest
one for the inclusion.

Theorem. (Proposition 2.13, Theorem 2.16 and Theorem 2.17) There exists a greatest thick
category of cubes for the inclusion not containing the symmetry maps.

Secondly, we prove that all results of [10] are valid for all presheaf categories on a thick category
of cubes.

Theorem. (Section 3 and more specifically Theorem 3.18) All metric and homotopical results of
[10] are valid for the category A°PSet of A-sets when A is a thick category of cubes.

Thirdly, we obtain a statement which coincides with (a part of) [21, Theorem 7.5] when A is
the box category used to define the precubical sets:

Theorem. (Corollary /.12) Let K be a precubical set. Let A be a thick category of cubes. The
space of tame natural d-paths of the free A-set L4(K) generated by K is homotopy equivalent to
the classifying space of the small category of Ziemiariski’s cube chains of the free A-set L 4(K)
generated by K.

This leads to the following application:

Theorem. (Section 5) The formalization of the parallel composition with synchronisation of [0]
using the coskeleton functor of the category of symmetric transverse sets has a category of cube
chains which gives the correct space of tame natural d-paths up to homotopy.

The formal setting of presheaf category on a thick category of cubes is a first step towards an
axiomatization of the notion of tame natural d-path. The next step would be to find a way of
taking into account the globular version of this notion as it is introduced in [11]. This could lead to
a general framework unifying all geometric approaches of directed homotopy for concurrency '.
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2 Thick category of cubes

Definition 2.1. [15] The small monoidal category (]0,00],>,4,0) has for objects the interval
[0, 00] and there is a unique arrow x — y whenever x > y. It is equipped with the monoidal structure
induced by addition. A small category enriched over (]0,00],>,4,0) is called a Lawvere metric
space. The category of Lawvere metric spaces is denoted by LvMet.

Let us now expand Definition 2.1. A Lawvere metric space (X, d) is a set X equipped with a
map d: X x X — [0, 0] called a Lawvere metric such that:

o Ve X,d(x,x) =0
o V(z,y,2) € X x X x X,d(z,y) < d(z,2) +d(z,y).

IThe expression “directed homotopy” has several quite distinct meanings. It is the reason why I add “for
concurrency” on purpose.
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A map f:(X,d) — (Y,d) of Lawvere metric spaces is a function f : X — Y which is non-ezpansive,
Le. V(z,y) € X x X, d(f(x), f(y)) < d(z,y).

Notation 2.2. The category of partially ordered sets or posets together with the strictly increasing
maps is denoted by PoSet™.

Let [0] = {()} and [n] = {0 < 1}"™ for n > 1 equipped with the product order. Let 0,, = (0,...,0)
(n times) and 1,, = (1,...,1) (n times) with n > 0. By convention, one has {0 < 1}° = [0] = {()}.
In the sequel, for all n > 1, both the sets [n] and [0, 1]™ are equipped with the product order. By
convention, [0,1]° is a singleton.

Let 6% : [n — 1] — [n] be the coface map defined for 1 <i < n and o € {0,1} by

5?(.731, ‘e 7In—1) = (.I‘l, ey Lj—1,0, TG, .. .,.I‘n_l).

Definition 2.3. The box category (1 is the subcategory of PoSet™ generated by the coface maps
o,

Let z = (z1,...,2,) and 2’ = (2],...,2]) be two elements of [0,1]" with n > 1. Let
71 [0, 1]™ x [0, 1]™ — [0, o] be the function defined by

n

E |z; — x| ifx<a
i=1
00 otherwise.

71(1:,33’) =

Let n > 0. The function 71 : [0,1]™ x [0,1]™ — [0, 0] is a Lawvere metric by [10, Proposition 1.5].
It restricts to a Lawvere metric on {0 < 1}™.

Definition 2.4. [0, Definition 2.1.5] A map f : [m] — [n] of PoSet™ is cotransverse if
For all z,y € [m], d\(2,y) = 1 implies d\(f(x), f(y)) = 1.

Denote by ﬁs the subcategory of PoSet™ consisting of the cotransverse maps.

A cotransverse degeneracy map is a cotransverse map [n] — [n] for n > 2 which is not one-to-one.
Proposition 2.5 and Proposition 2.6 are important for the sequel.

Proposition 2.5. [0, Proposition 3.1.14] Let 0 < m < n. Every cotransverse map f : [m] — [n]

factors uniquely as a composite [m] N [m] N [n] with ¢ € O and 1 cotransverse.

Proposition 2.6. Let f : [m] — [n] be a cotransverse map. Let § : [n] — [p] be a map of O.
Suppose that 6 f € 0. Then f € 0.

Proof. There exists a function s : [p] — [n] obtained by removing some coordinates such that
50 = Id[,). We deduce that f = s(6f). From df € OJ, we then deduce that f € [J. O

Let o; : [n] — [n] be the function defined for 1 <i<n—1and n > 2 by
O'Z‘(C(Jl,...,.’l,‘n> = (xl,...,xi,l,xiJrl,xi,xiJrg,...71'”).

These maps are called the symmetry maps [13]. The symmetry maps are clearly cotransverse. This
is the reason of the S in the notation Og.

Notation 2.7. The subcategory of PoSet™ generated by the coface maps and the symmetry maps
is denoted by Og.

Definition 2.8. [6, Definition 2.1.7 and Definition 2.1.12] A category of cubes is a small category
A satisfying the inclusions R
OcAcUsg.

A presheaf on A is called an A-set. The category of A-sets is denoted by A°PSet.
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The category O, g and ﬁs are examples of categories of cubes. The U-sets are the precubical
sets [1]. The Og-sets are the symmetric precubical sets (see [13]). The Og-sets are the symmetric
transverse sets introduced in [10)].

The inclusion of small categories j4 : [0 C A induces by precomposition a forgetful functor

wy : APSet — [0°PSet

which has a left adjoint
L4 :0PSet — A°PSet

given by the left Kan extension along j4. For a precubical set K, the A-set L 4(K) is called the
free A-set generated by K.

Proposition 2.9. The functor L 4 : (0°PSet — A°PSet is faithful.

Proof. By [6, Proposition 2.1.15], the identity map Id. , (k) induces for all precubical sets K a
natural inclusion of precubical sets K C waLA(K). Let f,g: K — L be two maps of precubical
sets such that L4(f) = L4(g). Then waLa(f) =wal a(g). Thus

f=walalf) Ik =walalg)x =g.
O

Let K be an A-set. The set K([n]) is denoted by K,,. The vertex of x(0,) € Ky is called the
initial state of the n-cube ¢ and the vertex x(1,) € Ky is called the final state of the n-cube c. For
any map k : [m] — [n] of A and any A-set K, denote by k* : K,, — K, the function induced by k.
Let p > 0. The p-cube Alp] is by definition the presheaf A(—, [p]). For any A-set K, an element
x € K, corresponds by the Yoneda lemma to a map of A-sets = : A[n] — K. For any A-set K, the
data
K, ifp<n
] ifp>n.

(Kén)p = {

assemble into an A-set denoted by K, because A([m], [n]) = @ when m > n. Let

foralln > 0. Let A=a; <---<ap C{l,...,n} and € € {0,1}. The dterated face map is defined
by 09 = 05,05, - .- O, with 95 = (d5)*

a1 “az
Definition 2.10. A category of cubes A is thick if the factorization of Proposition 2.5 is a
factorization in A, i.e f € A implies ¢ € A.

The category of cubes 0 s is thick for tautological reasons. The terminology must be understood
as follows. A thick category of cubes A is morally a thick subcategory of the category of cubes
Og: it is an analogy with the notion of thick subcategory of a triangulated category. Theorem 2.16
provides other examples of thick categories of cubes.

Proposition 2.11. Let A be a thick category of cubes. Forn > 0, let

74 = (Bn]) = (Al[n))

be the functor between comma categories induced by the inclusion j4 : O C A. Then for alln >0
and for all objects k of (Al[n]), the comma category (klj}) has an initial object.

Proof. Let k : [p] — [n]. Using Proposition 2.5 and since A is thick by hypothesis, we obtain the
commutative diagram of A
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which is an element of the comma category (k]j’;). Consider another element of (k];;) depicted
by the following commutative diagram of solid arrows of A:

Since A is thick, write f/ = §”g with ¢” € (0. We obtain 0f = k = ¢’ f' = §’6"g. By uniqueness of
the factorization of Proposition 2.5, we obtain § = §’6” and f = g. We have obtained the map of
(kdd%)

Moreover, the map ¢ : [p] — [¢] is unique because it is given by the factorization of f’ using
Proposition 2.5. Hence the proof is complete. O

Proposition 2.12. Let A be a category of cubes. For alln > 0, one has the isomorphism of A-sets
L4(0O[n]) = An].
If moreover A is thick, then there is the isomorphism of A-sets
L4(00[n]) = 0A[n]
for alln > 0.

Proof. The first statement is [6, Proposition 2.1.14]. Let n > 0. Since L4 is colimit-preserving,
there is a natural map of A-sets (O«,, and A.,, are the full subcategory of [J and A respectively
containing only [0],...,[n — 1]):

La00M) > L LaOp) = lm Al lim Al = 9]
(O<ndn]) (O<niln]) (A<ni[n])

The above arrow is an isomorphism by Proposition 2.11 and [16, Theorem 1 p. 213]. O
Proposition 2.13. The set of maps
O={¢:[m] —[n] € Qs |V :[p] = [m] € O,¢ one-to-one = ¢5 € O}

is closed under composition and contains all identities of ﬁs, There are the inclusions O C O C ﬁs.
In other terms, the set of maps U yields a well-defined category of cubes. The only one-to-one
functions of O are the maps of O. In particular, the only bijective map of O([n], [n]) is Idp, for all

n=0: O does not contain any symmetry map.

Proof. Let ¢1,¢2 € O such that P19 exists. Let 6 € U such that ¢1¢20 exists and is one-to-
one. Then ¢30 is a one-to-one function. Thus ¢20 € [, @2 belonging to [J. We deduce that
D1020 = ¢1(2d) € O since ¢1 € T. This means that ¢1¢o € 0. For all ¢ =1d, one has ¢§ = § € 0.
Hence [ contains all identity maps. Finally suppose that f : [m] — [n] € [ is one-to-one. Then
fId},, is one-to-one, which implies that f € [J. O
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Definition 2.14. The O-sets are called transverse sets.

The following maps, introduced in [6, Definition 3.1.11], are examples of cotransverse degeneracy
maps. Let 7; : [n] — [n] be the function defined for 1 < i <n —1and n > 2 by

Yi(z1, .y xn) = (@1, 0o, Ti—1, max (@, Tip1), MIN(X4, Tig1), Tiga, - .-, Tn)-

Notation 2.15. [0, Theorem 3.1.16] The category of cubes generated by the 0%
denoted by O.

&, op and vy, s

Unlike ﬁ, the category of cubes [J has a conjectural presentation by generators and relations [6,
Proposition 3.1.20 and Conjecture 3.1.21].

Theorem 2.16. The categories of cubes 11, Og, O and O are thick.

Proof. Every map f : [m] — [n] of O factors uniquely in Cg as a composite [m] — [m] — [n] such
that the right-hand map [m] — [n] belongs to [J. Since f = fIdj,,), we deduce by uniqueness that
the left-hand map belongs to L. Hence the category [J is thick.

Every map f : [m] — [n] of Og factors uniquely in g as a composite [m] — [m] — [n] such
that the right-hand map [m] — [n] belongs to . Since all maps of (g are one-to-one, the left-hand
map [m] — [m] is one-to-one, hence bijective for cardinality reason. We deduce that the left-hand
map is a composite of symmetry maps, which means that it belongs to [(g. Thus the category g
is thick. R R

Consider a map f : [m] — [n] of O. It factors in Og as a composite [m] — [m] — [n] such
that the right-hand map ¢ : [m] — [n] belongs to the box category. Denote by g : [m] — [m] the
left-hand map. Let §’ : [p] — [m] € O such that gd" exists and is one-to-one. Then f§" = 6(gd’) is
one-to-one, being the composite of two one-to-one functions. Since f € ﬁ, we deduce that dgd’ € O.
Using Proposition 2.6, we deduce that gd¢’ € 0. We have proved that g € (J. This means that the
category of cubes [ is thick.

Finally, one has ;0§ = 0%; for j <i—1and j > i+ 2, v} = 67,1, %0 = 6}, 70l 1 = 0341
and v;0},; = 6;. Thus, O is thick. O

It is possible to obtain even more examples of thick categories of cubes by removing the symmetry
maps from [, and also by adding one by one other cotransverse degeneracy maps in the set of
generators. The only interest of the category of cubes [ for this note is to show that it is really
easy to construct other thick categories of cubes. Theorem 2.17 gives a characterization of .

Theorem 2.17. Let A be a thick category of cubes which does not contain the symmetry maps, i.e.
the only bijective map of A([n], [n]) is Idj,) for alln = 0. Then A C 0. In other terms, O is the
greatest thick category of cubes for the incluswn which does not contain any symmetry map.

Proof. Let ¢ : [m] — [n] be a map of A. Let 6 : [p] — [m] € O such that ¢d is one-to-one. Write
@5 = 0'¢ with ¢’ : [p] = [n] € O and ¢’ : [p] — [p] € A, the category of cubes A being thick by
hypothesis. Since ¢d is one-to-one, the function ¢’ : [p] — [p] is one-to-one. By hypothesis, this
implies that ¢ is the identity map. Thus ¢d = 6’ € 0. We have proved that ¢ € Cl. O

To summarize, 0 is the greatest thick category of cubes for the inclusion not containing the
symmetry maps and [lg is the greatest thick category of cubes for the inclusion.

For the sequel, A denotes a fized thick category of cubes. Note that with the choice A = O (the
least thick category of cubes), all following results remain valid. However, their formulation is not
necessarily the best one.

3 Metric and homotopical study

For the ease of the reader, we recall a few definitions from [19] before generalizing the results of
[10]. The point is not to overload this section but to make it comprehensible.

Definition 3.1. [19, Definition 6.12] Let C be a calegory equipped with an ordinal degree function
on its objects.
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o A morphism is level if its domain and codomain have the same degree.

e The degree of a factorization (h,g) of a morphism f is the degree of the intermediate object
(i.e. the domain of h which is the codomain of g).

A factorization of a morphism f is fundamental if its degree is strictly less than the degrees
of both the domain and codomain of f.

o A morphism is basic if it does not admit any fundamental factorization.

Definition 3.2. [19, page 37] Let C be a category equipped with an ordinal degree function on its
objects. The 6-th stratum of C, denoted by C—s, is the subcategory of C generated by the objects of
degree § and by the basic morphisms between them.

Definition 3.3. Let C be a category. Let f be a map of C. The category of factorizations of f has
for objects the pairs (h,g) such that hg = f and for morphisms k : (h,g) — (h',g’) the morphisms
k of C (which are called connecting morphisms) such that there is a commutative diagram

’

g h'
[ )
k:]\
[ ]

Definition 3.4. [19, Definition 8.25] A c-Reedy categor&c is a smtﬂl category equipped with an
ordinal degree function d on its objects, and subcategories C , ? and C containing all objects such

that
. ccdnt.

g
2. Every morphism in C s level.

< Rl g
3. Every morphism in ?\ C strictly raises degree, and every morphism in C\ C strictly lowers
degree.

— = &
4. Every morphism f factors as ?f, where ? € ? and f € C. The subcategory of the
category of factorizations of f generated by the pairs (h,g) with h € ? and g € C and such
that the connecting morphisms belong to C is connected for all f.

Ao —
5. For any object x and any degree § < d(z), the functor C (x,—): C —s — Set is a coproduct
of retracts of representables.

Notation 3.5. Let

= A’
(—

=A=[{f:[n] = nl|feA}

n=0

A
q

We consider the degree function d([n]) =n for allm > 0.

Every morphism f : [m] — [n] of A is basic since every factorization of f as a composite
[m] — [p] = [n] implies that m < p < n, and therefore that every factorization is not fundamental:
p < min(m,n) = m is impossible indeed. Hence, for all n > 0, the n-th stratum A_,, is the full
subcategory of A having one object [n]. Moreover, one has

for all n > 0.

Proposition 3.6. The small category A is c-Reedy.
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Proof. Let f be a map of A. Consider the subcategory F; of the category of factorizations of
(_
f generated by the pairs (h,g) such that h € j and g € A. Note that the connecting maps

necessarily belong to A since A = A. By [10, Proposition 5.8] and since the factorization of
Proposition 2.5 restricts to a factorization in A, the category F; has a final object. The rest of
the proof goes like the proof of [10, Proposition 5.9]. Let us summarize the argument. One has

> —
A C AN A (first axiom). Every morphism of A is degree-preserving (second axiom). Every

morphism of A\ A strictly raises degree and every morphism of A\ A = & strictly lowers degree
(third axiom). The category F is connected since it has a final object (fourth axiom). For every

n > 0, and any degree m < n, the functor <Z([n}, —) : A=, — Set is an (empty) coproduct of
retracts of representables because A([n], [m]) = @ (fifth axiom). O

Notation 3.7. Let C be a small category. Let M be a locally small category. The category of
functors from C to M together with the natural transformations is denoted by MC.

Notation 3.8. Let n > 0. Following the notations of [19, page 37], let

[mleA<,
mA@Hm:/‘ A(m], [g]) x A([p], [m])

The latching and matching object functors Ly, M, : MA — MA=" are given by

My Ay = [ (] AT
[m]e A

[pleA
(mmwz/ B, A([p), [n]). A([p))

We obtain:
Theorem 3.9. Let M be a model category. Suppose that the projective model structure on M-=»

exists for all m > 0. There exists a unique model structure on MA such that
o The weak equivalences are objectwise.

e A map A — B of M4 is a fibration (trivial fibration resp.) if for all n > 0, the map
A([n]) = (MnA) ) X (ar, By, B([n]) is a fibration (trivial fibration resp.) of M.

e A map A — B of MA is a cofibration (trivial cofibration resp. )if for alln >0, L,BUp, 4 A —
B is a projective cofibration (trivial cofibration resp.) of the projective model structure of

MA=n,
This model structure is called the c-Reedy model structure of MA.

Proof. By Proposition 3.6 and [19, Theorem 8.26], the small category A is almost c-Reedy in the
sense of [19, Definition 8.8]. The proof is complete thanks to [19, Theorem 8.9]. O

Proposition 3.10. One has

O A(lpl, [d) =

Z ifp>qorn<p
A(lpl.la]) ifp<qgandp<n

Proof. Tt is mutatis mutandis the proof of [10, Proposition 5.13]: it suffices to change the category
of cubes in the proof and to use Proposition 2.5 which restricts to a factorization in A by definition
of a thick category of cubes. O

Theorem 3.11. Let M be a model category. Suppose that the projective model structure on M*A=n
exists for all n > 0. Then the projective model structure on M* exists and coincides with the
c-Reedy model structure.

Proof. The proof follows the road map of the proof of [10, Theorem 5.17] and makes use of
Theorem 3.9 and Proposition 3.10. O
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Notation 3.12. The category of A-generated spaces or of A-Hausdorff A-generated spaces (cf.
[7, Section 2 and Appendiz BJ]) is denoted by Top. There are three well-known model category
structures on it, the {q, h,m}-model category structures.

Definition 3.13. [10, Definition 3.2] Let f = (f1,..., fn) : [n] = [n] be a cotransverse map. Let
T(f) : [0,1]™ — [0,1]™ be the map defined by

T(f)(xlavxn) = (T(f)l(l'lv"'axn)a-~~7T(f)n(m1""7xn))

with
T(f)l(xlvvl'n) - max min{xk | €L — ]_}

for all1 <1< n.

Notation 3.14. For 6% : [n—1] — [n] € O, let

jxéﬁ)::{[o;unl»[o,un

(617...,677‘71) = (617"'761;7170[761'7"'767’7,71)
foralln > 1 and « € {0,1}.

The three mappings [n] — [0,1]" for n > 0, f : [n] —» [n] € A T(f) and 6¢ : [n — 1] —
[n] — T(6%) for n > 1 give rise to a functor from A C Og to Top denoted by |A[*]|geom by [10,
Theorem 3.9] and to a functor from A C Og to LvMet denoted by |A[+]|z, by [10, Theorem 3.16].
Let K be an A-set. Let

[njeA njeA
ymwmz/ KHAMMmamuG%:/ Ko Al

These give rise to two colimit-preserving functors from A-sets to topological spaces and Lawvere
metric spaces respectively. The latter functor factoring as a composite A°’Set — 0¥ Set —
LvMet, we define the notion of (tame or not) natural d-path in the geometric realization |K|geom
like in [10, Section 4]. In fact, by using the inclusion A C (g and the fact that A is thick, we can
mimick all constructions of [10] and recover, thanks to Theorem 3.11, the results already proved for
ﬁs. More precisely, we obtain what follows.

Definition 3.15. [3, Definition 4.11] A flow is a small semicategory enriched over the closed
monoidal category (Top, x). The corresponding category is denoted by Flow. The objects are called
states and the morphisms execution paths. The set of states of a flow X is denoted by X°. The
space of execution paths from o to B of a flow X is denoted by Py g X.

There is an inclusion functor PoSett C Flow such that there is an execution path from a to 8
if and only if a < .

Let r € {g,m, h}. The category Flow is equipped with its r-model structure [8, Theorem 7.4].
The weak equivalences of the r-model structure are the maps of flows f : X — Y inducing a bijection
on states and a weak equivalence of the r-model structure of Top for each map Py s X — P(4) r(3)Y
for (a, B) running over X% x X°. The fibrations of the r-model structure are the maps of flows
f X — Y inducing a fibration of the r-model structure of Top for each map Py g X — Pr(a),r(5)Y
for (o, B) running over X% x X°. The three model category structures of Flow are accessible in
the sense of [18, Definition 5.1]. The g-model structure of Flow is even combinatorial.

Definition 3.16. Let r € {q,m,h}. A functor F : A°?Set — Flow is a r-realization functor if it
satisfies the following properties:

e F is colimit-preserving.
e For allm >0, the map F(0A[n]) — F(A[n]) is a r-cofibration of Flow.

e There is a map F(A[%]) = {0 < 1}* in Flow™ which is an objectwise weak equivalence of the
r-model structure of Flow.
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Definition 3.17. An A-set K is cellular if the canonical map @ — K is a transfinite composition
of pushouts of the maps OA[n] — A[n] for n > 0. An A-set K is cofibrant if it is a retract of a
cellular A-set.

The composite functor A ¢ Og — Flow taking [n] to the flow |Og[n][na¢ defined in [10,
Proposition 7.1] induces a colimit-preserving functor

[n]eA
K |t = / Koo |5 (7] et

from A°?Set to Flow which is a m-realization functor by [10, Theorem 7.4]. The composite functor

A c Og — Flow taking [n] to the flow ({0 < 1}™)%/, where (=) is a q-cofibrant replacement, of
Flow, induces a colimit-preserving functor

[n]le A
K], = / K, ({0 < 1))

from A°?Set to Flow which is a g-realization functor by [10, Theorem 6.7].

Theorem 3.18. There exists an m-realization functor F : A°?Set — Flow and two natural
transformations inducing bijections on the sets of states

| =l = F(=) = | = |nat

such that for all cofibrant A-sets K and all («, B) € Ko x Ky, there is the zigzag of natural homotopy
equivalences between m-cofibrant topological spaces

Pa s

K|y = PosF(K) —= Po gl K |pa-

Proof. We follow the proof of [10, Theorem 7.4]. Details are left to the reader. O

4  Ziemianski's cube chain

We define at first the category of cube chains of an A-set. We make the link with Ziemianski’s
original notion in Corollary 4.7.

Notation 4.1. Let n > 0. Let Seq(n) be the set of sequences of positive integers n = (ni,...,ny)
with ny + ---+n, =n. Forn € Seq(n), let

i=j
Vert(n) = {an [0<j <p}
=1

the set of vertices of n. The number |n| = n is the length of n and {(n) = p is the number of
elements of n.

Definition 4.2. Let n € Seq(n) with n > 0. The n-cube is the A-set
Aln] = Alna] * - - x Alny

where the notation x means that the final state 1, of the A-set Aln;] is identified with the initial
state Oy, , of the A-set A[n;1] for 1 <i<p—1.

The category of posets being cocomplete, being locally presentable, the vertices of the n-cube
can be equipped with the poset structure induced by the one on each A[n;]o = {0 < 1}™.

The set Vert(n) is in bijection with the set consisting of the initial states of the A[n;] for
1 < i < p and the final state of A[n,] viewed as subobjects of A[n]. For all p, ¢ € Vert(n), p < q as
integers if and only if p < ¢ for the poset structure on the vertices of A[n].

Using the fact that the n-cube is a colimit, and LvMet being cocomplete, the set of vertices of
the n-cube can also be equipped with the 71 metric. Proposition 4.3 summarizes what is necessary
to know about this Lawvere metric for the proof of Theorem 4.6.
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Proposition 4.3. Let n € Seq(n) with n > 0 as above. The following properties hold:

1. Let x and y be two vertices of Aln] belonging to the same Aln;|. Then 71 (x,y) is the distance
in Aln;] from x to y.

2. Let p,q € Vert(n) which are identified with the corresponding vertices of Aln] as explained above.
Then p < q implies d1(p,q) = q—p and p > q implies d1(p,q) = 0.

3. If x € Alnglo and y € Alnjlo with i < j, then

71(%9) = 71(510,7L1 + ) o —ny +71(n1 +- +nj-1,Y)

where ny + -+ +n; € Vert(n) is identified with the final state of A[n;] in A[n] and where
ni +---+nj_1 € Vert(n) is identified with the initial state of Aln;] in Aln].

Proof. The category LvMet being the category of ([0, 00|, >, +, 0)-enriched small categories, we
obtain for two vertices z and y of A[n] the general formula

71(w, y) = min min 71(%, x1)+ -+ 71 (Tr_1, ).
r>1 (0,se.osr)
(k‘l, ...,k‘.,«)e{l ,,,,, p}r T=T0,Y==Lr

Vi, {zi,zi+1} CAng,; o

Let « and y be two vertices of A[n] belonging to the same A[n;]. Then 71 (x,y) in Aln,] is the
minimum by the triangular inequality. Hence (1). Let p,q € Vert(n) with p < ¢. For an s-cube

Alsl], 71(03713) = 5. We deduce that for any r > 1, any (k1, ..., k) € {1,...,p}" and any

(p = xo,...,x, = q) such that Vi, {z;, 2,11} C Alng,]o, the sum dy(zo,21) + - -+ di(xp_1,2,) is
equal to ¢ — p or to co. Hence the first part of (2). Assume now that ¢ > p. Then in any sum of

the type 71 (xo,z1) + -+ jl(xr_l,xr) above, one of the terms is equal to co. Hence (2). We
deduce (3) thanks to the following calculation:

71 (Iv y)

271(56,711+"'+m‘)+71(n1+"'+ni,n1+"'+nj71)+71(n1+"'+nj—17y)
zjl(x,n1+--'+ni)+nj_1 —ni+jl(n1+---+nj_1,y).

O
Definition 4.4. Let K be an A-set. Let o, 3 € Ko. Let n > 0. The small category
Cha,g(K,n)
of cube chains of K is defined as follows. The objects are the maps of A-sets
Aln] — K
with n = (n1,...,np) and |n| = n where the initial state of A[ni| is mapped to o and the final state

of Alny] is mapped to 8. The morphisms are the commutative diagrams of A-sets of the form

Aln,]

|

#} K
Aln,)) —2— K
such that |n,| = |ny| and Vert(n,) C Vert(n,). Let

Ch(K)= ]  Chas(K).

(a,8)€Kox Ko
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To give an explicit description of the morphisms in the category of cube chains, we introduce
two families of maps of A-sets d; 4, g and 0y in what follows. Let AU B = {1,...,m1 + ma} be a
partition with the cardinal of A equal to m; > 0 and the cardinal of B equal to ms > 0. Let

¢A,B : A[ml} * A[mz] — A[m1 + mg]
be the unique map of A-sets such that

¢4,8(1d[n,1) = 0% (Id}m, +ms));
$4,8(Idpm,)) = 04 (Idjn, 4my))-

Forie{l,...,4(n)} and a partition AL B = {1,...,n;}, let
6i,A,B = Id.A[nl] koeee X IdA[nifl] *(bA,B * Id.A[nHﬂ Koeee X Id-A[”f(g)]'

For f = (f1,..., fp) with f; € A([n:], [ni]) for 1 <i < p, let

op = fix-- % fp: Aln] — Aln].

Proposition 4.5. Let A be a thick category of cubes. Let 0 < m < n. FEvery map of A-sets
f: Alm] — Aln] factors uniquely as a composite f = L4(h)g with g : Alm] — A[m] and
h - Om] — O[n].

Proof. Tt is a rephrasing of Proposition 2.5 using the Yoneda lemma. O

Theorem 4.6. Let ny € Seq(ni) and ny € Seq(nz). A map of A-sets from A[ni| to A[ng] is a
composite of maps of the form §; a4 p and 5[ if and only if n1 = ny and Vert(ng) C Vert(ni).

Proof. The “only if” direction is a consequence of the definitions of d; 4, and J¢: note that
only a map of the form d; 4 p removes vertices. Let us treat the “if” part. Let n=mny = ns.
Write ng = (m1,...,m,) with £(ng) = r. Since Vert(na) C Vert(ni) by hypothesis, there exist
m; € Seq(m;) for 1 < j < r such that n; = (mq,...,m,). The smallest (biggest resp.) element
of Vert(ny) C Vert(n,) is 0 (n resp.) and they can be identified with the initial and final states
respectively of A[ni] and A[ng]|. Consider a map of A-sets

k: Alni] — Alng].

Consider two vertices z,y of A[n] such that 71 (z,y) = 1. Then, by Proposition 4.3, the two

vertices x and y are the extremities of a unique l-cube of A[n;] going from x to y which is

taken by k to a 1-cube of Alns]. This implies that jl(k(x), k(y)) = 1 by Proposition 4.3 again.
Consider a vertex z of A[n,] and a sequence (0 = zo,...,z, = x) of vertices of A[n,] such that

jl (i, 2i41) = 1forall ¢ € {0,...,p— 1}, which implies that 31 (0, ) = p by Proposition 4.3. Then
1(k(z), k(zi41)) = 1 for all ¢ € {0,...,p — 1}, which implies Zl(k(O), k(x)) = p as well. From
1(0,n) = n by Proposition 4.3, we then deduce that d;(k(0),k(n)) =n. The only possibility is
that 0 = k(0) and that n = k(n) by Proposition 4.3. We deduce
Ve € Ajnilo, d1(0,2) = d1(0, k().

Note that, in general, there is only the inequality 71 (z,y) > 71(]6(1‘), k(y)) for all vertices x
and y of A[nq]. For example, z and y can be incomparable vertices with k(z) = k(y), which

implies 71 (z,y) = oo and Zl(k(:z:),k(y)) = 0. The point is that 0 is less than all vertices of
A[ni] for the poset structure on vertices. This implies that for all p € Vert(ny) C Vert(n.),

71(0717) = 71(07 k(p)) = p. We deduce

Vp € Vert(ng) C Vert(ni), k(p) =p

because there is only one vertex z in the n;-cube and in the np-cube such that 71 (0,z) = p. Thus
the map
k: Alni| — Alns]
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is of the form k; * - - - * k, where
ki« Alm;] — A[|lmy]]

is a map of A-sets for all 1 < j < r. We are then reduced to studying the case of a map of A-sets
f: Aln] — Aln]

with n = (n1,...,np), p > 2 and n = ny + --- + n,. By precomposing f by the inclusion maps
Aln;] C A[n], we obtain a map of A-sets

£ Alng] —S— Aln] —L— An]

for all i € {1,...,p}. By Proposition 4.5, there exists a unique factorization

fi

/\

Alni] —S— Aln] —L— An]

Alni) —— Al “E% Al

for all i € {1,...,p}. We obtain a factorization of f : A[n] — A[n] as a composite

La(ha)*-+Lalhp)

6(91,«--,gp)
Aln] Aln]

n Aln]
The right-hand map
La(ht) *--- % Lalhy) : Aln] — A[n]

is the image by the functor £ 4 : 0°”Set — A°PSet of a map of precubical sets from O[n] to O[n].
It suffices to prove that it is a composite of maps of precubical sets of the form §; 4 g to complete
the proof. There is nothing to prove when ¢(n) = 1. We make an induction on ¢(n) > 2. Assume
first that n = (n1,n2). Consider a map of precubical sets f : O[n] — O[n]. By precomposing f by
the inclusion maps O[n;] C O[n], we obtain a map of precubical sets

f:Olng] € Oln] -5 Oln)

for i € {1,2}. Each map f; corresponds by the Yoneda lemma to an element ¢; of O[n],,, = O([n;], [n])
such that the final state of ¢; is the initial state of ¢ and such that the initial state of ¢; is 0,
and such that the final state of ¢y is 1,. Thus there exists a partition A; U Ay = {1,...,n} such
that 09 (c1) = On, 04, (c1) = 99, (c2) and 8}, (c2) = 1,. This implies that ¢; = 8%, (Id,)) and
o = 94, (Idp,;). We have proved that

=04,

which is the induction hypothesis for p = 2. Consider now for some p > 2 a map of precubical sets
[+ Bln] = @[na] % - -+ Olnp)) * Olnp 4] — Oin
withn =n1+---+npy1 and n = (n1,...,npy1). The 71 distance from the initial state of O[n;] to

the final state of O[ny,] in O[n] being ny + - - - + nyp, all cubes of f(O[nq] * - - - * O[ny]) are included
in a subcube of O[n] of dimension 1y + - - - + n,. This implies that the composite map

Ofna] * -+ * On,) € Ofn] -1 O[n)
factors as a composite of maps of precubical sets

Ofnq] * -+ %« Ony] — Ong + -+ - + np] — O[n].
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We deduce that the map of precubical sets f factors as a composite
£ (@nq] *-- -« 0npl) * Onpyr] — Ong + - - + 0y * Onpea] — On].

The induction hypothesis for p > 2 implies that the map of precubical sets O[nq] * - -+ x O[n,] —
O[ny + - - - 4+ np) is a composite of maps of the form d; 4 . This implies that the left-hand map
in the above factorization of f is a composite of maps of the form d; 4,p as well. The induction
hypothesis for 2 implies that the right-hand map in the above factorization of f is also a composite
of maps of the form 6, 4 p. Hence the proof is complete. O

Corollary 4.7. For any precubical K, Ziemiariski’s definition of Ch(K) given in [20, Definition 1.1]
or [21, Section 7] and the above definition coincide.

Proof. Since U([n], [n]) is a singleton for all n > 0, all maps of the form J; are identities. O

Notation 4.8. Since £ 4(0O[n]) = Aln] for all n € Seq(n), L4 being colimit-preserving, the functor
L4 : 0°PSet — A°PSet induces a functor

LY Ch(K) — Ch(L4(K))
for all precubical sets K.

Proposition 4.9. Let m > 0. Let K be a precubical set. Every map of A-sets
[ Alm] — LA(K)
factors uniquely as a composite of maps of A-sets

Ajm] -2 Am) A% £,4(K)

where h : O[m] — K is a map of precubical sets.

Proof. The functor L — L,, from A-sets to sets is colimit-preserving. Thus, there are the bijections

(LalK)m = i (LaOp))n = lm (A(p))m = lim A(lm), [p)-

Op] =K Opl—K Op]—K

The map of A-sets f : A[m] — L4(K) gives rise to an element of the set (£L4(K)), by Yoneda.
Therefore there exists a map g : A[m] — A[p] and a map of precubical sets h : O[p] — K such
that f = L4(h)g. From Proposition 4.5 applied to g, we obtain g = L4(h')g" with ¢' € A([m], [m])
and we deduce f = L4(hh')g’, which is the desired factorization. Consider two factorizations
f = L(h;)g; with h; : Om] — K and g; : A[m] — A[m] with ¢ = 1,2. They correspond to two
representatives of the map f in the colimit of sets

iy A(ml, [p).

Op]—K
It means that there is a commutative diagram of A-sets of the form

La(h1)

Afm] —— Afm] La(K)
L4(k1)

Alm] —2— Alp) 20 £ (1)
La(k2)

Alm] —2— Alm] 2 £ (K
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Alm] & £.4(0lm))
\ ) o Lalhy)
‘ Alm] — LA(Oln)
La(ho)
La(K) LA(K) La(h)
La(K) La(K)

Figure 1: Construction of h;

for some g3 € A([m], [p]) indexed by the map of precubical sets hs : O[p] — K in the diagram of sets.
We obtain the equality g3 = L4(k1)g1 = La(k2)ge. From Proposition 4.5, we deduce g = go and
k1 = ka. From the last equality, we deduce £4(h1) = La(hs)La(k1) = La(hs)La(ks) = La(hs).
Since the functor £ 4 : [0°PSet — A°PSet is faithful, we obtain h; = hy. Hence the proof is
complete. O

Proposition 4.10. Let n € Seq(n) with n > 0. Let K be a precubical set. Every map of A-sets
f i Aln] — L4(K) factors uniquely as a composite of maps of A-sets

Aln] —2— Aln]

where h : O[n] — K is a map of precubical sets.

Proof. Let n
1

(n1,...,np) € Seq(n). Giving f is equivalent to giving p maps of A-sets f; : A[n;] —
L 4(K) for i

<4 < p satisfying fi(1,,) = fit1(0n,,,) for 1 <i<p—1. Write

f=fieees gy

In the same way, given h is equivalent to giving p maps of precubical sets h; : O[n;] — K for
1 <4 < p satisfying hi(1,,) = hit1(0n,,,) for 1 <i < p— 1. Write

h="hy*---xh,and La(h) =La(h1)*--- % La(hy).

Then f = La(h)g if and only if f; = La(h;)g; for all 1 < ¢ < p where g; : [n] — [n] is a map of A.
The proof is complete thanks to Proposition 4.9. O

Theorem 4.11. Let K be a precubical set. The functor
LY : Ch(K) — Ch(L4(K))
induces a homotopy equivalence
| Cha,p(K)| = | Cha,p(La(K))]

for all (a, B) € Koy x Kq between the classifying spaces where |C| means the classifying space of C,
i.e. the geometric realization of the simplicial nerve of C.

Proof. By Quillen’s Theorem A [14, Theorem 19.6.14], it suffices to prove that the comma category
(clL) is contractible for all cube chains ¢ of £L4(K). By [14, Proposition 14.3.14], it suffices to
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prove that the comma category (c[£%) has an initial object for all cube chains ¢ of £4(K). An
object of the comma category (c[L%) is a commutative square of A-sets of the form

Alm] —— La(O[n))

LﬁA(h)

La(K) La(K)
such that |m| = |n| and Vert(n) C Vert(m). Proposition 4.10 provides a commutative square of
A°PSet
Alm] —"— L4(0O[m))
L/JA(ho)
La(K) La(K).

which is clearly an object of the comma category (giﬁfi ). Consider the diagram of solid arrows of
A-sets depicted in Figure 1 where the front face is another object of the comma category (giﬁf ).

This implies that |m| = |n| and Vert(n) C Vert(m). It can be rearranged as follows:
g0 La(ho)
Alm] 2 La(Ofm]) —= La(K)
g1 !
| Laha)
Alm) —— £a(On)) —E— L4(K)

with ¢ = L 4(ho)go = L 4(h)g. Using Proposition 4.10, write g = £ 4(h1)g1. We obtain the equalities
La(ho)go =c=La(h)g=La(h)La(h1)g1 = La(hh1)g1
By Proposition 4.10 and since £ 4 is faithful by Proposition 2.9, we obtain
g1 = go and hhy = hyg.

We have proved that there exists a diagram of solid arrows of A-sets

Alm] —2 s £4(O[m]) —28 £ (k)
La(h1)
Afm] ——— £4(0n) —2" s £4(K)

From g = L 4(h1)go and Proposition 4.10, we deduce that there exists a unique map £ 4(h1) making
the above diagram commutative, and therefore a unique hi, the functor £4 being faithful by
Proposition 2.9. Since |m| = |n| and Vert(n) C Vert(m) by hypothesis, the commutative square of
precubical sets
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is a map of Ch, g(K). Thus the diagram of solid arrows depicted in Figure 1 yields together with
hy a well-defined map of the comma category (g¢£§ ). This implies that the commutative square

Alm] —2— £.4(0fm])

CL LﬁA(ho)

LA(K) == La(K)

is an initial object of the comma category (giﬁﬁ ) and the proof is complete. O

We recall [10, Definition 4.11] which is necessary to understand Corollary 4.12. There are the
homeomorphisms (natural with respect to [n] € O)

|D[n]|geom =[0,1]" = |A[n]|geom

by definition of the geometric realization. A tame d-path of |A[n]|geom = [0,1]™ is a nonconstant
continuous map = : [0,£] — [0,1]™ with £ > 0 such that v(0),v(¢) € {0,1}™ and such that v is
nondecreasing with respect to each axis of coordinates. Let ¢ € K,, with n > 1 be an n-cube of an
A-set K. A tame d-path of ¢ is a composite continuous map denoted by [¢;7] : [0,€] = |K|geom
with ¢ > 0 such that 7 : [0,¢] — [0,1]" is a d-path with [¢;7] = |¢[geom?. Let K be a general
A-set. A tame d-path of K is a continuous path [0,¢] = |K|geom which is a Moore composition
[c1;71] * -+ - * [cn; Y] Of d-paths of the cubes ¢q,. .., ¢, of K. v(0) € Ky is called the initial state of
~ and v(¢) € Ky is called the final state of 7.

Corollary 4.12. Let K be a precubical set. The space of tame natural d-paths of LA(K) is
homotopy equivalent to | Ch(LA(K))|.

Proof. There are the homeomorphisms (natural with respect to [n] € O)
Ollgeom = [0,1]" = |Aln[geom = |£4(0[n))]geom,

by Proposition 2.12. Since all involved functors are colimit-preserving, we obtain for all precubical
sets K the natural homeomorphism

‘K|geom = |£.A(K)‘geom-

Hence the space of tame natural d-paths of K is equal to the one of £L4(K). By [21, Theorem 7.
we deduce that the space of tame natural d-paths of £4(K) is homotopy equivalent to | Ch(K
and therefore homotopy equivalent to | Ch(L 4(K))| by Theorem 4.11.

)

— ot

b

O

5 Application

We refer to [5, 6] for further details. [6, Theorem 4.1.8] states that, for two labelled cubes
Ola1, - .-, am) and Ofamy1, - - - Gmin] with m > 0 and n > 0, there is an isomorphism of o-labelled
symmetric transverse sets

_>2
L:/D\S(COSk (D[al,...,amkl X D[am+1,...,am+n]<1))
~ /D\ 77 = kvl
:COSklsE (Ds[al,...,am]gleDS[amH,...,am+n]<1)

where

_>E

o cosk is the o-labelled directed coskeleton of [5, Section 3.3] which is a tweak of the o-labelled
coskeleton functor of the category of precubical sets, the latter being badly behaved by [5,
Proposition 3.15]: it contains too many cubes and some of them have to be identified;

o cosklus’E is the o-labelled coskeleton functor of the category of symmetric transverse sets which
is well behaved by [6, Theorem 3.1.15].
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By Theorem 4.11, the underlying precubical set of

—
cosk (D[al, . ,am]@ X D[am_,_l, . ,am+n]<1)

and the underlying symmetric transverse set of

8.5 /o A
cosky s, (Ds[al, o aml<a XsOg[@me, - .,am+n}<1)

have homotopy equivalent categories of cube chains.

This implies that the parallel composition with synchronization for process algebra, as it is

formalized in [6] using the labelled coskeleton functor of the category of symmetric transverse sets,
has a category of cube chains which gives the correct homotopy type of tame natural d-paths.
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