This note presents a presheaf theoretic approach to the construction of fuzzy sets, which builds on Barr's description of fuzzy sets as sheaves of monomorphisms on a locale. A presheaf-theoretic method is used to show that the category of fuzzy sets is complete and co-complete, and to present explicit descriptions of classical fuzzy sets that arise as limits and colimits. The Boolean localization construction for sheaves and presheaves on a locale L specializes to a theory of stalks if L approximates the structure of a closed interval in the real line. The system V(X) of Vietoris-Rips complexes for a data cloud X becomes both a simplicial fuzzy set and a simplicial sheaf in this general framework. This example is explicitly discussed in this paper, in stages.