We demonstrate that categories of continuous actions of topological monoids on discrete spaces are Grothendieck toposes. We exhibit properties of these toposes, giving a solution to the corresponding Morita-equivalence problem. We characterize these toposes in terms of their canonical points. We identify natural classes of representatives with good topological properties, `powder monoids' and then `complete monoids', for the Morita-equivalence classes of topological monoids. Finally, we show that the construction of these toposes can be made (2-)functorial by considering geometric morphisms induced by continuous semigroup homomorphisms.