In this work we take a Category Theoretic perspective on the relationship between probabilistic modeling and function approximation. We begin by defining two extensions of function composition to stochastic process subordination: one based on the co-Kleisli category under the comonad (Omega x -) and one based on the parameterization of a category with a Lawvere theory. We show how these extensions relate to the category Stoch and other Markov Categories. Next, we apply the Para construction to extend stochastic processes to parameterized statistical models and we define a way to compose the likelihood functions of these models. We conclude with a demonstration of how the Maximum Likelihood Estimation procedure defines an identity-on-objects functor from the category of statistical models to the category of Learners. Code to accompany this paper can be found at https://github.com/dshieble/Categorical_Stochastic_Processes_and_Likelihood

We extend the notion of compositional associative rewriting as recently studied in the rule algebra framework literature to the setting of rewriting rules with conditions. Our methodology is category-theoretical in nature, where the definition of rule composition operations encodes the non-deterministic sequential concurrent application of rules in Double-Pushout (DPO) and Sesqui-Pushout (SqPO) rewriting with application conditions based upon $\mathcal{M}$-adhesive categories. We uncover an intricate interplay between the category-theoretical concepts of conditions on rules and morphisms, the compositionality and compatibility of certain shift and transport constructions for conditions, and thirdly the property of associativity of the composition of rules.

Erratum, 11 July 2022: This is an updated version of the original paper in which the notion of reparametrization category was incorrectly axiomatized. Details on the changes to the original paper are provided in the Appendix. A reparametrization category is a small topologically enriched semimonoidal category such that the semimonoidal structure induces a structure of a semigroup on objects, such that all spaces of maps are contractible and such that each map can be decomposed (not necessarily in a unique way) as a tensor product of two maps. A Moore flow is a small semicategory enriched over the biclosed semimonoidal category of enriched presheaves over a reparametrization category. We construct the q-model category of Moore flows. It is proved that it is Quillen equivalent to the q-model category of flows. This result is the first step to establish a zig-zag of Quillen equivalences between the q-model structure of multipointed $d$-spaces and the q-model structure of flows.

This work originates from the observation that today's state-of-the-art statistical language models are impressive not only for their performance, but also - and quite crucially - because they are built entirely from correlations in unstructured text data. The latter observation prompts a fundamental question that lies at the heart of this paper: What mathematical structure exists in unstructured text data? We put forth enriched category theory as a natural answer. We show that sequences of symbols from a finite alphabet, such as those found in a corpus of text, form a category enriched over probabilities. We then address a second fundamental question: How can this information be stored and modeled in a way that preserves the categorical structure? We answer this by constructing a functor from our enriched category of text to a particular enriched category of reduced density operators. The latter leverages the Loewner order on positive semidefinite operators, which can further be interpreted as a toy example of entailment.